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Abstract

This paper presents empirical evidence on how judgmental adjustments affect the ac-
curacy of macroeconomic density forecasts. Judgment is defined as the difference between
professional forecasters’densities and the forecast densities from statistical models. Using
entropic tilting, we evaluate whether judgments about the mean, variance and skew improve
the accuracy of density forecasts for UK output growth and inflation. We find that not
all judgmental adjustments help. Judgments about point forecasts tend to improve density
forecast accuracy at short horizons and at times of heightened macroeconomic uncertainty.
Judgments about the variance hinder at short horizons, but can improve tail risk forecasts
at longer horizons. Judgments about skew in general take value away, with gains seen only
for longer horizon output growth forecasts when statistical models took longer to learn that
downside risks had reduced with the end of the Great Recession. Overall, density forecasts
from statistical models prove hard to beat.
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1 Introduction

Professional macroeconomic forecasters and policymakers have long been understood to apply

judgmental adjustments to the point forecasts mechanically generated by models; e.g. see Mc-

Nees (1990), Fildes and Stekler (2002), Turner (1990) and Clements (1995). More recently,

there has been growing interest in macroeconomics in producing density, including tail risk,

forecasts; e.g. see Aastveit et al. (2019) and Adrian et al. (2019). Reflecting this, the contri-

bution of this paper is to isolate the role of judgmental adjustments made not just about point

forecasts but forecasts of the variance and skew of the distribution too. Our work complements

wider inter-disciplinary evidence assessing the benefits of judgment to forecast accuracy; e.g.

see Lawrence et al. (2006), Trapero et al. (2013), Davydenko and Fildes (2013) and Hyndman

(2020). It also builds on work that evaluates whether the second and/or third moment forecasts

from professional forecasters and central banks add value; see Knüppel and Schultefrankenfeld

(2012; 2019), Kenny et al. (2015) and Clements (2018).

Judgment itself, in practice, is latent or unobserved, certainly as far as a third party observer

of published macroeconomic forecasts in the UK is concerned.1 This is because while a given

professional forecaster privately knows both what if any model or models they use to guide their

forecast, and the degree to which they adjust this, an outsider only observes their published

forecast. At best, this observer knows something about the models or types of model which the

forecaster consults. Conclusions about the role of judgment inevitably depend on relative to

‘what’.

Since, in general, we neither know what model(s) is (are) used by the professional forecasters

nor what judgment they apply to these, we consider density forecasts mechanically generated

from a range of statistical forecasting models where no adjustments are made.2 These models all

rely on historical data and, by construction, are unable to pickup any change in the data which

is expected/happening in real-time. Judgment is then taken to be the difference between the

moments of the professional and statistical models’density forecast. Any observed differences

1 In other countries and circumstances it does on occasion prove possible to identify and isolate the judgment
applied to the statistical (macroeconomic) forecast. In the US, for example, the FOMC forecast (judgment-based)
is published separately to the Federal Reserve Board Staff forecast (believed to be based on a statistical model).
Alternatively, McNees (1990) in his assessment of the role of judgment was (privately) provided with the published
(adjusted) and mechanical (unadjusted) point forecasts from four macroeconomic forecasters in the US. Similarly
Clements (1995) is able to identify judgmental adjustments made to the forecasts from a leading UK forecaster
given private access to their unpublished mechanical forecasts.

2Central bank macroeconomic forecasting systems also commonly include structural models, where judgment
is incorporated via assumptions/conditional paths for exogenous variables.
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we attribute to judgment, emphasizing that this judgment could take many forms. Judgment

could involve, for example, the professional forecaster using off-model information, making

assumptions about the future path of conditioning variables and/or considering alternative

data and/or models to the statistical model(s).

The statistical models we consider are of differing levels of sophistication. It is well known

that more complicated models do not necessarily forecast better, especially at times of struc-

tural change (Clements and Hendry, 1996). So by considering a range of models we entertain

the possibility that judgment may appear to help when applied to a ‘bad’statistical forecast

but hinder relative to a ‘good’model. Importantly, we consider workhorse statistical models

of the type likely used and known by professional forecasters: i.e. autoregressive (AR) models,

Bayesian Vector Autoregressive (BVAR) models and a density forecast combination of many

statistical models. We emphasize that the density forecast combination, in particular, can gen-

erate highly asymmetric and potentially multi-modal forecast densities. As argued by McNees

(1990), this evolution of the statistical model itself reflects forecaster judgment and accumulated

collective learning in the forecasting profession. But mechanical use of these statistical models is

as close an example to a ‘pure model’forecast as one is likely to see. Their use does not require

conditioning assumptions; and the forecast from the statistical model is not post-processed or

manipulated in any way.

To help draw robust conclusions on the role of judgment relative to these statistical models,

we consider the published forecasts from a range of professional macroeconomic forecasters and

policymakers in the UK, all of whom are understood to rely on judgment, to some degree, to

inform their forecasts. We call their forecasts “judgment-augmented”. The professional fore-

casts considered include those from: the policymaking Monetary Policy Committee (MPC) at

the Bank of England, the National Institute of Economic and Social Research (NIESR) and

two surveys of professional forecasters run by Consensus Economics and the Bank of England

(their Survey of External Forecasters). While an outsider can garner information about the

set of structural and statistical models used by Bank of England staff to inform the MPC (see

Burgess et al. (2013)), in the absence of observing both pre and post judgment forecasts, they

cannot directly isolate and quantify the MPC’s judgment as reflected in the fan chart forecasts

that they publish each quarter in the Bank’s Inflation (now Monetary Policy) Report. Similarly,

while NIESR’s structural macroeconomic forecasting model, NiGEM, is available for download

to subscribers (see https://nimodel.niesr.ac.uk/), their published forecast involves unspecified
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judgment and expertise being applied, as often discussed qualitatively in their forecast publi-

cation. For example, residual adjustments are made along with assumptions about the future

movements of exogenous variables, such as oil prices. For the other professional forecasters,

whose views are captured by the two surveys, we know even less about what, if any, models

they may use to help inform their published forecasts. This explains why, to acknowledge this

uncertainty, we compare their judgment-based forecasts against a range of statistical models.

Specifically, to quantify and evaluate the role of judgment, we take the density forecasts from

the set of statistical models and then impose upon them specific moment(s) extracted from the

density forecast of the professional forecaster, where judgment is believed to play some role.

We impose this judgment systematically by exponentially tilting each of the statistical model’s

density forecasts to specific predictive moments obtained from the professional forecasters’den-

sity. We do this across a range of forecast horizons. Exponential tilting has also been used to

add external information, including judgment-based survey forecasts, to model-based forecasts

by Robertson et al. (2005), Cogley et al. (2005), Giacomini and Ragusa (2014), Altavilla et al.

(2016), Krüger et al. (2017) and Tallman and Zaman (2020).

Separating the role of judgment about the mean from higher moments is important and

central to our contribution. Professional forecasters increasingly convey their assessments about

the future values of macroeconomic variables not only by expressing the most likely values of

these variables (the point forecasts) but by also communicating the uncertainty around these

central predictions. Indeed, to reflect differing balances of positive and negative risks, they

publish asymmetric density forecasts with skew (Britton et al., 1998). Accordingly, in this

paper, we evaluate judgments made not only about the first moment of the predictive density

(as in Altavilla et al. (2016)) but also the second (as in Cogley et al. (2005), Krüger et al. (2017),

Clements (2018) and Tallman and Zaman (2020)) and the third moment (forecast skewness)

arising from the perception of asymmetric risks.

We consider forecasts for year-on-year quarterly GDP growth and inflation in the UK for

quarterly forecasting horizons up to two years ahead. To ensure no look ahead bias, we use real-

time data vintages on GDP growth. We consider different loss functions to measure the impact

of judgment on different aspects of density forecast accuracy. These include the threshold-

weighted CRPS (Gneiting and Ranjan, 2011) that allows us to concentrate evaluation on tail

events.

