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1 Introduction

Currently, there is substantial empirical evidence on the interaction of credit conditions and

the macroeconomy. Several recent studies focused on corporate bond spreads, which tend to

widen in stress periods, and lead to a decline in economic activity, e.g., Gilchrist and Zakrajsek

(2012), Faust, Gilchrist, Wright and Zakrajsek (2013) and Lopez-Salido, Stein and Zakrajsek

(2017). In addition, financial shocks that hit the economy in periods of credit stress may have

different effects on macroeconomic variables (Galvao and Owyang, 2018). In this paper, we

evaluate how the impact and the transmission of monetary policy shocks depend on credit

conditions. Caldara and Herbst (2019) provide evidence of the role of the contemporaneous

effect of monetary policy on credit spreads to the dynamic transmission of monetary policy

shocks. They identify monetary policy shocks with the aid of a proxy, which is based on the

high-frequency reaction of future markets to monetary policy announcements, as in Gertler

and Karadi (2015). Miranda-Agrippino and Ricco (2018) improve the high-frequency proxy by

removing market surprises caused by new information regarding the prospects of the economy,

such as monetary policy authority forecasts updates. We identify the impact effects of monetary

policy shocks using both the high-frequency proxies employed by Gertler and Karadi (2015)

and by Miranda-Agrippino and Ricco (2018).

Our main contribution is to measure changes in the impact and the transmission of monetary

policy shocks using a nonlinear vector autoregressive model. A popular method to capture

regime changes in macroeconomic dynamics is the application of a Markov-switching model, as

surveyed by Hamilton (2016). We choose instead to use a smooth transition model, previously

applied to find regime changes in the transmission to monetary policy shocks (Weise, 1999),

fiscal shocks (Auerback and Gorodnichenko, 2012) and financial shocks (Galvao and Owyang,

2018). As the dynamic transmission of shocks may change at each point in time, the advantage

of smooth transition models is that these recorded changes are smooth over time, since the

transmission relies on time-varying weights applied to the estimated dynamic coeffi cients in the

upper and lower regimes. These smooth changes are in contrast to the abrupt changes implied

by Threshold and Markov-Switching models. Another advantage of smooth transition models

is that a combination of observed variables leads to regime changes, with a clear identification

of the forces behind the switching. In contrast, the nonlinear projection approach in Barnichon

and Matthes (2018) employs the sign of past structural shocks to describe changes in the

shock transmission. Finally, smooth transition models can nest threshold models, including
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the specification by Balke (2000) applied to evaluate the impact of short-term credit risk as a

nonlinear propagator of shocks.

Typically, benchmark vector autoregressive models employed to measure the dynamic effects

of monetary policy shocks include a small set of variables (Gertler and Karadi, 2015). Of interest

is to allow for broad information set to estimate the dynamic responses as in Miranda-Agrippino

and Ricco (2018) or, in a factor-augmented VAR context, in Gilchrist, Yankov and Zakrajsek

(2009). In this paper, we consider a large VAR model including eight different monthly measures

of economic activity, four measures of aggregate prices, two measures of the short-term rate,

and six measures of credit conditions.

To deal with the dimensionality issue, we employ a Multivariate Autoregressive Index (MAI)

VAR representation, which was first proposed by Reinsel (1983) and extended by Carriero,

Kapetanios and Marcellino (2016) to allow for Bayesian analysis.1 The advantage of the MAI

approach is that a small set of common shocks drives the dynamics of a more extensive set

of endogenous variables. By using estimates of the reduced-form common shocks and a proxy

for monetary policy shocks, we show how to measure the impact of monetary shocks on all

endogenous variables.

Our proposed approach exploits the dimensionality reduction warranted by the MAI ap-

proach to be able to model nonlinear dynamics for a large set of endogenous variables. We

introduce smooth transition regime changes in the parameters of the conditional mean and the

conditional variance of the MAI model, with one of the common observable factors (specific lin-

ear combinations of economic variables) employed as transition variable. Hence, factors are not

only the common drivers of all the variables, but also the triggers of parameter regime changes.

As regime changes are a function of endogenous variables, the probability of moving out from

the current regime may change as a response to shocks. A consequence is that the proposed

modelling provides evidence of asymmetric effects from easing relative to tightening of monetary

policy as in Barnichon and Matthes (2018) and Angrist, Jorda and Kuersteiner (2018). These

asymmetric effects, however, are explained by how easing and tightening monetary policies

affect credit conditions and the probabilities of regime changes differently.

We develop Metropolis-in-Gibbs algorithms to estimate the smooth transition MAI (ST-

1MAI models impose reduced-rank restrictions on the matrices of a VAR model which imply that each variable
is driven by (the lags of) a limited set of linear combinations of all variables, interpreted as observable factors
(indices). In this sense, MAI models are a bridge between VAR and factor-augmented VAR models with the
advantage that the factors can be consistently estimated even if the number of variables is finite.
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MAI) model. In contrast with factor-augmented VAR specifications as in Galvao and Owyang

(2018), the ST-MAI model does not require filtering to obtain the set of unobserved factors,

avoiding computational issues from a nonlinear filtering step in the estimation. We follow

Lopes and Salazar (2005) and Galvao and Owyang (2018) to draw the parameters of the smooth

transition function jointly in a Metropolis step, that is, the parameters of the transition function

are estimated using available data (in contrast to Aikman, Lehner, Liang and Modugno (2017)).

For the regime-conditional variance-covariance matrix, we use a variation of the inverse-Wishart

proposal approach in Galvao and Owyang (2018). We use the method proposed by Carriero

et al. (2016) to estimate factors’loadings. Because the variance-covariance matrix changes with

the regime, we use the triangularization method proposed by Carriero, Clark and Marcellino

(2019) to reduce further the computational time caused by a large number of endogenous

variables.

We apply the ST-MAI model to a set of 20 economic and financial variables, including

indicators of economic activity, prices, short-rates and credit conditions. Based on ST-MAI

coeffi cients posterior distributions, we can compute dynamic responses to shocks for all 20

endogenous variables and also for the small set of factors. As the factors are linked to a

variable grouping defined by an economic concept, the modelling allows us to be agnostic about

how to measure vital economic variables such as economic activity, prices, the short-rate and

credit conditions.

We find evidence (based on a measure of fit applied to different specifications) that changes

in the dynamics link between macro and financial variables are characterized by recurrent regime

changes triggered by the credit factor. We measure the effects of factor loadings restrictions on

how the model fits the data to support our specification choice.

The empirical results suggest significant asymmetries related both to credit conditions and to

the size and sign of the monetary shocks. In particular, decisive monetary policy easing during

a period of weak credit conditions can lead to disproportionate positive effects on economic

activity and inflation. These disproportionate effects are caused by how the policy affects

credit conditions over time, leading to a switch to the lower regime, where monetary policy has

the expected effects on economic activity and inflation. This novel empirical evidence, obtained

with a nonlinear VAR model for a broad set of endogenous variables, highlights how monetary

policy can be crucial for macroeconomic stabilization during periods of credit market turmoil.

The remaining of the paper is organized as follows. Section 2 reviews the MAI model and
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then introduces the ST-MAI model. It also outlines the Bayesian estimation strategy, the

shock identification approach, and a method for computation of the impulse responses. Section

3 applies the ST-MAI model to look for amplification effects and asymmetries in the dynamic

effects of monetary policy shocks. Section 4 summarizes and concludes.

2 The Smooth Transition Multivariate Autoregressive Index

Model

This section presents the Smooth Transition Multivariate Autoregressive Index (ST-MAI) model,

to be used to study amplification and asymmetries in the effects of monetary shocks depend-

ing on credit conditions. After introducing the model, we consider (Bayesian) estimation and

structural analysis.

2.1 The ST-MAI model

Let us assume that an N × 1 vector of variables Yt evolves as a VAR(p):

Yt = c0 +

p∑
u=1

CuYt−u + εt, (1)

with εt ∼ i.i.d.N(0,Σ), t = 1, ..., T , and c0 an N × 1 vector of intercepts. The number of the

VAR(p) parameters grows proportionally to N2 as p increases, leading quickly to a number that

is larger than the sample size T . However, economic theory and empirical observation suggest

that many economic variables tend to move together, being driven by a limited number of key

structural shocks. Formally, this suggests to impose a set of reduced rank restrictions on the

Cu matrices in (1), decomposing each of them into Cu = AuB0, where each Au is N ×R, B0 is

R ×N , and u = 1, .., p. The resulting specification, labeled Multivariate Autoregressive Index

(MAI) model by Reinsel (1983) can be written as:

Yt = a0 +

p∑
u=1

AuB0Yt−u + εt, (2)

or

Yt = a0 +

p∑
u=1

AuFt−u + εt, (3)
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where

Ft = B0Yt. (4)

The R variables in Ft can be considered as observable factors (indices), driving the dynamics

of the variables in Yt. We discuss how we name the factors by imposing restrictions on B0 in

the next subsection. As R is generally much smaller than N , the MAI(p) model is much

more parsimonious than the VAR(p), with a total of NRp instead of N2p parameters in the

conditional mean. This makes it computationally feasible to extend it to allow for regime

changes in the parameters even when N is large.