We conclude that judgmental adjustments do not, in general, tend to improve the accuracy
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of density forecasts from statistical models. But there can be gains in specific instances. Judg-

ment, about the mean, improves short-horizon density forecasts especially for output growth

during turbulent periods, such as the financial crisis (2008/2009). In contrast, judgmental as-

sessments about forecast uncertainty significantly diminish density forecast accuracy at short

horizons, in particular during the relatively stable 2013-2016 period. At long horizons, these

judgmental adjustments can improve the accuracy of tail event forecasts, in particular when

applied to statistical models that do not accommodate time-variation in the conditional vari-

ance. We also find that judgments about skew - about the balance of risks —typically lower the

forecasting accuracy of statistical models. But skew judgments can improve tail risk forecasts

for output growth at times of macroeconomic change, such as around business cycle turning

points. Statistical models took longer to learn that downside risks had reduced with the end of

the Great Recession.

The plan of the remainder of this paper is as follows. Section 2 details the four professional

forecasters and the three statistical forecasting models. Section 3 presents the moments ex-

tracted from the judgmental-augmented forecasts and the statistical models. Section 4 explains

how the density forecasts from the statistical models are tilted to satisfy moment conditions

from the judgment-based density forecasts of the professional forecasters. The loss functions

used to measure forecast performance are described. Section 5 presents the empirical results.

It considers if, how and when time-varying judgments about the mean, variance and skew of

output growth and inflation can inform the density forecasts produced by the statistical models.

Section 6 concludes. Online appendices contain additional details and supplementary empirical

results.

2 Professional Forecasters and Statistical Forecasting Models

In this section, we summarize the judgment-augmented and statistical forecasting models. For

details, see online Appendices A and B, respectively.

We consider four sets of professional forecasts. These are forecasts from: (i) NIESR; (ii) the

MPC at the Bank of England; (iii) the Survey of External Forecasters (SEF), run by the Bank

of England; and (iv) Consensus Economics (CE). The forecasts that we analyze from both SEF

and CE in fact involve aggregating the forecasts from a far larger set of professional forecasters

whose opinions are sought by the respective survey.
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We consider three statistical forecasting models, including a combination of statistical mod-

els as defined in the Warwick Business School Forecasting System (WBSFS).

2.1 Professional Forecasters

For NIESR, we focus on forecasts published in their quarterly publication - the National In-

stitute Economic Review. NIESR started producing density forecasts for GDP and inflation

in 1996, quantifying forecast uncertainty based on historical point forecasting errors. In 2008

they switched to producing their densities via stochastic simulation. But, unfortunately, the

parameters of these forecasts have not always been tabulated in the Review. As a consequence,

it is not possible to construct a consistent historical time-series of their density forecasts as com-

puted each quarter.3 Therefore, in this paper, we use their point forecasts only. Specifically,

we consider historical data on NIESR’s point forecasts from 1992Q1 for GDP growth and from

2002Q1 for CPI inflation.

The MPC density forecasts for GDP growth and inflation are two-piece normal densities.

The two-piece normal creates a potentially skewed density by combining the two halves of two

normal densities with a common mode of µ and standard deviations of σ1 and σ2. In our

application, we use the first three moments of the two-piece normal, as published in real-time

by the Bank of England.4 These moments, for the random variable Y , are given as:

E(Y ) = µ+

√
2

π
(σ2 − σ1) (1)

var(Y ) =

(
1− 2

π

)
(σ2 − σ1)2 + σ1σ2 (2)

skew(Y ) =

√
2
π (σ2 − σ1)

(
4
π − 1

)
(σ2 − σ1)2 + σ1σ2

var(Y )3/2
(3)

where we use the Pearson moment coeffi cient of skewness, (3). We consider CPI inflation

forecasts from 2004Q1, when the targeted measure of inflation switched from RPIX to CPI

inflation.

For the SEF, we focus on the aggregated histograms. These are the average probabilities,

across forecasters, given to realized output growth or inflation lying within a set of pre-assigned

3Prior to 2008 NIESR’s density forecasts were assumed Gaussian. They were centered on the point forecast
published in the Review ; and the predictive variance can be inferred from the standard deviations or root mean
square forecast error estimates that used to be published; see Mitchell (2005) for details.

4Spreadsheets containing the parameters for all the published fan charts are publicly available on the BoE’s
web site (http://www.bankofengland.co.uk/publications/inflation nreport.irprobab.htm).
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intervals or bins. Average or combined density forecasts are commonly used to represent the

consensus opinion of forecasters. The average forecast produced by the SPF in the US is a

notable example.5 As reviewed by Aastveit et al. (2019), combined densities are also often

found to work well empirically. Following Engelberg et al. (2008) and Clements (2014), we fit

a generalized-beta distribution, which allows for asymmetry, to these aggregated histograms.

From these fitted densities we then extract mean, variance and skewness forecasts.6 We focus

on SEF forecasts from 2006Q2, as this is when one and two year (h = 4 and h = 8 quarter)

ahead “fixed-horizon”questions were introduced for both output growth and CPI inflation.7

For CE, we consider the average of their 30-40 survey participants’point forecasts. Timmer-

mann (2006) and others have shown the effectiveness of combined point forecasts. We consider

quarterly CE point forecasts for horizons from one through seven quarters ahead for output

growth and CPI inflation from 1999Q1.

2.2 Statistical Forecasting Models

For our main benchmark statistical model, we use a combination of statistically-motivated

econometric models common in the literature, as implemented in the Warwick Business School

Forecasting System (WBSFS).8 The emphasis is on a combined model —as opposed to a single

model - which produces judgment-free point and density forecasts. As reviewed in Aastveit

et al. (2019), a combination of forecast densities has been found to be an effective means of

accommodating “model uncertainty”when forecasting; moreover, professional forecasters most

likely consult a wide variety of models. The use of a combination can reflect the fact that all

models are likely misspecified, such that relative (across model) forecast performance changes

over time. Structural breaks, in particular, are well known to contribute to the unreliability

of point and density forecasts (e.g., see Clements and Hendry (1996)) and lead to instabilities

in the performance of specific forecasting models. As, e.g., Hendry and Clements (2004) and

Pesaran and Timmermann (2007) explain, models differ in their sensitivity to structural breaks.

5The SPF in the US takes a linear combination of the individual density forecasts and publishes mean and
median point forecasts.

6As a robustness check, we also calculated the moments directly (non-parametrically) from the histograms.
The results are discussed in Appendix C.1.

7Fixed-horizon event questions for two-year ahead output growth were introduced in 1998; and in May 2006
for both CPI inflation and output growth for 1, 2 and 3 year ahead horizons. Note also that the original inflation
based questions were about RPIX inflation.

8The WBSFS forecasts were published quarterly between November 2014 and October 2019 on the WBS web-
site (https://warwick.ac.uk/fac/soc /wbs/subjects/finance/mpf/forecasting) and in the National Institute Economic
Review between October 2017 and October 2020.
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As a result, combining density forecasts across different types of model offers the promise of

more robust forecasts. Importantly, density forecast combinations can generate densities with

different characteristics to the component densities. By differentially weighting the component

models, density combinations can also accommodate time-varying volatility, even when models

directly modeling volatility are not being combined. Jore et al. (2010), e.g., show how com-

binations of densities from a range of AR and VAR models pickup the decline in volatility

associated with the Great Moderation. In our case, given heightened awareness of the need to

model volatility, we also consider a BVAR with stochastic volatility as a component model.

The WBSFS combines the densities of 24 forecasting models from the following three classes

of statistical model: (i) quarterly BVARs, (ii) mixed-frequency models that also exploit monthly

data and (iii) quarterly autoregressive models. Here we describe the model classes in general

terms only. Details are provided in Appendix B.1.

Within the first class of model, three types of BVAR are considered. These BVARs differ

according to the (quarterly) variables considered and whether stochastic volatility is modeled.

First, a single BVAR models the log-levels of the seven variables used in Smets and Wouters

(2007) DSGE model, described in Appendix B.1. Second, is a set of medium-sized BVARs which,

in addition to GDP and CPI inflation, include thirteen indicators, as described in Appendix

B.1 and Table A6. We estimate eight variants of this medium-sized BVAR, for lag lengths

p = 1, . . . , 4, in both log-levels and first-differences of the data. Finally, we consider a single

medium-sized BVAR with stochastic volatility in these 15 variables. There is evidence that

accommodating stochastic volatility is especially helpful when density forecasting; see Clark

(2011). In total, the BVAR model class comprises 10 models.

The second class of model comprises mixed-frequency models. These allow for consideration

of known (within-quarter) monthly information, reflecting their release calendars. Specifically,

Autoregressive Distributed Lag Mixed Data Sampling (ADL-MIDAS) models are used to relate

the quarterly target variable (GDP growth or CPI inflation) to each of the aforementioned

thirteen monthly indicators, described in Table A6. Finally, for the third class of model, we

consider an AR(2) model. In total, the WBSFS therefore combines 24 individual models.

For robustness, and to acknowledge that judgment may appear to help when applied to a

‘bad’statistical forecast but hinder relative to a ‘good’model, we also compare the professional

forecasts against those from both a small BVAR model (in the first differences of GDP, CPI, the

unemployment rate, the three-month interest rate and the real effective exchange rate index),
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as is standard in the tilting literature (Robertson et al., 2005; Krüger et al., 2017), and an AR

model. They are described in Appendix B.2 and B.3. For space reasons, we focus in the main

paper on reporting results for the WBSFS and discuss the AR and BVAR results only when

this affects inference.

3 Characteristics of Judgment-Augmented Forecasts

While the characteristics of judgment-augmented point forecasts for UK output growth and

inflation have been discussed previously (e.g. see Turner (1990) and Clements (1995)), less is

known about how judgment impacts forecast variances and skewness. So, in this section, we

characterize the temporal variation in the judgment-augmented variance and skew forecasts.

We compare them against the WBS combination density forecasts.

3.1 Types of Judgment

For each of the professional forecasters described in section 2.1 we extract, at each forecast

origin, τ , and for each forecast horizon, h, information on the first three moments of their

density forecasts: the mean, standard deviation and (standardized) skewness. Each of our four

professional forecasters (NIESR, MPC, SEF and CE) provides point forecasts for output growth

and inflation. But, as summarized above, availability of higher moment information is more

limited. Only the MPC and the SEF have consistently communicated the uncertainty (defined

here as the standard deviation) around their forecasts. Given that their density forecasts need

not be symmetric, for the MPC and the SEF we also extract their estimates of predictive skew.

3.2 Time-variation in the forecasts for uncertainty and skew

Figure 1 plots the evolution over time of the judgment-adjusted forecasts of uncertainty (stan-

dard deviation) for output growth and inflation at three forecast horizons. For comparison, the

uncertainty forecasts from the WBS combination are also shown.9 The figures are drawn with

the x-axis indicating the forecast origin.

Figure 1 reveals sharp and pronounced movements in the MPC’s uncertainty forecasts,

especially at shorter horizons. Their one-quarter-ahead uncertainty forecasts, for both output

growth and inflation, have more than tripled in size. For output growth, these increases in

9We do not plot the mean forecasts because all four professionals produce quite similar output growth point
forecasts.
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predicted uncertainty are sharp and large, particularly in 2008-9 at the time of the global

financial crisis. For inflation, the MPC’s uncertainty forecasts increase more smoothly between

2006 and 2011, but since then have remained fairly constant. By contrast, for both one-year-

ahead and two-year-ahead uncertainty (middle and lower panels of Figure 1, respectively), the

uncertainty estimates from the SEF are much lower than those reported by the MPC.

It is also of interest that the MPC’s uncertainty forecasts do not reflect historical point

forecasting performance. As discussed in Appendix C.2, the MPC’s variance forecasts exceed

the variance of their past forecast errors. This suggests that the MPC do indeed apply judgment

when setting the variance of their fan chart.

Comparison against the uncertainty forecasts from the WBS combination reveals sensitivity

to the forecast horizon. One-quarter-ahead, the MPC predicted two-to-three times more un-

certainty than the WBS combination. But their assessments of uncertainty are more similar at

longer horizons. The judgment-augmented uncertainty forecasts made by the MPC and the SEF

increase for both output growth and inflation during 2008-2009; whereas the WBS combination

uncertainty forecasts are more stable, especially for inflation.

Figure 2 presents the predicted skew forecasts by forecast origin and forecaster. Figure 2A

shows the MPC’s skew forecasts. The MPC has always viewed risks to output growth to be

on the downside. For inflation, predicted skew fluctuates between the dominant risk being on

the upside and the downside. Positive shocks were seen as more likely in some periods, such as

2010-2011, and downside risks in others, such as 2015-2016.

Figure 2B compares the two-years-ahead MPC and SEF assessments of predicted skew to

the equivalent forecasts from the WBS combination.10 Figure 2B reveals that MPC assessments

of the balance of risks to inflation differ to those from the statistical model. For output growth,

there is more agreement - both the MPC and the WBS combination predict negative skew in

2008-2009. The judgment-augmented skew forecasts from the MPC react especially sharply

from late 2008 to the emerging downside risks; they also return to a more balanced assessment

quicker than the statistical model. There is more persistence to the statistical model’s skew

forecasts. The SEF skew forecasts for output growth are always negative, while their skew

forecasts for inflation fluctuate in sign. Again, we see the SEF skew forecasts differ from those

from the statistical model. This evidence of disagreement between the skew forecasts from

10As expected, given underlying symmetry assumptions, the skew forecasts from the AR and the BVAR models
are both smaller and less variable, over time, than those from the WBS combination; see Figure A6.
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professional forecasters and statistical models suggests that MPC and SEF forecasts of skew

are, at least in part, judgment-based - with experts making different judgments.

4 Empirical Methodology

To evaluate the impact of judgment when forecasting, we exponentially tilt, using the method-

ology explained in section 4.1 below, the statistical models’density forecasts so that they satisfy

the mean, standard deviation and/or skew judgment-augmented forecast. We then measure and

evaluate the effects of the judgment-based tilted density forecasts using the loss functions and

statistical tests described in section 4.2.

4.1 Tilting forecasts using judgment-based moment restrictions

Exponential tilting, as introduced into macroeconomic forecasting by Robertson et al. (2005),

involves modifying a given predictive distribution into a new predictive distribution to satisfy

a set of moment conditions or restrictions, but minimizing the relative entropy or distance

between the two distributions.

Our objective, for each forecasting origin in the out-of-sample period τ = T+1, ..., T+P , is to

construct from the statistical model’s density forecast, fτ ,h(Y ), a new density forecast, f̃τ ,h(Y ),

using data up to and including period τ , that satisfies judgment-based moment conditions.

Specifically, draws are first taken from the predictive density, fτ ,h(Y ), produced from one of

the statistical models described in section 2.2. Then, recursively for each τ , we tilt fτ ,h(Y ) to

satisfy a set of k moment conditions:

Eτ [gτ ,h(Y )− ḡ] = 0 (4)

where [gτ ,h(Y )− ḡ] is a k × 1 vector of moment conditions, which we will define for the mean,

variance, skew and/or kurtosis. Robertson et al. (2005) and Giacomini and Ragusa (2014) show

that tilting delivers a new density forecast, f̃τ ,h(Y ), that satisfies (4) but in a manner that

keeps it as close as possible to the original density, fτ ,h(Y ), according to the Kullback-Leibler

measure of distance.

The tilted density f̃τ ,h(Y ) is computed as:

f̃τ ,h(Y ) = fτ ,h(Y ) exp
{
ητ ,h + τ

′
τ ,h(gτ ,h(Y )− ḡ)

}
, (5)
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where ητ ,h and τ τ ,h:

τ τ ,h = arg min
τ

1

D

∑D

d=1
fτ ,h(yd) exp

{
τ ′(gτ ,h(yd)− ḡ)

}
(6)

ητ ,h = log

{
1

D

∑D

d=1
fτ ,h(yd) exp[τ ′τ ,h(gτ ,h(yd)− ḡ)]

}−1
, (7)

and
{
yd
}D
d=1

are D = 10, 000 draws from fτ ,h(Y ).11

To help understand the role of judgment about specific moments of the forecast distribution,

we tilt in two ways. The first approach (“Tilting Approach 1”) involves imposing, via (4), one

judgment-augmented moment restriction at a time while keeping the other moments fixed at

their values from the statistical model. The second approach (“Tilting Approach 2”), as more

conventionally used in the tilting literature, imposes moment restrictions jointly and does not

force other moments to remain at their values from the statistical model.