Assume now that the parameters a0, A1, ..., Ap change smoothly with the regime. Hence, a

smooth transition MAI model (ST-MAI) is:

Yt = a0 + ψt(γ, c, xt−1)d0 +

p∑
u=1

AuFt−u +

p∑
u=1

ψt(γ, c, xt−1)DuFt−u + εt, (5)

where ψt(γ, c, xt−1) is a logistic function, xt is the transition variable, c is the threshold, and

γ is the smoothing parameter.2 The model implies that if the transition variable xt−1 is large

in comparison with the threshold c, the value of the scalar ψt(γ, c, xt−1) is not far from 1, and

the coeffi cients for lag u are (Au + Du). If instead xt−1 is much lower than the threshold,

ψt(γ, c, xt−1) gets close to 0, and the coeffi cients are Au. This means that Du measures the

difference in conditional mean dynamics between regimes. The intercept also changes with

the regime as the vector d0 measures the differences between regimes. This feature allows for

regime-changes in the unconditional mean of Yt, which is an essential feature of regime changes

in macroeconomic variables, as suggested by Hamilton (2016). When the smoothing parameter

γ is large, the transition function resembles a step function at the threshold c, and the parameter

change is abrupt.

We assume that the regimes that characterize changes in the dynamics of the endogenous

variables in Yt are driven by one of the observable factors Ft, which are also the key drivers to

describe the dynamics in the variables in Yt. Hence, we have:

ψt(γ, c, xt−1) =
1

1 + exp(−(γ/σx)(xt−1 − c))
, (6)

2For surveys on smooth transition VARs, see Van Dijk, Terasvirta and Franses (2002) and Hubrich and
Terasvirta (2013).
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where xt = f
(r)
t , that is, the transition variable is one of the R observable factors in Ft (with

standard deviation σx):

f
(r)
t = b

(r)
0 Yt,

and b(r)0 the rth (1×N) row of the matrix B0, r = 1, .., R. We use lagged factors to trigger regime

changes to avoid endogeneity problems and to allow for some time delay in the adjustment of

the model dynamics. We use single factors so that we can establish the key driver of regime

changes empirically.3

In our empirical application, where Yt are monthly variables generally expressed as month-

on-month growth rates, it is convenient to set the transition variable as a smoother year-on-year

growth rate:

xt = g
(r)
t =

1

12

11∑
j=0

b
(r)
0 Yt−j , (7)

to capture regimes with longer duration and avoid picking up outliers. A similar smoothing is

used, for example, in Auerback and Gorodnichenko (2012). Even though these regime changes

are not based on all past history of observables as in the case of Markov-Switching Models

(Hamilton, 2016), the persistence of the transition variable implies that the memory of a set of

observables is considered as g(r)
t−1 drives regime changes. The advantage of ST-MAI modelling is

that we can easily interpret the drivers behind regime changes without the need for a filtering

step in the estimation procedure.

We model the error variance of the N × 1 vector of reduced-form disturbances εt as follows:

V ar(εt) ≡ Σt = (1− ψt(γ, c, xt−1))Σ1 + ψt(γ, c, xt−1)Σ2, (8)

where ψt(γ, c, xt−1) is the logistic function as in (6). The specification implies that if the value

of ψt(γ, c, xt−1) is near zero, then the variance-covariance matrix is near Σ1, but if the value

of ψt(γ, c, xt−1) is approximately 1, then the variance-covariance matrix is at Σ2. As before,

the transition variable xt is the year-on-year growth equivalent of one of the factors, g
(r)
t . Note

that we have just one transition function, ψt(γ, c, xt−1), which implies that regime changes

occur at the same time in the conditional mean and variance, as for example in Auerback and

Gorodnichenko (2012).

When estimating large VAR models with changes in the variance-covariance matrix, Car-
3A linear combination of a set of factors is a possible alternative, along the lines of Galvao and Marcellino

(2014) who use a combination of variables in a small ST-VAR context.

6



riero et al. (2019) allow the variances to change over time (diagonal of Σt), while covariances

(elements outside the diagonal) are fixed. Our regime-dependent smooth transition specifica-

tion is a parsimonious method to consider for covariance and variance changes over regimes,

with possibly important consequences for the computation of dynamic responses.

2.2 Identification of Dynamic Causal Effects

The ST-MAI model described by equations (5), (6) and (8) can be applied to characterize

regime changes when measuring responses to structural shocks. To characterize the nonlinear

dynamic responses to structural shocks, we need first to identify the effect that the shock j

has on the variable i (i = 1, ..., N) at the time t = 1 (impact). Then we need an approach to

measure the dynamic effects of the shock. Because of the ST-MAI nonlinear dynamics, positive

and negative shocks, or large and small shocks, may have asymmetric effects.

2.2.1 Measuring Impact Effects

As the ST-MAI model describes the dynamics of the endogenous variables using common ob-

servable and possibly correlated factors, a first step for the identification of the effect of struc-

tural shocks is the identification of the factors (Stock and Watson, 2016). We view the factors

as a way of measuring an economic variable using many alternative observed measures. Each

observable in the vector Yt is a measure of one specific economic concept, say economic activity

and aggregate price, which is summarized by one factor in the vector Ft. We divide the ob-

served variables into groups, and then each group loads into a specific factor, implying we set

the number of factors R as the number of groups and set zero restrictions in B0 accordingly.4

Table 1 describes the variables we consider and the groupings. The activity group includes

alternative measures of economic activity, as the inflation group includes four alternative prices

indices. Next, we have two measures of the short-term interest rate that are used to identify

monetary policy shocks in the literature. The first one is the policy rate. As our sample covers

the zero-lower-bound period, we use the end-of-period effective fed fund rates, except for the

months that the zero-lower-bound binds, for these we use the Wu and Xia (2015) shadow rate as

published in the Atlanta Fed website. The second measure is the one-year Treasury bill, which

was employed to measure the effects of monetary policy by Gertler and Karadi (2015). Finally,

we consider six variables that have been reported in the literature as linked to credit conditions,

4The number of zero restrictions is suffi cient to (over-) identify the B0 and Au matrices, u = 1, ..., p.
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and that are available for an extended period (since 1974). This excludes most of the measures

of supply of credit, but leads to the inclusion of credit spreads. We include measures of short

(Commercial Paper and TED spreads) and long-term (excess bond premium and BAA spread)

credit risk, in addition to housing credit risk (Mortgage risk) and term premium (term spread).

This group of variables includes the excess bond premium computed using corporate bond yields

by Gilchrist and Zakrajsek (2012), and credit spread measures that are part of the financial

condition index in Hatzius, Hooper, Mishkin, Schoenholtz and Watson (2010) and of financial

stress indices periodically released by regional Feds (Chicago, St. Louis and Cleveland). The

credit group includes the 3-month commercial paper spread over the 3-month Treasury bill,

which was employed as a transition variable by Balke (2000).

The zero restrictions in B0 imply we can name the factors as activity, inflation, short-rates

and credit. Following Carriero et al. (2016), we also impose a normalization restriction in

B0. We set the loadings of one observable in each group to be equal to 1, that is, B0,ri = 1

for a specific observable i for each factor r, r = 1, ..., R. This means we define an arbitrary

normalizing variable for each factor. We evaluate the robustness of our decision when applying

this restriction to the credit group in the next section. Even though one variable only loads to

one specific factor, the factors are correlated with each other because the macroeconomic and

financial variables are usually correlated.5

The next step is to identify the R structural common shocks that drive the system, or a

subset of interest. If we multiply equation (5) by B0, we get:

Ft = B0(a0 + d0ψt(γ, c, xt−1)) +B0

p∑
u=1

AuFt−u +B0

p∑
u=1

ψt(γ, c, xt−1)DuFt−u + ut, (9)

with

ut = B0εt, var(ut) = Ωt = B0ΣtB
′
0.

The model in (9) is a smooth transition VAR for the observable factors Ft. This representation

suggests that R common shocks (ut) drive the joint dynamics of the N observables in the

system.

Assume now that the reduced-form common innovations ut are a linear combination of R
5 Instead, in standard factor models the factors are unobservable and typically assumed to be contemporane-

ously uncorrelated.
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structural shocks in the vector vt.

ut = Htvt.

We set var(vt) = IR, that is, a standard deviation normalization as defined by Stock and

Watson (2016), and employed by Gertler and Karadi (2015) and Caldara and Herbst (2019).

Note that the column vector H(r)
t measures the impact of one-standard-deviation change in

shock j on each one of the r factors in Ft, r = 1, ..., R.

Based on a recursive identification, we could use a Cholesky decomposition of Ωt to obtain

Ht, that is, Ωt = HtH
′
t. Because Σt is constant within a specific regime (see eq. (8)), we

could use Ω(reg) = B0ΣregB
′
0 for reg = 1, 2 to obtain H(reg). However, Caldara and Herbst

(2019) argue that this identification strategy could be inappropriate in this context due to

possible contemporaneous correlation of the monetary and credit shocks. Hence, we consider

an alternative approach, based on external instruments.