In more detail, Tilting Approach 1 tilts separately towards either the mean, the variance

or the (Pearson moment) skewness of the judgment-based forecast.12 The k vector of moment

conditions, ḡ, in (4), is set equal to the first four moments of fτ ,h(Y ) except for the specific

moment that is tilted towards the judgment-based forecast. This form of tilting is, in effect,

a constrained minimization, with only higher-order moments (beyond the k-th) free to adjust.

We note (e.g. see Giacomini and Ragusa (2014)) that if fτ ,h(Y ) is Gaussian, tilting towards a

different mean forecast also involves keeping other moments unchanged. As proven in Giacomini

and Ragusa (2014), if the judgment about the specific moment that we tilt towards is true in

population, we should expect the tilted density forecast f̃τ ,h(Y ) to outperform (according to

the logarithmic scoring rule evaluated at the subsequent realization, yt+h) the original density

forecast fτ ,h(Y ). For robustness, and aware that kurtosis estimates can be imprecisely defined,

we also consider constraining only the first k = 3 moments.

While Tilting Approach 1 isolates the effects of judgment on specific moments, it does so

assuming that forecasters’judgments about one moment are independent of the others. This

may or may not be a reasonable assumption for what are in large-part subjectively formed

densities. That is, while statistically the (conditional) variance forecast, for example formed

via OLS estimation of an AR model, depends on the (conditional) mean forecast (under mean

11See Giacomini and Ragusa (2014) for details. Further computational details are in Appendix C.3.
12Since Tilting Approach 1 is unfamiliar relative to Tilting Approach 2, we illustrate how it works in practice

in Appendix D. The illustration shows how Tilting Approach 1 affects the shape of the forecast densities made
during the Great Recession.
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squared error loss), professional forecasters may or may not form their density forecasts in this

holistic manner. To acknowledge that they might, in Tilting Approach 2 (as in Krüger et al.

(2017)) we tilt towards: i) the judgment-based mean forecast (k = 1); ii) the mean and variance

of the judgment-based forecast (k = 2); and iii) the mean, variance and skewness of judgment-

based forecast (k = 3).13 Note how Tilting Approach 2 no longer forces the other moments to

remain at their values from the statistical model. Incremental comparisons of forecast accuracy

between i), ii) and iii) let us evaluate if additional judgment-based moments improve forecast

accuracy. For robustness, we also consider imposing just one moment (whether it be the mean,

variance or skewness) at a time, i.e. we set k = 1; but again, in contrast to Tilting Approach 1,

the other moments are left unconstrained.

4.2 Measuring Forecasting Performance

4.2.1 Loss Functions

To evaluate the accuracy of the density forecasts we use the continuous ranked probability score

(CRPS) and the threshold-weighted CRPS. Both are loss functions, L(ft,h(Y ), yt+h), that score

the density forecast, ft,h(Y ), according to the realization, yt+h, that subsequently materializes

(Gneiting and Ranjan, 2011). L(.) is defined so that smaller values indicate greater accuracy.

The CRPS evaluates the ‘whole’density, while the threshold-weighted CRPS focuses on accuracy

in the tails.14

Specifically, the CRPS is given as:

CRPSt,h =

+∞∫
−∞

[Ft,h(y)− I(yt+h ≤ y)]2 dy (8)

where Ft,h(.) is the CDF associated with the density forecast ft,h(.) and I(yt+h ≤ y) denotes an

indicator function equal to unity if yt+h ≤ y, 0 otherwise.

The threshold-weighted CRPS is:

twCRPSt,h =

+∞∫
−∞

w(y) [Ft,h(y)− I(yt+h ≤ y)]2 dy (9)

13We refer to Krüger et al. (2017) for some illustrative examples of how this second form of tilting affects the
shape of the forecast distributions.
14Appendix C.4 provides computational details for the CRPS. As robustness check, we also consider the

logarithmic score.The logarithmic score is less robust to outliers than the CRPS. But results are qualitatively
similar to those using the CRPS.
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where w(y) are positive weights. twCRPSt,h is a proper scoring function; cf. Lerch et al. (2017).

When w(y) ≡ 1 for all y, twCRPSt,h reduces to the unweighted CRPS, (8). Otherwise, w(y)

can be tailored to focus on specific regions of the density. We specify w(y) to focus on the tails.

If we define a Gaussian CDF for y as Φ(y,mean, var) and let the two thresholds, r1 and r2,

define regions in the left and right tails, then w(y) is set as:

w(y) = (1− Φ(y, r1, var)) + Φ(y, r2, var). (10)

As a consequence, twCRPSt,h evaluates differences between the predicted and true CDF

only for regions of the density below r1 and above r2. How clearly these regions are defined

depends on var; we set var = 0.2, so that the weights move sharply to 1 as y crosses either

threshold. Consulting historical data for output growth and inflation from 1980 to 2016, we set

the thresholds so that approximately 10% of realizations fall in each tail. For GDP growth, this

involves setting r1 = 0% and r2 = 4%; for inflation, r1 = 1% and r2 = 4%. As a consequence,

twCRPSt,h favors density forecasts best able to characterize tail events.

4.2.2 Statistical Tests

To test for statistically significant differences in forecast accuracy between the original density, as

evaluated by the chosen loss function, L(ft,h(Y ), yt+h), and the tilted density, L(f̃t,h(Y ), yt+h),

we test the null of equal forecast accuracy:

H0 : E[L(f̃t,h(Y ), yt+h)− L(ft,h(Y ), yt+h)] = 0. (11)

Following Diebold and Mariano (1995) and Giacomini and White (2006), we use a t-statistic

assuming asymptotic normality and implement a two-sided test.15 We reject the null in favor

of the tilted distribution when the t-statistic is negative and smaller than the critical value.

Following Harvey et al. (2017), we use a rectangular kernel with the lag truncation parameter

set to h− 1 to obtain HAC standard errors, and apply a small sample correction.16

This test is computed over P observations in the out-of-sample period. However, we are also

interested in whether there are changes in forecast accuracy over these P observations; and if

there are significant differences in accuracy between the original and the tilted densities when

15The impact of decreasing parameter uncertainty due to recursive estimation is assumed to be negligible,
motivated by Diebold and Mariano (1995) and Diebold (2015).
16We thank a referee of this journal for suggesting this approach.
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we allow for changes in relative accuracy. Accordingly, we make use of the fluctuation test of

Giacomini and Rossi (2010). This involves computing the t-statistic over rolling windows within

the out-of-sample period, but with the long-run variance computed over all P observations. We

set the window size to 20, which is about 1/3P for output growth, and 1/2P for inflation.

5 Assessing the Impact of Forecasters’Judgment

5.1 Design of the Empirical Exercise

We use real-time data for real GDP, consumption and investment from the ONS. UK CPI

inflation is not subject to data revisions. Due to a lack of availability of vintage data, we

ignore revisions for some of the additional indicator variables in the WBS combination, such as

industrial production and real wages; but we do take into account their publication delays, i.e.

we use values as available in the middle month of each quarterly forecast origin.

All models are re-estimated at each forecast origin τ , using an expanding window of data

from 1980Q1 (1980M1 for models that use monthly data) through τ − 1, where τ = T +

1, ..., T + P .17 The forecast origins date from 2001Q1 through 2016Q1 for output growth; and

from 2004Q1 through 2016Q1 for inflation. The latest data vintage that we consider is for

2018Q2, so that the same number of observations is used to evaluate the forecasts across the

h = 1, ..., 8 quarter-ahead forecast horizons. This results in P = 61 for output growth and

P = 49 for inflation.

Given GDP data revisions, we have to decide which vintage of data to use to define the

realization, yt+h. We use the realization for year-on-year GDP growth published by ONS two

months after the end of the reference quarter. Over our sample period, this is the second GDP

release.

5.2 The effect of judgment on forecast performance

5.2.1 Tilting Approach 1: imposing one moment at a time

Table 1 evaluates the role of judgment about the mean, variance and skew forecast. Recall,

Tilting Approach 1 involves tilting the statistical model’s density forecast, at a given horizon,

to a specific judgment-based moment forecast. But the remaining k − 1 moments (up to k = 4

17Given sample sizes are fairly small, we use expanding rather than rolling windows. Preliminary results
suggested that this improved forecast accuracy.
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in (4)) are constrained to their original values. We focus here on use of the WBS combination

density as the statistical density forecast. Appendix Tables A1 and A2 present results for the

AR and BVAR statistical model, which we summarize below. We emphasize that no single

statistical model consistently delivers the lowest CRPS across variables and horizons.

The first column of Table 1 reports the average CRPS and tw-CRPS statistics from applying

Tilting Approach 1. The entries in the remaining columns of Table 1 report the ratio of the

score statistic of the tilted density to the statistical density (WBS combination). Ratios less

than one indicate improvements in forecasting accuracy due to the imposition of judgment.

Entries in bold indicate rejection of the null hypothesis of equal forecast accuracy in favor of

the tilted density that incorporates judgment. In contrast, underlined entries indicate rejection

in favor of the statistical density, implying that judgment worsens forecast accuracy.

Panels A (output growth) and B (inflation) show results for horizons h = 1, 4 and 8. Panel

C reports proportions over all 8 forecast horizons, variables (output growth and inflation) and

score functions (CRPS and tw-CRPS). Specifically, the rows report the proportion of times

that judgment improves density forecasting, or has either significantly improved or worsened

performance at the 90% significance level (according to individual t-tests).

Our overriding interest is drawing out whether and how judgments about the mean, variance

and skew improve forecast accuracy. We are not interested per se in establishing whether, ex

post, one professional forecaster (or group of) is better than another. We take the view that ex

ante it is hard for an independent observer to know which professional forecast is best. What

matters in our exercise is whether collectively judgment adds value to the density forecasts

produced mechanically by models. Hence we do not emphasize individual professional forecaster

performance.

Accordingly, looking at Panel C, the main takeaway from Table 1 is that while judgments

about the mean improve forecasting performance on 69% to 88% of occasions (these improve-

ments are statistically significant on 3% to 25% of occasions), judgments about the variance

hinder. Forecast performance improves after imposing judgment about the variance only on

38% to 50% of occasions. There is even less value-added to the judgment-based skew forecasts.

These results tend to be robust to consideration of the logarithmic scoring rule instead of

the CRPS; robust to considering the AR and BVAR densities as the statistical density forecast;

and robust to tilting up to k = 3, so that only the first 3 moments are constrained in Tilting
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Approach 118; see Appendix Tables A1 through A4. The only qualification to this is that the

judgment-based variance forecasts do improve accuracy, especially at longer horizons, relative

to the AR and BVAR statistical models on up to 70% of occasions. This is consistent with

the AR and BVAR forecasts tending to forecast the tails, especially for output growth, less

accurately than the WBS combination (compare the first column of Table 1 with Tables A1

and A2), perhaps as they do not accommodate time-variation in the conditional variance like

the WBS combination.

5.2.2 Tilting Approach 2: imposing multiple moments

Table 2 follows Table 1, but evaluates judgments about the mean, variance and skew forecast

using Tilting Approach 2. Consistent with Table 1, we find that tilting towards the mean and

then separately towards the variance improves and worsens, respectively, forecast performance.

Mean judgments deliver improvements on 75% to 88% of occasions (and are statistically sig-

nificant 13% to 63% of the time). But variance judgments only deliver gains on 16% to 38%

of occasions (with 0% to 38% being statistically significant). In contrast, tilting towards the

judgment-enhanced predicted skew alone now has a more beneficial effect with improvements

in 38% and 63% of the cases, relative to 13% to 34% under Tilting Approach 1. Interestingly,

skew judgments improve the forecasting performance more frequently when tail performance is

emphasized via the tw-CRPS. Similar results are found when the BVAR is considered as the

statistical model (cf. Table A2 and Table A5).

Looking next at tilting towards the mean, the mean and variance, and then jointly towards all

three judgment-based forecasts, Table 2 reveals no incremental gains relative to tilting towards

the mean only. That is, while tilting towards multiple judgment-based moments delivers gains

on up to 88% of occasions, these gains materialize even when tilting just towards the mean. We

therefore conclude that results are robust across Tables 1 and 2: mean judgments help most.

5.3 The Time-Varying Effects of Judgment Adjustments

We use the fluctuation test described in section 4.2.2 to assess whether our general finding that,

on average over the evaluation period, judgment about the central forecast (in particular for

output growth) helps and that judgment about higher moments hinders, in fact masks temporal

18As emphasized by a referee, kurtosis estimates can be imprecise. Hence, for robustness, we considered Tilting
Approach 1 but not constraining the kurtosis of the tilted density to equal the value from the statistical model.
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variation. We continue to focus on the WBS combination as the statistical benchmark.

In Figure 3 we present t-statistics from the fluctuation test computed over rolling windows

of 20 quarters. Negative values indicate that judgment improves the accuracy of the WBS

combination: values less than −2.8 indicate statistically significant improvements at the 10%

level (greater than 2.8 indicates statistically significant losses).19

Figure 3.1 shows that the density forecasting gains seen in Tables 1 and 2 to tilting the

one-year-ahead output growth density forecasts to the mean forecasts from the professional

forecasters (for space, we focus on the judgment of the MPC and CE) largely arise during the

turbulent 2009 to 2012 Great Recession period. Judgment about the central path appears to

add value at times of change.

In contrast, Figure 3.2 reveals that the losses in density forecasting accuracy seen one-

quarter-ahead when imposing judgment on uncertainty arise primarily in the period since the

Great Recession. Consistent with Figure 1, this appears to reflect the MPC not lowering the

variance of their short horizon inflation and output growth density forecasts, after raising their

variance forecasts so sharply during the Great Recession.

While we have found judgments about the variance to hinder at short horizons, Table

1 did indicate that these judgments can help deliver better tail risk forecasts, especially for

output growth, at longer horizons. To investigate further, Figure 3.3 evaluates the time-varying

contribution of MPC forecasts of two-year-ahead uncertainty. Figure 3.3 indicates that these

judgments improve tail and density forecast accuracy for output growth from 2014 onwards.

During this period, as seen in Figure 1, the uncertainty predicted by the WBS combination was

slowly declining. But the width of the MPC density forecast for output growth contracted quite

sharply in 2013: and Figure 3.3 suggests that this judgment helped, even if, on average over the

evaluation period, the effects of tilting the WBS combination towards the MPC variance forecast

are more modest (cf. Tables 1 and 2). There is no evidence from Figure 3.3 that judgments

about inflation uncertainty really helped, even at specific points in time.

Figure 3.4 investigates if there were periods in time when skew judgments really helped. We

focus on the one instance detected in Tables 1 and 2 when skew judgments did, on average over

time, help - when forecasting two-years-ahead. Figure 3.4 confirms that the gains seen tilting

the WBS combination density forecast for output growth to the MPC skew forecast are largely

19The critical values are lower for inflation as the windows of 20 observations are a larger proportion of the
sample size. The relevant critical value is then 2.5. Critical values are obtained from Giacomini and Rossi (2010).
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confined to 2010-2011, when using the tw-CRPS to isolate tail forecast accuracy. This period is

when (see Figure 2B) the WBS combination forecast more skew than the MPC, given that the

MPC sharply reduced its assessment of downside risks knowing, unlike the statistical model,

that the recession had ended. We again interpret this as evidence that judgments about skew

can improve probabilistic forecasts, especially at times of macroeconomic change. However, we

emphasize that overall skew judgments rarely improve the density and tail risk forecasts from

statistical models. Indeed, Figure 3.4 shows, for inflation, that since 2014 the MPC’s skew

judgment has led to worse density forecasts.