Specifically, we are interested in identifying a monetary policy shock, say r = mp, using an

external instrument mt. We compute H
(r=mp)
(reg) for reg = 1, 2 following the approach in Gertler

and Karadi (2015). As a consequence, we measure impact effects by employing u(mp)
t as a regres-

sor to predict each one of the R−1 remaining commons shocks. These regressions are estimated

by two-stage least squares, that is, using mt as instrument for u
(mp)
t . We estimate the regression

coeffi cients using the full sample available for the instrument as in Gertler and Karadi (2015).

A final step to obtain H(mp)
(reg) is to apply the scaling method (such that var(vt) = Ir) in Gertler

and Karadi (2015) (page 18) using the regime-specific variance Ω(reg)(= B0Σ(reg)B0). This last

step implies that the impact vector H(mp)
(reg) changes with regime following the estimated regime-

dependent variance-covariance matrices in (8), as expected based on the standard deviation

normalization applied.

An alternative to our two-step approach is to compute H(r=mp)
(reg) using the proxy-VAR es-

timation approach in Caldara and Herbst (2019). As the time series of candidate proxies mt

typically start in the early 90’s, we prefer the two-step approach such that we can estimate the

parameters of the ST-MAI model over a more extended period, which better enables to capture

regime changes.

Another possible modelling choice is to estimate regime-dependent impact effects that are

not only due to changes in the variance of the shocks as we proposed earlier, but also due

to the application of the two-stage-least-squares separately for each regime. Yet, empirically

this alternative approach delivers monetary policy shocks impact effects that are qualitatively

9



different from the ones described in Gertler and Karadi (2015) and Caldara and Herbst (2019).

Because these differences may be due to the even shorter sample periods available for the

estimation, we prefer to follow the literature and estimate impact effects using the sample

period for which the proxy is available. As a consequence, our estimated dynamic responses

may differ from the ones in the previous literature because of nonlinearities in the transmission

of shocks but not because of instabilities in the monetary policy identification.

The advantages of applying the external instruments approach to reduced-form common

innovations ut instead of the original innovations εt are two. First, we are allowed to be agnostic

about the adequate variable to measure the monetary policy innovations and monetary policy

shocks. We are able to use both the policy rate and the one-year rate to measure the impact

effects of monetary policy shocks based on a proxy. Second, even if part of the dynamics of

the variables in Yt is not explained by the set of common factors leading to serial correlation

in εt, we find no evidence of serial correlation in ut. This lack of serial correlation in reduced-

form disturbances supports the assumption that the proxy is indeed exogenous to all remaining

non-identified structural shocks.

Our ultimate interest, however, is to measure the impact effect of the common structural

shock on the vector of endogenous variables Yt. For this, it is convenient to apply the following

decomposition to the reduced form shocks εt :

εt = ΣtB
′
0Ω−1

t ut +B′0⊥(B0⊥Σ−1
t B′0⊥)−1ξt, (10)

where ut are the R (reduced form) commons shocks, ξt are N − R idiosyncractic shocks, and

B0⊥ is an N −R×N matrix orthogonal to B0 (as in Carriero et al. (2016)). The idiosyncratic

shocks are orthogonal to the common shocks because, as ut = B0εt and ξt = B0⊥Σ−1
t εt, then

E[utξ
′
t] = B0εtε

′
tΣ
−1
t B′0⊥ = 0. From equation (10), the regime-specific impact effects of a

structural shock are:
∂Yt+1

∂v
(r)
t+1

= ΣregB
′
0Ω−1

regH
(r)
(reg) for reg = 1, 2,

and we are particularly interested in r = mp, i.e., in the effects of the structural monetary

policy shock. Note also that
∂Ft+1

∂v
(r)
t+1

= B0

∂Yt+1

∂v
(r)
t+1

= H
(r)
(reg),

implying that as we compute responses to all endogenous variables in Yt, we can also obtain
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responses for their linear combinations included in Ft.

2.2.2 Measuring the Dynamic Transmission

Our primary interest is to measure asymmetries in the transmission of the structural shocks

to observables in Yt. Because of the nonlinear dynamics in the model, we need to compute

generalized responses (Koop, Pesaran and Potter, 1996). Specifically, we compute two responses

conditional to each regime at the time of the shock, but we allow for regime changes after the

shock.

We define the response of all i variables at horizons h (h = 1, ...,H) from shock r computed

using the history at time t as IRt,h,r. The previous discussion suggests that the impact effect

(h = 1) of a structural (common) shock (identified recursively or using an external instrument)

r is:
∂Yt+1|t

∂v
(r)
t+1

= ΣregB
′
0Ω−1

regH
(r)
(reg) = $

(r)
(reg) for t ε reg, reg = 1, 2. (11)

For the following horizons, we compute responses as:

IRt,h,r =
∂Yt+h|t

∂v
(r)
t+1

= E[Yt+h|It, $(r)
(reg)]− E[Yt+h|It] (12)

for h = 2, ...,H and for t ε reg, reg = 1, 2,

where It = (Y ′t , .., Y
′
t−p+1)′. As a result, responses are computed by comparing endogenous

variables paths over h horizons under two scenarios: a shock has hit with effect $(r)
(reg) at h = 1

and no extra shocks (besides the usual ones) have affected the endogenous variables.

In both cases, K paths for Yt+h are simulated, assuming It as initial values and using the

parameters of the ST-MAI system in eq. (5) and eq. (8). These simulated paths are obtained

using draws from ε
(k)
t+h ∼ N(0,Σ

(k)
t+h) for h = 2, ...,H where k = 1, ...,K.6 The variance-

covariance matrix Σ
(k)
t+h depends on the smooth transition function, which is a function of

xt+h−1, which in turn is a linear combination of Yt+h−1. This implies that Σt+h is affected by

the shock and may change as h = 2, ...,H. Hence, for each path k, Y values are simulated

6 In the empirical application, we set K to 100.
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using:

ε
(k)
t+h ∼ N(0,Σ

(k)
t+h|t)

Σ
(k)
t+h = (1− ψt+h(γ, c, x

(k)
t+h−1))Σ1 + ψt+h(γ, c, x

(k)
t+h−1)Σ2.

An implication of equation (12) is that we have one response function over horizons h =

1, ...,H at each point in time (It for t = p + 1, ..., T ), since dynamic effects depend on the

history at the time the shock hits. To visualize differences across regimes, we present responses

that are averaged over a set of histories defined by the estimated regimes. This implies that

we compute responses conditional on the regime at the impact. Define I(reg1) as the histories

It such that ψt+1(γ, c, xt) < 0.25 for t = p+ 1, ..., T , and I(reg2) as the history values such that

ψt+1(γ, c, xt) > 0.75.7 Then the responses conditional on each regime at time t are:

IRreg1h,r = 1/T1

T1∑
t=1

IR
(reg1)
t,h,r (13)

IRreg2h,r = 1/T2

T2∑
t=1

IR
(reg2)
t,h,r (14)

where T1 is the number of histories in regime 1 and T2 is the equivalent for regime 2.

Responses may be accumulated. We accumulate the responses for each history, that is,

we employ IRt,h,r for h = 1, ...,H to compute CIRt,h,r for all horizons before applying the

regime-dependent averaging implied in (13) and (14).

The computation of the responses as equations (11) and (12) is for a given set of parameters

values (A(j)
0 , A(j), B

(j)
0 ,Σ

(j)
t , γ(j), c(j) where A = (A1...Ap, D1...Dp)

′ and A0 = (a0, d0)). We use

J equally-spaced values from the posterior distribution of the parameters to compute IRreg1,(j)h,r

and IRreg2,(j)h,r with the aim of incorporating parameter uncertainty (j = 1, ..., J).8 Then our

estimated responses to the structural shock r = mp at regime 1 are the posterior median of

IR
reg1,(j)
h,r for j = 1, ..., J , and confidence bands are computed using percentiles (16%, 84%)

based on the same set of values IRreg1,(j)h,r . The complete algorithm for the computation of

7The stated thresholds (0.25 and 0.75) may exclude some between-regime histories depending on the smooth-
ness of the transition function. These thresholds may be helpful to find sharper differences across regimes. In
practice, empirical results are very similar when both thresholds are set to 0.5.

8We set J = 400 in the empirical application. Note that the computation of the posterior density for IRreg1h,r

and IRreg2h,r is time consuming since we need to average over paths (K) and over histories (Treg) for each set of
parameters over the J draws.
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these regime-dependent responses is described in Appendix A.

2.2.3 Measuring Asymmetries

In linear vector autoregressive models, the dynamic effects of monetary policy tightening and

easing are symmetric. Also, the size of the shock affects the dynamic responses proportionally.

Because of the nonlinear dynamics in the ST-MAI models, we may find asymmetries arising

from both the sign and size of the shock. We evaluate these nonlinear dynamic effects in the

next section, and here we describe how we measure asymmetries.

We consider responses to positive and negative shocks, and to large shocks. For example,

if H(mp)
(reg) measures the impact of monetary policy tightening on the factors, then to assess the

effects of monetary easing, we compute the following impact effects on the full set of observables:

IRt,h=1,(mp,neg) = ΣregB
′
0Ω−1

reg(−H
(mp)
(reg)) = $

(mp,neg)
(reg) .

Similarly, we can consider the effects of larger policy changes as:

IRt,h=1,(mp,κ) = ΣregB
′
0Ω−1

reg(κH
(mp)
(reg)) = $

(mp,κ)
(reg) ,

where if, for example, κ = 2, we are interested in two-standard sized effects. The transmission

is then computed as described earlier to obtain IRt,h,r(neg) and IRt,h,r(κ) for h = 2, ...,H.

To measure asymmetries from the sign of the shock for a given history It, we compute:

ASY +−
t,h,mp = IRt,h,(mp,pos) + IRt,h,(mp,neg).

We modify the algorithm described in the Appendix to compute ASY +−(reg1)
h,mp in step 3 and

ASY
+−(reg2)
h,mp in step 4. This implies we aim to compute:

ASY
+−(reg1)
h,mp = 1/T1

T1∑
t=1

ASY +−
t,h,mp

ASY
+−(reg2)
h,mp = 1/T2

T2∑
t=1

ASY +−
t,h,mp

As in the case of the responses, we compute 68% confidence bands for each asymmetry mea-

sure at horizons h = 1, ...,H. These bands are employed to assess whether positive and neg-
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ative shocks have statistically different effects by evaluating whether either ASY +−(reg1)
h,mp or

ASY
+−(reg2)
h,mp are nonzero.

We also consider asymmetries from the size of the shock. As a consequence, we compute:

ASY
ls(reg1)
h,mp = 1/T1

T1∑
t=1

[
κIRt,h,mp − IRt,h,(mp,κ)

]
ASY

ls(reg2)
h,mp = 1/T2

T2∑
t=1

[
κIRt,h,r − IRt,h,(mp,κ)

]
.

If large shocks have different effects from small shocks in, say, regime 2, we expect that

ASY
ls(reg2)
h,mp will be nonzero for a set of horizons. As before, we use different draws from the

posterior distribution of the parameters to compute 68% confidence bands for these asymmetry

measures as the main values are obtained using the median as described earlier.

2.3 Estimation

To estimate the ST-MAI model, we extend the Gibbs sampling algorithm for MAI models

proposed in Carriero et al. (2016). Following Carriero et al. (2016), we set:

Zt−1 = (F ′t−1, ..., F
′
t−p, ψt(·)F ′t−1, ..., ψt(·)F ′t−p)′,

where ψt(·) = ψt(γ, c, g
(r)
t−1), and

A = (A1...Ap, D1...Dp)
′,

zt−1 = (1N , ψt(·)1N )′

and

A0 = (c0, d0)′,

such that we can write the ST-MAI model as:

Yt = zt−1A0 + Zt−1A+ εt (15)

var(εt) = (1− ψt(·))Σ1 + ψt(·)Σ2.

The proposed algorithm includes three Metropolis steps in a Gibbs sampling approach. The

14



algorithm has five blocks to obtain S posterior draws for all parameters. We obtain S draws,

but we discard the first 20% before computing moments for the posterior density for each

parameter.

The first block draws the parameters of the transition function similarly to Galvao and

Owyang (2018). Conditional on previous draws of Σ
(s−1)
1 ,Σ

(s−1)
2 , A

(s−1)
0 , A(s−1) and B(s−1)

0 ,

we obtain a joint draw γ(s), c(s) using a Metropolis step, for s = 1, ..., S. This assumes a

gamma prior distribution for γ, and a normal distribution for c. The proposal distribution

for γ is Gamma with shape parameter equal to (γ(s−1))2/∆γ and scale equal to ∆γ/(γ
(s−1)).

The proposal distribution for c is a normal distribution with mean c(s−1) and variance ∆2
c .

Candidate threshold values are truncated such that at least 15% of the observations are in each

regime based on the observed values of the transition variable g(r)
t . Both tuning parameters ∆γ

and ∆c are set to achieve rejection rates of around 70%. In the empirical application, the prior

for γ is set as a Gamma distribution with mean 15 and variance 1. The prior for c is a normal

distribution with mean 0 and standard deviation 0.4.

The second block draws the parameters of the variance-covariance matrix. Conditional on

γ(s), c(s), A
(s−1)
0 , A(s−1) and B(s−1)

0 , we obtain draws for each Σ
(s)
1 and Σ

(s)
2 using an inverse-

Wishart proposal distribution as in Galvao and Owyang (2018). The priors for the variance-

covariance matrix of the first regime is set as Σ−1
0 ∼ W (C−1

0 , pv0) where C0 = T∗Σ and

Σ is a diagonal matrix with ones in the diagonal, and pv0 = N + 2. The proposal distri-

bution is Σ−1
1 ∼ W (C−1

1 , pv1) with pv1 = pv0 + ∆1
∑T

t=1 I(g
(r)
t−1 ≤ c) [I(.) is an indicator

function] and C1 = ∆Σ1

[∑T
t=1 e1te

′
1t

]
where e1t = [1 − ψt(γ

(s−1), c(s−1), g
(r,s−1)
t−1 )]ε

(s−1)
t and

ε
(s−1)
t = (Yt − Z(s−1)

t−1 A(s−1) − z(s−1)
t−1 A

(s−1)
0 ). In the case of the variance-covariance of the sec-

ond regime, we use the same prior as for the first regime, and the proposal distribution is

Σ−1
2 ∼ W (C−1

2 , pv2) where pv2 = pv0 + ∆2
∑T

t=1 I(g
(r)
t−1 > c)) and C2 = ∆Σ2

[∑T
t=1 e2te

′
2t

]
where e2t = [ψt(γ

(s−1), c(s−1), g
(r,s−1)
t−1 )]ε

(s−1)
t . This Metropolis-step has a rule for rejecting a

proposed draw that evaluates the new draw against the old draw using the likelihood, the prior,

and the proposal weights. This is applied separately for each Σ
(s)
1 and Σ

(s)
2 , that is, Σ

(s)
1 is

obtained conditional on Σ
(s−1)
2 , and then Σ

(s)
2 is obtained conditional on Σ

(s)
1 . The two tuning

parameters ∆Σ1 and ∆Σ2 are set to achieve rejection rates of 70%. This differs from the random

walk Metropolis approach of Auerback and Gorodnichenko (2012), who draw each element of

the variance-covariance matrix independently.

The third block draws the parameters of the matrix A(s). Conditional on Σ
(s)
1 , Σ

(s)
2 , γ(s), c(s),
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A
(s−1)
0 and B(s−1)

0 , we obtain a draw for A(s) from a multivariate Gaussian density implemented

using the equation-by-equation procedure proposed by Carriero et al. (2019). The independent

prior is Gaussian and the prior mean is zero for all values in A. The prior variance is set as:

var(Aij(l)) =
λ2

1

lλ3
σ2
i if the variable i loads in the factor j (for l = 1, ...p)

var(Aij(l)) =
λ2

1λ2

lλ3
σ2
i if the variable i does not load in the factor j.

We set the prior values for σ2
i equal to 1.

The fourth block draws the regime-dependent intercepts A(s)
0 . They are drawn from a

multivariate Gaussian density conditional on values for Σ
(s)
1 , Σ

(s)
2 , γ(s), c(s), A(s) and B(s−1)

0 .

The prior for each intercept is also Gaussian with mean zero and variance 4.

The fifth block draws the parameters employed in the computation of the factors. Con-

ditional on Σ
(s)
1 , Σ

(s)
2 , A(s), A

(s)
0 , γ(s−1), c(s−1), the draw B

(s)
0 is obtained using a random walk

Metropolis step as described in Carriero et al. (2016). This step has a tuning parameter ∆b

calibrated to achieve rejection rates of around 70%. This random-walk step employs proposal

distribution variances based on factors estimated by principal component over a pre-sample

period.

3 Credit Conditions and the Effects of Monetary Policy Shocks

3.1 Estimation and Specification of the ST-MAI model

The sample period is from 1974M1 up to 2016M8. Still, the period up to 1982M2 is employed

as pre-sample to obtain mean and variances for the proposal distributions for the random-walk-

metropolis step required to obtain posterior draws for the factor loadingsB0. The 20 endogenous

variables are described in Table 1, including the data transformation applied before values are

normalized. The structural VAR literature on measuring dynamic effects of monetary policy

typically employs activity and price variables in log-levels instead of monthly differences, as

indicated in Table 1. Because it is unlikely that recurrent regime changes determine how the

endogenous variables co-move in the long-run and they need to be led by stationary variables,

we prefer to estimate the ST-MAI model with activity and prices variables in first differences.