6 Conclusions

This paper presents empirical evidence on the role that judgment plays in macroeconomic den-

sity forecast accuracy. In an application to UK output growth and inflation, we find that density

forecasts from statistical models prove hard to beat. Only selected judgmental adjustments im-

prove statistical models’density forecasts.

Judgments about the mean improve density forecast accuracy at short horizons, especially for

output growth, and at times of heightened macroeconomic uncertainty. This result is consistent

with a body of research which has emphasized the value of point forecasts from surveys of

professional forecasters; e.g. see Krüger et al. (2017) and Clements (2018).

But we find that judgments about the variance (uncertainty) forecast tend to detract from

the accuracy of short horizon density forecasts from statistical models, although they can help

deliver better tail risk forecasts at long horizons. This mixed result on the utility of second-

moment judgments is consistent with mixed evidence from previous research on the accuracy

of the variance forecasts from the US SPF (Krüger et al. (2017) and Clements (2018)), the

Euro SPF (Kenny et al. (2014; 2015)) and four central banks (Knüppel and Schultefrankenfeld

(2019)).

Finally, judgments about skew do not in general improve density forecast accuracy. Kenny

et al. (2014) also find skew forecasts from four central banks are not relevant. But skew judg-

ments can improve tail risk forecasts for output growth at times of macroeconomic change, such

as around business cycle turning points. This is because forecasts generated mechanically, even

from flexible statistical models that generate asymmetric forecast densities, only adapt at a lag

to changes in the state of the macroeconomy.
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A timely observation, giving the emerging (at the time of writing) Covid-19 induced re-

cession, is that at times of great uncertainty, our results do point to the value of judgmental-

adjustments to macroeconomic forecasts from statistical models. Our results indicate that judg-

ments about the central path of the economy have worked especially well in the aftermath of

historical shocks. Future work will evaluate how well judgment-based macroeconomic forecasts

performed relative to statistical models in the face of the Covid-19 pandemic.
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Table 1: Evaluating the effect of judgment on the WBS combination densities: “Tilting 
Approach 1” 
 

Forecast  
Horizon  

Statistical 
Model 

Judgment: moments from professional forecasters  

h  Mean Variance Skew 
 WBS Comb. MPC NIESR CE SEF MPC SEF MPC SEF 

 
Panel A: Output Growth (Forecast Origin: 2001Q1-2016Q1) 

 CRPS Ratios between the CRPS of tilted and original density 
1 0.28 1.02 0.99 0.88  1.97  0.999  
4 0.93 0.85 0.86 0.79 0.88 1.00 1.00 0.997 1.022 
8 1.09 1.03 0.95  0.89 0.99 1.01 0.999 1.019 
 tw-CRPS Ratios between the tw-CRPS of tilted and original density 
1 0.07 0.68 0.99 0.87  3.03  1.002  
4 0.16 1.27 0.98 1.11 0.78 0.88 0.83 0.982 1.060 
8 0.09 1.40 1.04  0.79 0.90 0.30 0.950 1.042 

 
Panel B: Inflation (Forecast Origin: 2004Q1-2016Q1) 

 CRPS Ratios between the CRPS of tilted and original density 
1 0.14 0.79 1.59 0.80  1.70  1.004  
4 0.68 0.87 1.09 0.86 1.05 1.00 1.04 1.002 1.004 
8 0.86 0.97 0.94  0.88 0.98 1.08 1.006 1.007 
 tw-CRPS Ratios between the tw-CRPS of tilted and original density 
1 0.04 0.72 1.06 0.44  1.98  1.001  
4 0.17 0.75 1.05 0.49 0.49 1.03 0.92 0.986 0.996 
8 0.20 0.93 0.75  0.61 1.02 0.70 0.974 0.939 

 
Panel C: Output Growth and Inflation (across forecast horizons and loss functions)   

Prop. Improved 72% 69% 86% 88% 38% 50% 34% 13% 
Prop. Sign. Improved 3% 9% 16% 25% 6% 38% 6% 0% 

Prop. Worsened 9% 3% 0% 0% 13% 25% 6% 13% 

 
Notes: Tilting Approach 1 imposes one judgment-based predictive moment at a time, keeping the 
three other moments (up to the 4th moment) at the statistical model values. Values in bold: 
statistically significant improvement in forecast accuracy due to judgment. Underlined: statistically 
significant worsening due to judgment. These are based on a two-sided 10% level test of the null of 
equal forecast accuracy with small sample correction, see eq. (14). The tw-CRPS thresholds are 𝑟! =
0 and 𝑟" = 4%, and these are for year-on-year growth rates. Results for SEF for forecast origins 
from 2006Q2 onwards only. Panel C: Prop. Improved denotes the percentage of occasions (across 
variables (output growth and inflation, forecast horizons (h=1 to 8) and scores (CRPS and tw-
CRPS)) that judgment improves the accuracy of the statistical model’s density forecast. Prop. Sign. 
Improved denotes the percentage of occasions that this improvement is statistically significant at 
the 90% significance level (using individual t-tests).  Proportion Sign. Worsened denotes the 
percentage of occasions that judgment leads to a statistically significant worsening of forecast 
performance.  
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Table 2: Evaluating the effect of judgment on the WBS combination densities: “Tilting 
Approach 2”  
 
Forecast 
Horizon  

Statistical 
Model 

Judgment: moments from professional forecasters 

h  Mean Variance Skew Mean + 
Var 

Mean + Var 
+ Skew 

 WBS Comb. MPC SEF MPC SEF MPC SEF MPC SEF MPC SEF 
 

Panel A: Output Growth (Forecast Origin: 2001Q1-2016Q1) 
 

 CRPS Ratios between the CRPS of tilted and original density  
1 0.28 1.04  1.29  1.03  1.37  1.61  
4 0.93 0.84 0.88 1.01 1.01 1.02 1.02 0.84 0.87 0.83 0.87 
8 1.09 1.05 0.88 1.01 1.04 1.03 0.99 1.05 0.88 1.03 0.89 
 tw-CRPS Ratios between the tw-CRPS of tilted and original density  
1 0.07 0.65  1.60  1.04  1.28  1.83  
4 0.16 1.00 0.60 0.90 0.77 0.76 0.67 1.12 0.62 1.25 0.66 
8 0.09 0.39 0.22 0.88 0.41 0.30 0.37 1.15 0.23 1.31 0.28 

 
Panel B: Inflation (Forecast Origin: 2004Q1-2016Q1) 

 

 CRPS Ratios between the CRPS of tilted and original density  
1 0.14 0.70  1.22  0.99  1.37  1.41  
4 0.68 0.91 1.14 1.03 1.02 1.02 1.03 0.84 1.12 0.90 1.11 
8 0.86 1.04 0.97 1.03 1.11 1.01 1.02 1.05 0.97 0.99 0.97 
 tw-CRPS Ratios between the tw-CRPS of tilted and original density  
1 0.04 0.46  1.22  1.02  1.28  1.38  
4 0.17 0.61 0.27 1.14 0.91 0.94 0.92 1.12 0.30 0.85 0.31 
8 0.20 0.77 0.28 1.21 1.73 0.78 0.81 1.15 0.23 1.24 0.24 

 
Panel C: Output Growth and Inflation (across forecast horizons and loss functions)   

Prop. Improved 75% 88% 16% 38% 38% 63% 38% 88% 38% 88% 
Prop. Sign. Improved 13% 63% 0% 38% 25% 6% 0% 50% 0% 38% 
Prop. Sign. Worsened 0% 0% 25% 25% 0% 0% 6% 0% 16% 0% 

 
Notes: See notes to Table 1. Unlike Tilting Approach 1, Tilting Approach 2 does not constrain the 
other three moments (up to the 4th moment) at the statistical model values.  
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Figure 1: Predicted uncertainty (standard deviation) for MPC, SEF and WBS combination 
forecasts  
 

 
 