We then compute accumulated responses for all activity and price variables to be comparable

with the results in the literature.
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We set p = 13 and the hyperparameters of the prior are set as follows. The overall prior

tightness is set to λ1 = λ2 = 1, so the priors do not impose strong restrictions on the dynamic

parameters in A in equation (15). To aim at a 70% rejection rate, the transition function

hyper-parameters are set as ∆γ = ∆c = 0.01 and the ones for the variance are set as ∆Σ1 =

400 and ∆Σ2 = 1100. We estimate the ST-MAI with 40,000 draws split over four chains

to check for convergence. There were no convergence issues in our baseline specification. The

baseline specification has the factor structure described in Table 1, with the credit spread as the

transition variable, and the commercial paper spread as the variable with loadings normalized

to 1 in the credit factor. We discard 20% of the initial draws, and use thinning to keep 4,000

draws of the saved posterior distribution. For each saved draw, we compute the likelihood as a

measure of fit, which can be used for model comparison when the number of factors is fixed, as

in our case, as the alternative models have the same number of parameters. Table 2 shows the

average likelihood values.

We also consider the following alternative specifications. A specification with three factors

instead of four, where the two short-term rates are included in the credit factor. A specification

with four factors, but including the term spread in the monetary policy factor since recent

monetary policy has attempted to affect the long-term rate. In both cases, the penalized fit

(measured by SIC) deteriorates significantly in comparison to the baseline specification.

The alternative specifications in Table 2 provide evidence to support our choice of the

baseline specification for the ST-MAI model. They include specifications that use the activity,

the inflation and the short-rate factors as transition variable. There is clear evidence that

they deteriorate fit. We also consider the effects of the loading normalization to one applied

to different variables in the credit group, using the year-on-year transformation of the credit

factor g(4)
t as transition variable. Table 2 shows the average likelihood for specifications for the

estimated ST-MAI model after applying each possible normalization within the credit factor.

The effect of the normalization is to change the scale of the estimated factor because of changes

in the loadings values in B0. Because the credit factor is then linked to the regime changes and

the smooth transition parameters γ and c, the normalization affects the fit of the ST-MAI to

the data even if hyper-parameters are kept fixed. It is clear from Table 2 that the normalization

applied to commercial paper spread delivers the best fit, and avoids convergence issues (which

emerge, for example, if loadings are normalized to the TED spread).
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3.2 Factor Identification

Using the baseline ST-MAI specification, we compute the posterior median of the year-on-

year factors over the estimation period (1982M3-2016M8). These are presented in Figure 1

over two panels. Then we compute the correlation with two alternative monthly indexes: the

Philadelphia Fed Coincident Economic Activity index and the Chicago Fed Financial Condition

Index. We find that the activity factor has an 86% correlation with the Philadelphia Fed activity

index, and the credit factor has an 80% correlation with the Chicago Fed Financial Condition

Index. The correlation between the short-rate factor and Financial Condition index is smaller

at 45%. The advantage of the ST-MAI approach in comparison with the estimation of a VAR

using these observed indexes is that we are able also to evaluate dynamic effects on individual

variables, which could differ from the ones computed using the index.

The correlation analysis with external measures and the time series evolution of the factors

described in Figure 1 suggest that the ST-MAI model delivers factor estimates able to charac-

terize the common evolution of economic activity, inflation, short-rates and credit conditions.

Inflation declines during periods of negative economic activity. Credit conditions tend to dete-

riorate as short-rates increase; however, credit conditions deterioration and improvements are

faster and less smooth than short-rate changes.

3.3 Smooth Changes between Regimes

Figure 2A shows the values of the transition function using the credit factor as transition

variable [ψt(γ, c, g
(4)
t−1)] at the posterior mean. The dotted lines are 68% confidence bands for

the transition function, and the yellow line is the credit factor at the posterior mean. The

Figure also includes NBER recession dates. The upper regime is identified for around 40% of

the sample, including the months during the four NBER recessions. The upper regime extends

after the end of the early 80’s recession to cover the majority of the months during the 1980

decade.9 Then the upper regime is identified again in the build-up to the 2001 and the 2008/9

recessions.

Figure 2B presents the transition function at the posterior mean against all the values that

the transition variable, g(4)
t , assumes over the 1982-2016 period. We can observe that the

function assumes values between 0 and 1 for many data points, describing a smooth transition

9Similar regime chronology during the 1980’s was presented by Galvao and Owyang (2018) with the Chicago
Fed Financial Condition index as a transition variable to drive regime changes in a small VAR model.

18



from the lower to the upper regime at the end of the ’90s and in 2006. Figure 2B also indicates a

more significant dispersion of credit factor values in the upper regime than in the lower regime.

As a consequence, we prefer not to rename the upper regime as the high-stress regime as in

Galvao and Owyang (2018), but to call it as the weaker credit conditions regime.10

3.4 Dynamic Effects of MP shocks on factors

3.4.1 Instruments and Reduced-Form Shocks

Figure 3A presents two monetary policy shocks proxies: GK (Gertler and Karadi, 2013) and

MAR (Miranda-Aggripino and Ricco, 2018). They are both computed using the high frequency

effect of monetary policy announcements on the interest rates future markets. The main differ-

ence is that the MGR measure is cleaned out of effects caused by the new information on the

economy provided by these announcements. Effects of surprises related to updates in Green-

book forecasts are removed. Miranda-Agrippino and Ricco (2018) argue that informational

effects attenuate the negative effects of contractionary monetary policy on economic activity

variables.

We also include in Figure 3A the posterior median estimate of the transition function over

the period that both time series are available (1991 to 2012). It is clear that there are periods of

smaller variabilities of these proxies (2004-2006 and 2010-2012) and that they usually coincide

with the ST-MAI lower regime. There are also sometimes differences between the signs of the

GK and MAR proxies, particularly evident during the last upper regime period (2007-2009).

Figure 3B presents the posterior median and 16% and 84% percentiles of the (common)

short-rate innovation during the same period. An identification assumption is that the proxy

in Figure 3A is able to explain some of the variation of the reduced-form innovation in Figure

3B. The proxy low variability periods seem to coincide with the ones observed for innovations.

Figure 3B also helps to support the required identification assumption because of lack of serial

correlation in the MP innovations (the average serial correlation across the considered draws is

almost zero, with a standard deviation of 2%).

The ability of the GK instrument in identifying monetary policy shocks is discussed in

Stock and Watson (2018). They provide evidence that the instrument is relevant using the

10Some of the alternative ST-MAI specifications considered in Table 2 deliver a higher discrepancy in the
regimes frequency, including cases in which only 20% of the observations are classified in one of the regimes.
However, as discussed, the likelihood values in Table 2 support this baseline specification.
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first-stage F-stat if lags of the instrument and endogenous variables are included in the first-

stage regression. Miranda-Agrippino and Ricco (2018) provide evidence of the relevance of their

proposed instrument. We follow the literature assuming that both instruments are relevant

instruments to identify monetary policy shocks. Our contribution is to employ the ST-MAI

model to compute dynamic responses.

3.4.2 Dynamic Responses

Using the proxies in Figure 3 and the method described in section 2.2, we compute estimates of

the responses of each factor to monetary policy shocks in each regime, using J = 400 equally-

spaced values from the saved posterior distribution of the ST-MAI parameters. Responses are

computed for all upper and lower regime histories identified using the transition function at

each point in time, for the sample period 1982-2016. To obtain the responses in Figures 4 and

5, we first obtain simulated paths for the full vector of endogenous variables Yt+1, ..., Yt+h as

indicated in section 2.2, and then use B0 estimates to obtain paths for Ft+1, ..., Ft+h, that is,

we use
(
∂Ft+h|t/∂v

(mp)
t+1

)
= B0

(
∂Yt+h|t/∂v

(mp)
t+1

)
. Based on the responses of the factors at each

point in time, we average responses over each regime as described in section 2.2.

The advantage of measuring dynamic responses of monetary policy shocks to the factors

is that we do not have to make a choice about which observed monthly indicator is best to

measure the key economic variables (economic activity, inflation, short-rate and credit spreads).

Of course, we are also able to compute specific responses for each endogenous variables, and we

do so in section 3.7.

Figures 4 and 5 present the median and 16% and 84% quantiles of dynamic responses to

a one-standard-deviation tightening of monetary policy. We present responses for horizons up

to 48 months and each set of histories (lower and upper regimes). Figure 4 presents responses

with monetary policy impact effects estimated using the GK instrument, and Figure 5 using the

MAR instrument. The displayed responses for economic activity and prices are accumulated

responses.

Results for the lower regime, that is, the periods when credit conditions are favorable, are in

line with the previous literature (Gertler and Karadi, 2015; Caldara and Herbst, 2019; Miranda-

Agrippino and Ricco, 2018). As a result of monetary policy tightening, economic activity

declines at impact if using the MAR instrument, but it takes about a year to decline using the

GK instrument. For both external instruments, we find that prices decline at impact as a result
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of a policy tightening. Median responses of credit to the monetary policy tightening at impact

using the GK instrument are about 12 basis points larger than the ones computed using the

MAR instrument. This decreased responsiveness of credit spreads to monetary policy using the

MAR instrument may be caused by their removal of the effects of Fed forecast announcements

from the high-frequency market reactions.

Impact effects computed for upper regime histories differ from the ones in the lower regime

because of the estimated regime changes in the variance-covariance matrix of reduced-form

shocks. However, even more notable are the changes in the dynamic responses in Figures 4

and 5. During the upper regime, short-rate responses are short-lived, and credit conditions

responses are less persistent. Adverse effects on prices are more extensive and significant, but

they have a faster reversion towards zero. Responses of economic activity are negative using

the MAR proxy during the first year, but then revert to positive values in the second year.

This dynamic reversal is smaller using the GK proxy, but then impact effects are significantly

positive at short horizons and the medium-run negative effects are not observed as the dynamic

transmission differs from the lower regime. Two comments apply. First, confidence bands are

broad, and they include zero for most of the horizons so that one could claim no significant

effects in economic activity in the upper regime. Second, the issue of counterintuitive effects

of monetary policy at short horizons is one of the reasons that Miranda-Agrippino and Ricco

(2018) propose to remove the effect of other announcements from the original GK instrument.

In the next section, we investigate additional characteristics of the dynamic effects of mone-

tary policy shocks using the ST-MAI model and the GK and the MAR instrument by exploiting

the effects of the sign and size of the shocks.

3.5 Changes in the transmission due to Sign Effects

Barnichon and Matthes (2018) provide evidence that expansionary monetary policy has weaker

effects on unemployment than the equivalent contractionary policy, but stronger effects on

inflation. They propose a methodology that approximates nonlinearities in the responses to

monetary policy shocks for positive and negative shocks. By applying the ST-MAI modelling

instead, monetary policy tightening and easing may lead to asymmetric dynamic effects be-

cause the probability of switching regimes changes as a response to shocks, and regimes are

characterized by different dynamic linkages between economic and financial variables.

For example, in the first row of each panel of Table 3A, we display the posterior median es-
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timate of the probability of being in the upper regime 24 months after a one-standard-deviation

monetary policy shock. If the shock hits the ST-MAI model in the lower regime, a tightening

shock, as the one displayed in Figures 4 and 5, leads to a 7-8% probability of switching to the

upper regime (depending on the instrument). In contrast, an easing shock of similar size (that

is, −H(mp)
(reg) instead of H

(mp)
(reg) when computing IRt,h=1,mp) leads to a 3% probability of switching.

Because the dynamic coeffi cients differ across regimes, these differences in the probability of

regime-switching due to the type of shock may lead to asymmetries in the responses to mon-

etary policy tightening and easing. These differences also occur if the shock hits during the

upper regime, the probability of staying in the weak credit conditions regime after a tightening

shock is between 79 and 82% but following an easing shock is between 67% and 71%.

Because the credit factor values lead to regime changes, the probability of being in the upper

regime after monetary policy tightening is more substantial using the GK instrument because

of the estimated responsiveness of credit to monetary policy using the GK proxy. Similar

reasoning explains the evidence that the probability of being in the upper regime following a

policy easing is, in general, more significant using the MAR instrument.

Figure 6 presents the responses of economic activity and price factors to easing and tighten-

ing one-standard-deviation shocks hitting during the upper regime. During the upper regime,

differences in the probability of regime changes after each type of shock vary between 8 to 16

percentage points depending on the proxy, so we are more likely to find asymmetries due to the

sign of the shock. Similarly to Barnichon and Matthes (2018), we observe that expansionary

shocks have flatter effects on economic activity (because the after one-year dynamic reversal

is not as sharp) and more substantial effects on prices (that is, more persistent). The advan-

tage of the application of ST-MAI model instead of the approach in Barnichon and Matthes

(2018) is that we can provide a rationale for these asymmetric effects: tightening and easing the

monetary policy have opposite effects on credit conditions which have nonlinear effects on the

transmission of the shocks. As a consequence, we can link the evidence of the contemporaneous

effects of monetary policy on credit conditions in Caldara and Herbst (2019) with the role of

credit conditions to business cycles in Lopez-Salido et al. (2017).

3.6 Changes in the transmission due to Sign/Size Effects

Table 3 provides additional evidence to help us to evaluate asymmetric effects due to the sign

and size of the monetary policy shock. The Table entries (except the first row in each panel)
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are the posterior median of each factor responses to monetary policy tightening and easing after

24 months. We present responses for shocks hitting in the lower and the upper regimes, and

for both GK and MAR instruments. Table 3A presents responses to one-standard-deviation

shocks (as in Figures 4, 5 and 6). In Table 3B, we display responses for four-standard-deviation

shocks. The four-standard-deviation shock is computed by using 4H
(mp)
(reg) instead of H

(mp)
(reg) as

described in section 2.2.2. For the upper regime, the large shock impact effect on the short-rate

is on average about 100 basis points, so the shock size is as the one in Miranda-Agrippino and

Ricco (2018).

If there were no asymmetries from the sign of the shock, as in a typical linear VAR model,

we would find tightening dynamic effects equal to easing effects in absolute values. It is evident

in Table 3 that this is roughly the case during the lower regime for small shocks. For large

shocks, even during the lower regime, we find dissimilarities for economic activity and prices

responses. The probability of regime changes after a large shock is of 18 to 22% after policy

tightening, but less than 1% after policy easing, explaining why we find sign effects for large

shocks during the lower regime. Sign asymmetries are even more substantial for shocks hitting

during the upper regime. During the upper regime, a tighter policy has more persistent effects

on the short-rates.

Asymmetries from the size of the shock are identified by checking whether the responses

on Table 3B are roughly four times the values in Table 3A. As in the case of the sign of the

shock, a large shock may lead to a more substantial probability of regime-switching, leading to

nonlinear effects in the transmission of shocks. A large easing shock increases the probability

of switching out of the weak credit conditions (upper) regime. The probability of switching is

about 65% using the GK instrument and 48% using the MAR instrument. This nonlinearity

leads to disproportionately large positive effects on economic activity and inflation.

These empirical results suggest that decisive monetary policy easing during a period of

weak credit conditions can lead to disproportionate positive effects on economic activity and

inflation. These disproportionate effects are caused by how the policy affects credit conditions

over time, leading to a switch to the lower regime, where monetary policy has the expected

effects on economic activity and inflation.

Figure 7 compares dynamic responses to easing and tightening policies using large shocks

across all horizons up to 48 months and both instruments. For the GK instrument, it is clear

that responses of the short-rate and the credit spread are more persistent after a tightening
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policy. For both instruments, the response of prices to a tightening policy is more persistent,

leading to considerable effects even at longer horizons. As discussed earlier, a policy easing leads

to positive impact effects on economic activity if using the MAR instrument but negative effects

if using the GK instrument. The estimated dynamic effects are such that there is evidence of

long-run positive effects on activity following large shocks using both instruments. At short and

medium horizons, positive effects following a policy easing are only observed using the MAR

instrument.

To support these empirical results, we present in Table 4 68% confidence bands computed

for ASY +−(reg)
h=24,mp and ASY

sl(reg)
h=24,mp for both regimes and instruments. These confidence bands are

useful to assess whether the evidence of sign and size asymmetries described earlier are statis-

tically different from zero when taking into account parameter uncertainty on the computation

of the responses. We compute bands for ASY +−(reg)
h=24,mp using both small (1 std) and large (4

std) shocks. Moreover, the bands for ASY sl(reg)
h=24,mp are computed for both tightening and easing

shocks.

Table 4 results confirm that an easing shock has smaller effects on economic activity if credit

conditions are tight at the time of the impact of shock, providing support for the relevance of

the state of the economy on the findings reported by Barnichon and Matthes (2018). The

results also show the importance of the responsiveness of the credit factor to monetary policy

on findings of asymmetries from the size of the shock as Table 4 reveals that we are more

likely to find statistically significant evidence of asymmetries using the GK instead of the MAR

instrument. The results in the Table also reaffi rm that a sharp decline in the short-rate due to

monetary policy easing leads to disproportionally large effects on economic growth if the policy

is implemented during periods of tight credit conditions, usually associated with recessions as

indicated in Figure 2. The ASY +−(reg)
h=24,mp bands for large shocks in Table 4 suggest that the effect

of expansionary policy on prices are stronger than the equivalent contractionary policy, if the

policy is executed during the lower regime. The application of the ST-MAI model provides then

additional context to the asymmetry evidence in Barnichon and Matthes (2018), by indicating

that the asymmetric effects on prices are related to large policy changes during the regime of

favorable credit markets.

In summary, as monetary policy shocks affect credit conditions, the ST-MAI model using

the credit factor as transition variable can detect asymmetric effects due to the sign and size

of monetary policy interventions. This novel evidence supports decisive monetary policy easing
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during periods of weak credit conditions, due to their expected significant positive effects on

activity and prices.

3.7 Dynamic Responses for Key Variables

Our analysis has focused so far on the responses of the factors since they help us to be agnostic

about the measurement of economic variables. In this section, we present responses for a small

set of the endogenous variables included in the VAR as described in Table 1. These responses

are computed as described in section 2.2 using the same J = 400 equally-spaced values from

the saved posterior distribution of the ST-MAI parameters employed in the earlier Tables and

Figures.