 
Notes: The horizontal axis dates refer to the forecast origin. The MPC’s predicted standard deviation is computed 
from the parameters of the two-piece normal density. SEF standard deviation is computed from a generalized 
beta distribution fitted to the aggregated SEF histograms. 
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Figure 2: Predicted skew by professional forecaster 
 
Figure 2A: MPC forecasts one, four and eight-quarters-ahead 

 
 
Figure 2B: MPC, SEF and WBS combination predicted skew for the two-year-ahead 
forecasts  

 
 
Notes: The x-axis dates refer to the forecast origin.  The MPC’s predicted skew is computed from the 
parameters of the two-piece normal density. SEF skew is computed from a generalized beta distribution fitted 
to the aggregated SEF histograms.   
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Figure 3: The time-varying effects of judgment: t-statistics from the fluctuation test, 
computed against the WBS combination density, over a rolling window of 20 quarters using 
CRPS and tw-CRPS loss  
 
Figure 3.1: MPC and CE predicted mean judgments for output growth one-year-ahead 

 
 
Figure 3.2: MPC predicted variance judgments for output growth and inflation one-quarter-
ahead   

 
 



 28 

Figure 3.3: MPC predicted uncertainty judgments for output growth and inflation two-years-
ahead 
 

 
 
Figure 3.4: MPC predicted skew judgments for output growth and inflation two-years-ahead 
 

 
 

Notes: The dates reported refer to the last forecast origin, τ, included in the rolling window. The horizontal 
lines are the critical values for the fluctuation test. The two-sided 10% test critical values are 2.8 for output 
growth and 2.5 for inflation, but the values indicated are for output growth. Values above the positive critical 
value indicate that judgment worsens the statistical model’s forecasting performance. Values below the negative 
critical value indicate that judgment improves the statistical model’s forecasting performance.   
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A Professional Forecasters

A.1 National Institute of Economic and Social Research (NIESR)

The NIESR produce quarterly macroeconomic forecasts using their Global Economic Model

(NiGEM). This model is also used by many European central banks and international organiza-

tions, such as the OECD.1 When undertaking forecasting, and conducting policy-based analysis,

residual adjustments are implemented, judgmental assumptions are made and paths are set for

a range of exogenous variables. As such, and as Turner (1990) concludes in an earlier analysis

of the role of judgment on NIESR point forecasts, it is not possible for the typical forecast user

to isolate the direct quantitative role of judgment on NIESR’s forecasts even when re-running

NiGEM under alternative judgmental adjustments.

A.2 The Bank of England’s Monetary Policy Committee

The MPC’s density forecasts for GDP growth and inflation are communicated as fan charts

in the Bank of England’s quarterly Inflation Report. The fan charts, as stated by the MPC:

“represent the MPC’s best collective judgment about the most likely paths for inflation and

output, and the uncertainties surrounding those central projections”. Since the establishment

of the MPC in 1997 the fan charts have been constructed using two-piece normal densities. The

1NIESR, founded in 1938, has a long track-record of producing quarterly macroeconomic forecasts. NiGEM is
an estimated macro-econometric model for a group of countries based on a New-Keynesian framework, with agents
assumed forward-looking and nominal rigidities slowing the adjustment process to external shocks or events. The
model pays particular attention to its long-term equilibrium properties; while the short-term dynamics and
underlying estimated properties of the model are consistent with data and result from well documented and
robust estimation methods. See https://nimodel.niesr.ac.uk/index.php?t=5NiGEM
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two-piece normal density, f2PN (Y ), creates a skewed density by combining the two halves of

two normal densities with a common mode of µ and standard deviations of σ1 and σ2:

f2PN (Y ) =

 A exp
[
−(y − µ)2/2σ21

]
if y < µ

A exp
[
−(y − µ)2/2σ22

]
if y ≥ µ

(1)

where A =
(√

2π (σ1 + σ2) /2
)−1
. f2PN (Y ) has computational advantages over other skewed

distributions given it can be analyzed using analytical formula; see Wallis (2014) for a historical

perspective. The two-piece normal can be parameterized in alternative ways to (1). Given this,

as discussed by Wallis (2004), care needs to be exercised when using the published parameters

of the two-piece normal to back out estimates of µ, σ1 and σ2, as the Bank prefer an alternative

parameterization. The two-piece normal is asymmetric when σ1 6= σ2.

The MPC choose to communicate skewness by emphasizing mode skewness: (E(Y )− µ).

But in our main paper we use the Pearson moment coeffi cient of skewness i.e. the third stan-

dardized moment of Y , as an input into the entropic tilting. The MPC forecasts are conditional

on forward market interest rates and other conditioning assumptions detailed in the Inflation

Report, including about the stock of purchased assets.

A.3 The Bank of England’s Survey of External Forecasters

The Survey of External Forecasters (SEF) has run quarterly since 1996 and asks a panel, of

typically twenty to thirty professional forecasters, for their probabilities that the future value of

the variable of interest will lie within a number of pre-assigned intervals. Thereby individual-

level forecast histograms are defined. The forecasters surveyed include City of London firms,

academic institutions and private consultancies mainly based in London (see Boero, Smith and

Wallis (2008) for further details). Originally, the SEF asked for point and density forecasts

for just inflation and on a “fixed-target”basis, meaning the forecast horizon changed from one

survey to the next.

A.4 Consensus Economics

Consensus Economics (CE), founded in 1989, is a leading international economic survey organi-

sation that polls economists to obtain their latest forecasts. In the UK, around 30-40 professional

forecasters provide their forecasts to CE. Forecasters are asked for their point forecasts only.
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Consensus Economics do provide, at some forecast horizons, supplementary information on dis-

agreement i.e. the degree to which forecasters disagree with the average forecast. As we aim

to quantify the effects of forecast uncertainty judgments, we chose not to use disagreement as

a proxy for forecast uncertainty.

B The Statistical Models

In this appendix, we describe the estimation and forecasting details of the three statistical

forecasting models considered in the main paper: (i) the WBS combination; (ii) the BVAR

model; and (iii) the AR model.

To mimic real-time application, each of the three statistical models is re-estimated at each

forecast origin, τ , over the out-of-sample window, denoted τ = T + 1, ..., T + P , using an

expanding window of data. Denote the h-quarter ahead density forecasts of the random variable

Yτ+h, made in the middle of quarter τ , fτ ,h(Y ).

B.1 The WBS Combination

The WBS combined density forecasts are produced by combining the density forecasts across

the 24 statistical forecasting models described below. Each forecasting model is classified within

three classes of model.

B.1.1 Class 1: AR models

We employ an AR(2) model, estimated using quarterly growth rate data defined as yt = 400×

(ln(zt) − ln(zt−1)), where zt is either the level of real GDP or the Consumer Price Index (t =

1, 2, ..., τ).2 Given the parameters estimated using data up to the forecast origin, τ , we use

the model to generate sequences of h = 1, ..., 8 quarter ahead forecast draws. These draws

are obtained through iteration using the bootstrap methods described in Clements and Taylor

(2001), taking into account both parameter and forecast uncertainty. This method involves first

bootstrapping from the residuals and uses the estimated autoregressive parameters to obtain

a full bootstrapped time-series for y∗t (t = 3, ..., τ). Then the AR(2) model is re-estimated,

for each of the bootstrapped samples, with h-quarter ahead forecasts computed by iteration

2The choice of an AR(2) specification is a fairly popular benchmark (Carriero, Galvao and Kapetanios, 2019).
There is evidence, particularly for output growth, that an AR(2) model forecasts competitively; e.g. see Chauvet
and Potter (2013).
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while bootstrapping from the new set of residuals to accommodate forecast uncertainty. We use

the sequence of h = 1, ..., 8-quarter ahead forecasts for the quarterly growth rates to compute

forecasts of year-on-year growth rates (100× ((zt/zt−4)− 1)), given known values for zτ and its

lags. In our empirical application, we use 5, 000 bootstrap replications for y∗t to generate 5, 000

draws from the predictive density, fτ ,h(Y ), for each horizon, h.