Figures 8 and 9 present responses of industrial production, unemployment, PCE and BAA

spread to tightening and easing shocks identified using the MAR instrument. The choice of

variables is as in Caldara and Herbst (2019). Figure 8 shows results for small shocks and

Figure 9 for large shocks. Tightening and easing policy shocks have symmetric effects during

the lower regime. Monetary policy tightening leads to a decline in industrial production, an

increase in unemployment, a decrease in PCE and an increase in BAA spread during the

lower regime. During the upper regime, monetary policy tightening has counter-intuitive and

not significantly different from zero effects in industrial production and unemployment. For

a sizeable easing policy change, instead, we find small effects on unemployment and mainly

positive effects on industrial production. Responses of PCE differ across regimes as more

substantial effects at short horizons are observed if the shock hits during the upper regime.

It is also clear that substantial tightening shocks have less persistent effects than similar-sized

easing shocks. Responses of the BAA spread are shaped differently from the ones computed for

the credit factor, particularly during the upper regime. The BAA response in Figures 8 and 9

for the upper regime has a U-shape over the first year instead of the fast decay of the credit

factor responses in Figure 7.

Based on Figures 8 and 9, we can claim that the dynamic transmission of monetary policy

shocks to economic activity variables, such as industrial production and unemployment, and

prices, such as PCE, may change. These asymmetries depend on the credit conditions regime

at the time of the shock (state) and also on the sign (positive/negative) and size (small/large)

of the shock.
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3.8 Robustness to Histories Period

The impact effects of monetary policy shocks are estimated for a shorter sample period (1991-

2012) than the one employed for the estimation of the ST-MAI (1982-2016) because of the

data availability of the proxy variables. This choice is supported by the claim that we need a

long time series to estimate changes in regime dynamics. The responses computed previously

employed all histories over the 1982-2016 period. We check robustness by considering only

histories during the 1991-2012 period when computing the dynamic effects of one-standard-

deviation monetary policy tightening. This exercise is useful to see if the 80’s observations lead

to the empirical results discussed earlier.

The results we obtain (available on request) suggest that the responses are virtually the

same. As a consequence, we can say that our results are robust to the choice of the period to

set the lower and upper regime histories in the computation of the dynamic responses.

4 Conclusions

This paper improves our understanding of the dynamic links between credit conditions, mone-

tary policy, and the macroeconomy. We do so by using a novel nonlinear VAR specification: a

smooth transition multivariate autoregressive index (ST-MAI) model. In the ST-MAI model,

the dynamic transmission of shocks to the endogenous variables are modelled as a function of

a small number of observable factors, and their lags. These estimated factors allow us to be

agnostic on the measurement of critical economic variables such as economic activity, prices,

short-rate and credit conditions when performing structural analysis. They also allow us to use

the information of a large number of economic and financial variables to estimate the nonlinear

dynamic responses to monetary policy shocks.

By applying the ST-MAI model to US macroeconomic and financial data, we are able to

provide the following new evidence. First, changes in the dynamic linkages between macroeco-

nomic and financial variables are well-characterised by recurrent regime changes led by credit

conditions. Second, because the probability of regime changes depends on credit conditions,

the dynamic transmission of monetary policy shocks to credit conditions affects the likelihood

of regime changes. This nonlinearity explains why we find evidence that monetary policy eas-

ing has effects on economic activity and prices that are not symmetric to monetary policy

tightening. Third, the contemporaneous responsiveness of the credit spreads to monetary pol-
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icy is critical when describing nonlinear dynamic effects, as different external instruments for

monetary policy lead to different levels of responsiveness and asymmetric effects. Finally, the

duration of the financial fragility episodes depends on the type of monetary policy carried out

during the period. A resolute easing of monetary conditions increases the probability of mov-

ing out of the weak credit conditions regime, leading to disproportionate (in comparison to

tightening) positive effects on economic activity and inflation.
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A Detailed Algorithm to Compute Responses

The algorithm to compute generalized responses conditional on a specific regime at the impact,

including confidence bands, is described below.

1. Draw a set of parameters —A(j) = (a
(j)
0 , A

(j)
1 , .., A

(j)
p , d

(j)
0 , D

(j)
1 , .., D

(j)
p ), B

(j)
0 ,Σ

(j)
1 ,Σ

(j)
2 γ(j), c(j)—

from saved posterior distribution draws.

2. Using the transition function ψt(γ
(j), c(j), g

(r,j)
t−1 ), define the set of regime 1 and regime 2

histories (I(reg1)
t and I(reg2)

t ).

3. Using the A(j), B
(j)
0 ,Σ(j), γ(j), c(j) and the set of histories from regime 1, compute two

set of K paths conditional at each regime 1 history. These paths are the one condi-

tional on the impact effect $(r)
(reg=1) Y

(k)

t+2|t,$(r)
(reg=1)

, ...,Y (k)

t+h|t,$(r)
(reg=1)

and the one without

it Y (k)
t+2|t, ...,Y

(k)
t+h|t for k = 1, ...,K, where K is the number of replications to approximate

the conditional means. These paths are obtained by simulating the system using draws

from ε
(k)
t+h ∼ N(0,Σ

(k)
t+h|t), and as shocks affect ψt+h(γ(j), c(j), g

(r,j)
t+h−1), we simulate paths
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also for Σ
(k)

t+1|t,$(r)
(reg=1)

,...,Σ(k)

t+h|t,$(r)
(reg=1)

and Σ
(k)
t+1|t,...,Σ

(k)
t+h|t. Responses for each history

are computed by taking the differences between the average paths (with and without the

shock), and regime 1 responses are then the average response over all regime 1 histories.

4. Using the A(j), B
(j)
0 ,Σ(j), γ(j), c(j) and the set of histories from regime 2, compute the

paths as described in step 3 but using $(r)
(reg=2) as impact effect for each regime 2 history.

Then compute regime 2 responses using the average response over all regime 2 histories.

5. Repeat 1-4 for j = 1, ..., J .

6. Use IRreg1,(j)h,r and IR
reg2,(j)
h,r for j = 1, .., J to compute the median response and 68%

confidence intervals conditional on each regime and for h = 1, ...,H.
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Table 1: List of endogenous variables in the (ST) MAI specifications.  

 Factor Trans. 

Employees nonfarm activity Log-diff 

Avg hourly earnings activity Log-diff 
Personal income activity Log-diff 
Consumption activity Log-diff 
Industrial Production activity Log-diff 
Capacity utilization activity Log-diff 
Unemp. Rate activity Log-diff 
Housing Starts activity Log-diff 

CPI inflation Log-diff 

PPI inflation Log-diff 
PCE deflator inflation Log-diff 
PPI ex food and energy inflation Log-diff 
FedFunds + shadow rate Short rates levels 
1year_rate Short rates levels 
CommPaper Spread  Credit levels 
EBP Credit levels 
BAA spread Credit levels 
Mortgage Spread Credit levels 
TED Spread Credit levels 
Term Spread (10y-3mo) Credit levels 

 

Note: The sample period is 1974M1-2016M8, but observations between 1974M1 and 
1982M2 are employed as pre-sample. We normalised the transformed time series of 
each variable before estimation.  
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Table 2: The average likelihood for alternative ST-MAI specifications 

Transition 
Variable: 

Loadings norm. to:  Average 
Likelihood 

Credit Factor CommPaper Spread -5655.8 
 EBP -5834.7 
 BAA spread -6031.5 
 Mortgage spread -5811.0 
 Ted spread -5956.1 
 Term spread -5853.4 

Activity Factor Employees NFP -6080.8 
Inflation Factor CPI -6380.0 
Short-rate Factor Fed funds rate -5876.0 

 

Notes: Priors hyper-parameters are the same across specifications, and described in section 3.1. Average likelihood computed 
over 36,000 saved draws from the parameters posterior.  
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Table 3: Posterior Median estimates of Responses to a Monetary Policy Shock after 24 months.  

Table 3A: Small Shocks 

 Lower Regime Upper Regime 
 Tightening Easing Tightening Easing 

 GK Proxy 
Prob(upper regime) 7.7% 2.8% 82.0% 66.3% 
Responses of:      
Economic Activity -0.706 0.649 2.963 -0.872 
Prices -0.602 0.703 0.050 0.261 
Short Rates 0.047 -0.054 0.144 -0.066 
Credit Spread 0.089 -0.074 0.447 -0.375 
 MAR Proxy 
Prob(upper regime) 7.3% 3.1% 78.7% 70.7% 
Responses of:     
Economic Activity -1.174 1.095 2.576 -0.751 
Prices -0.706 0.778 -1.325 1.404 
Short Rates 0.083 -0.089 0.104 -0.069 
Credit Spread 0.090 -0.075 0.241 -0.214 

Table 3B: Large Shocks 

 Lower Regime Upper Regime 
 Tightening Easing Tightening Easing 

 GK Proxy 
Prob(upper regime) 22.0% 0.6% 91.9% 34.9% 
Responses of:      
Economic Activity -3.263 2.034 16.315 8.858 
Prices -1.511 3.234 0.616 3.556 
Short Rates 0.213 -0.251 0.868 0.017 
Credit Spread 0.463 -0.249 1.996 -1.034 
 MAR Proxy 
Prob(upper regime) 18.1% 0.8% 84.5% 51.7% 
Responses o     
Economic Activity -3.981 4.068 15.811 6.241 
Prices -2.216 3.442 -5.094 6.179 
Short Rates 0.299 -0.398 0.540 -0.109 
Credit Spread 0.420 -0.257 0.955 -0.731 

 

Note: The first row indicates the regime at the impact of the shock. The second row describes the type of monetary policy shock. 
Each Table has one panel for each high-frequency monetary policy proxy. The prob(upper regime) is computed assuming that if 
𝜑!"#(𝛾, 𝑐, 𝑔!"#$%& )>0.5, we set reg=2 at horizon h. The probability is computed by averaging the indicator I(reg=2) across 
simulation paths (K=100), horizons (H=24), histories (T1 or T2 depending on the regime). We obtain one estimated probability of 
each set of ST-MAI parameters out of the saved posterior distribution (J=400), the entries are the median across these values. 
Entries in the lower panels are the median responses after 24 quarters.  
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Table 4: Evaluating Asymmetric effects: 68% Confidence Bands for Sign and Size Asymmetries 

 Small Tight= Small Ease Large Tight= Large Ease  4(Small Tight) = Large Tight  4(Small Ease) = Large Ease 

 Lower Reg. Upper Reg. Lower Reg. Upper Reg. Lower Reg. Upper Reg Lower Reg. Upper Reg 

Responses of:  GK Proxy 

Economic Activity [-0.43 0.17] [0.76 3.85] [-4.41 1.49] [10.43 43.3] [-1.33 2.04] [-11.5 -1.84] [-0.58 2.63] [-31.7 -8.25] 

Prices [-0.01 0.24] [-0.10 0.60] [0.55 3.01] [-0.57 7.70] [-1.66 -0.27] [-1.69 0.62] [-1.62 -0.18] [-6.48 0.09] 

Short Rates [-0.03 0.01] [0.02 0.15] [-0.28 0.17] [0.12 1.68] [-0.12 0.11] [-0.51 -0.11] [-0.05 0.19] [-1.23 0.01] 

Credit Spread [-0.01 0.04] [-0.03 0.17] [0.00 0.50] [-0.08 2.11] [-0.28 -0.01] [-0.57 0.09] [-0.26 0.01] [-1.68 -0.04] 

Responses of: MAR Proxy 

Economic Activity [-0.31 0.24] [0.17 2.74] [-2.52 2.44] [5.96 31.80] [-1.66 1.09] [-9.29 -1.14] [-0.99 1.69] [-25.1 -3.74] 

Prices [-0.03 0.19] [-0.23 0.30] [0.04 2.27] [-2.37 3.81] [-1.13 0.00] [-1.03 0.64] [-1.24 0.02] [-2.96 1.67] 

Short Rates [-0.03 0.01] [0.02 0.09] [-0.27 0.06] [-0.09 0.98] [-0.07 0.11] [-0.34 0.02] [-0.02 0.17] [-0.69 0.12] 

Credit Spread [-0.01 0.03] [-0.05 0.10] [-0.04 0.39] [-0.35 1.15] [-0.21 0.03] [-0.34 0.16] [-0.20 0.03] [-0.89 0.27] 

 

Notes: Panels are for each high-frequency proxy. Values in brackets for the first four columns are 68% intervals for the 
difference between tightening and loosing monetary policy responses in absolute values at h=24 computed by obtaining the 
difference for each simulated path for both small and large shocks. Values in brackets for the last four columns are the 
difference between 4 times the response computed with small shocks (1 std) and the response with large (4 std) shocks at h=24 
computed by obtaining the difference for each simulated path. Additional description of how these asymmetry bands are 
computed are in section 2.2.3.  
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Figure 1: Estimated Factors (Year-on-Year growth rates) 

Figure 1A: Economic Activity and Inflation 

 

Figure 1B: Short rates and Credit 

 

Notes: Values are the median of the posterior distribution. The activity factor has 86% correlation with Philadelphia economic 
conditions index and the Credit Factor has an 80% correlation with Chicago Fed FCI. 

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

M
ar

-8
2

Ap
r-

83
M

ay
-8

4
Ju

n-
85

Ju
l-8

6
Au

g-
87

Se
p-

88
O

ct
-8

9
N

ov
-9

0
De

c-
91

Ja
n-

93
Fe

b-
94

M
ar

-9
5

Ap
r-

96
M

ay
-9

7
Ju

n-
98

Ju
l-9

9
Au

g-
00

Se
p-

01
O

ct
-0

2
N

ov
-0

3
De

c-
04

Ja
n-

06
Fe

b-
07

M
ar

-0
8

Ap
r-

09
M

ay
-1

0
Ju

n-
11

Ju
l-1

2
Au

g-
13

Se
p-

14
O

ct
-1

5

Activity Inflation

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

M
ar

-8
2

Ap
r-

83
M

ay
-8

4
Ju

n-
85

Ju
l-8

6
Au

g-
87

Se
p-

88
O

ct
-8

9
N

ov
-9

0
De

c-
91

Ja
n-

93
Fe

b-
94

M
ar

-9
5

Ap
r-

96
M

ay
-9

7
Ju

n-
98

Ju
l-9

9
Au

g-
00

Se
p-

01
O

ct
-0

2
N

ov
-0

3
De

c-
04

Ja
n-

06
Fe

b-
07

M
ar

-0
8

Ap
r-

09
M

ay
-1

0
Ju

n-
11

Ju
l-1

2
Au

g-
13

Se
p-

14
O

ct
-1

5

Short Rates Credit



 36 

Figure 2: ST-MAI model with the Credit Factor as Transition Variable: Regime Changes. 

Figures 2A: Posterior Mean of 𝜑!(𝛾, 𝑐, 𝑔!"#$ ), 𝑔!$ and NBER turning points. 

  

Figure 2B: The transition function with respect to the credit factor values (at posterior mean).  

 

Note: Grey lines are NBER recessions and black lines are the transition function over time (dashed lines are 68% bands, posterior 
median estimates).   
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Figure 3: Monetary Policy Proxies and Reduced-Form short-rate factor Innovation 

Figure 3A: GK and MAR monetary proxies and Posterior Mean of the Transition Function 

 

Figure 3B: Reduced-form short-rate factor innovations (dotted lines are 68% bands) and the Posterior Mean of the 
Transition Function.  
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Figure 4: ST-MAI Dynamic Responses: Effects of MP tightening on factors using GK proxy as instrument. 

 

Notes: Cumulative responses for activity and price variables. Dotted lines are 68% bands. Full sample estimates. Computed for 
all histories from 1982 to 2016. 
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Figure 5: ST-MAI Dynamic Responses: Effects of MP tightening on factors using MAR proxy as instrument.

 

Notes: Cumulative responses for activity and price variables. Dotted lines are 68% bands. Full sample estimates. Computed for 
all histories from 1982 to 2016. 
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Figure 6: Comparison of Responses to Easing and Tightening of Monetary Policy in the Upper regime for small (1 std) 
shocks 

Figure 6a: GK proxy 

 

Figure 6B: MAR proxy 

 

Note: See notes to Figure 4.   
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Figure 7: Comparison of Responses to Easing and Tightening of Monetary Policy in the Upper regime for large (4 std) 
shocks 

Figure 7a: GK Proxy 

 

Figure 7B: MAR Proxy 

 

Notes: See notes to Figure 4.  
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Figure 8: ST-MAI Dynamic Responses of four key variables to MP tightening/easing using MAR proxy as instrument: 
small (1 std) shocks  

 

Note: Cumulative responses for IP, Unemployment and PCE. Dotted lines are 68% bands. Full sample estimates. Computed for 
all histories from 1982 to 2016. 

  

-1.5

-1

-0.5

0

0.5

1

1.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Industrial Production: Lower Regime

tightening easing

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Industrial Production: Upper Regime

tightening easing

-1.5

-1

-0.5

0

0.5

1

1.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Unemployment: Lower Regime

tightening easing

-3
-2.5

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2
2.5

3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Unemployment: Upper Regime

tightening easing

-2
-1.6
-1.2
-0.8
-0.4

0
0.4
0.8
1.2
1.6

2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

PCE:Lower Regime

tightening easing

-2.8
-2.4

-2
-1.6
-1.2
-0.8
-0.4

0
0.4
0.8
1.2
1.6

2
2.4
2.8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

PCE:Upper Regime

tightening easing

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

BAA Spread: Lower Regime

tightening easing

-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

BAA Spread: Upper Regime

tightening easing



 43 

Figure 9: ST-MAI Dynamic Responses of four key variables to MP tightening/easing using MAR proxy as instrument: 
large (4 std) shocks.   

 

Note: See notes to Figure 8.  
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