B.1.2 Class 2: BVAR models

Three types of BVAR are considered and differ according to the (quarterly) variables considered

and whether stochastic volatility is modeled. In total, the BVAR model class comprises 10

models.

Firstly, a single macro BVAR without stochastic volatility models the log-levels of the seven

variables used in the Smets and Wouters (2007) DSGE model: GDP, CPI, consumption, in-

vestment, hours, real wages and the interest rate (the Bank Rate is used). Details of the data

sources and data transformations used are provided in Table A6. The lag order p is set to

four. We generate posterior densities of the autoregressive coeffi cients using a Minnesota prior.

The overall tightness around these autoregressive parameters is controlled via priors on the

hyperparameters, which are set to maximize the marginal data density as in Carriero, Clark

and Marcellino (2015) and Carriero, Galvao and Kapetanios (2019).

The second type of BVAR model, is a set of medium-sized BVARs without stochastic volatil-

ity. In addition to GDP and CPI inflation, these VAR models include the thirteen indicator

variables as described in Table A6 - in the ‘medium-size models’ panel. We estimate eight

variants of this medium-sized BVAR, for lag lengths p = 1, . . . , 4, in both log-levels and first-

differences of the data.

Finally, we consider a single medium-sized BVAR with stochastic volatility in these same

15 variables. There is evidence that accommodating stochastic volatility is especially helpful

when density forecasting; e.g. see Clark (2011). The variables are modeled in first differences

and the lag order p is set to four. Estimation follows Carriero, Clark and Marcellino (2019).

These methods allow for the estimation of large BVARs with non-conjugate priors and drifting

volatilities based on a triangularization of the system. This reduces the computational burden.

It uses draws from a BVAR with an independent Normal Wishart prior and stochastic volatility.

The predicted densities are obtained using a set of kept posterior density draws.
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B.1.3 Class 3: Mixed-Frequency models

The second class of model comprises mixed-frequency models. These allow for the considera-

tion of known (within-quarter) monthly information reflecting the release calendars of a set of

monthly indicators. Specifically, Autoregressive Distributed Lag Mixed Data Sampling (ADL-

MIDAS) models are estimated for each horizon and target variable (quarterly GDP growth

and quarterly CPI inflation). The models are single predictor ADL-MIDAS regressions, using

in turn each of the thirteen indicators included in the medium-sized BVAR (see Table A6),

measured at a monthly frequency. The ADL-MIDAS models are estimated by nonlinear least

squares assuming a beta-weighting function. Estimation involves single predictor models with

autoregressive terms, predictors are sampled monthly, autoregressive terms are quarterly for

output growth, monthly for inflation, and the number of monthly lags used is 24. We use the

values for the first month of the current quarter for a subset of predictors (financial variables)

that are published rapidly; and lagged values of inflation. The data transformation (log or

log-differences) differs across variables and is described in Table A6. The predicted densities

for GDP growth and inflation are computed using a fixed-regressor bootstrap approach, as de-

scribed in Carriero, Galvao and Kapetanios (2019), taking into account both parameter and

forecast uncertainty.

B.1.4 Combining the predictive densities

Based on the methods described above, we take 4, 000 draws from the predictive density of each

of the 24 statistical forecasting models. A nonparametric kernel density estimator is fitted to

these draws, to obtain a continuous predictive density over a fixed grid of 1, 000 values lying

between −15 and 15 annual percent, for both output growth and inflation.

We then combine these out-of-sample density forecasts from the N = 24 forecasting models

using the Logarithmic Opinion Pool (LogOP). Given i = 1, . . . , N forecasting models, the

LogOP combined output growth or inflation density forecast made at time τ for yτ+h is:

fτ ,h(Y ) =

N∏
i=1

gτ ,h(Y | Ii,τ )wi,τ

∫ N∏
i=1

gτ ,h(Y | Ii,τ )wi,τdY

, (2)

where gτ ,h(yτ | Ii,τ ) is the h−step-ahead output growth or inflation density forecast from model

i, conditional on the information set Ii,τ . The non-negative weights, wi,τ , sum to unity, where
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the weights change with each recursion in the evaluation period, τ . The denominator in (2) is

a constant that ensures that the combined density is a proper density.

The weights, wi,τ , in (2) are estimated using the logarithmic score. We note, however, that

other loss functions such as the CRPS could also be used. The intuitive appeal of the logarithmic

scoring rule stems from the high score it assigns to a density forecast with high probability at the

subsequently realized value. The logarithmic score of the ith density forecast, ln gτ ,h(yτ+h | Ii,τ ),

is the logarithm of the density forecast gτ ,h(. | Ii,τ ), evaluated at the realization, yτ+h.

Specifically, the recursive weights are updated as follows:

wi,τ =

exp

[
τ−h∑

τ∗=τ−h−12
ln gτ∗,h(yτ∗+h | Ii,τ∗)

]
∑N

i=1 exp

[
τ−h∑

τ∗=τ−h−12
ln gτ∗,h(yτ∗+h | Ii,τ∗)

] (3)

It is important to note that the weights on the various component densities in (3) vary

through time, τ , reflecting the rolling historical performance of the component density forecasts.

Hence, the combination potentially exhibits greater flexibility than any single component density

forecast (in which the individual model parameters are themselves recursively updated). The

logarithmic score is computed as an average over a rolling window of the last 12 quarterly

observations. This allows the weights in the combination to adapt quickly to changes in relative

model performance. Only forecasting errors actually known in real-time feed into how these

weights are calculated. Using these weights, a combined density forecast is then produced across

the 24 models.

As reviewed by Aastveit, Mitchell, Ravazzolo and van Dijk (2019), the linear opinion pool

remains the most popular means of producing combined densities in the macroeconomic fore-

casting literature. However, when implementing the WBS Forecasting System, in 2014 the

decision (based on preliminary evaluation results at the time) was taken to use the logarithmic

opinion pool.3 It was found to produce more accurate density forecasts for UK GDP growth

and inflation than the linear opinion pool. Therefore we stick with the logarithmic pool in this

paper. Favoring the logarithmic pool is consistent with results showing that the linear opin-

ion pool can overstate forecast uncertainty; see Knüppel and Krüger (2019). The logarithmic

pool is known to preserve the distributional form of the component densities when they are all

from the same exponential family (e.g. see Wallis (2011)). Given that many of our component

3Since 2014 these forecasts have been published at https://warwick.ac.uk/fac/soc/wbs/subjects/finance/mpf/forecasting/
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densities are computed via bootstrap, which does not require the assumption that disturbances

are Gaussian, the logarithmically combined density forecast can still generate non-Gaussian

asymmetric densities.

B.2 The BVAR Model

We consider a small BVAR model with five endogenous variables, all in growth rates. The

variables included in the VAR, in addition to GDP and CPI, are the unemployment rate, the

three-month interest rate and the real effective exchange rate index - to reflect the fact that the

UK is a small open economy.

We estimate the BVAR with a Minnesota prior, with prior hyper-parameters set to maximize

the marginal data density as described in Carriero et al. (2015) and Carriero, Galvao and

Kapetanios (2019) with the autoregressive lag order set to 4. We use draws from the normal

posterior distribution of the dynamic coeffi cients and from the Wishart posterior distribution of

the variance-covariance matrix to obtain sequences of density forecast draws, by iteration, for

h = 1 to 8 quarters ahead. As well as computing the sequence of forecasts for a given draw from

the parameters, we also accommodate forecasting uncertainty by drawing from the errors. The

number of draws from the predictive distribution for each horizon is set to 5, 000. As before, we

transform the quarterly growth rate forecasts to obtain forecasts for year-on-year growth rates.

B.3 The AR Model

We estimate an AR(2) model by OLS. Details of how the predictive density are computed for

each variable and forecast horizon are in section B.1.1.

C Supplementary Empirical Results and Computational De-

tails

This appendix contains a series of additional empirical results referred to in the main paper.

C.1 Robustness of densities fitted to SEF histogram forecasts

As a robustness check, we calculate the mean and variance of the SEF histograms nonparamet-

rically as described in Clements (2019) and D’Amico and Orphannides (2008). This assumes

that the probability mass is concentrated at the mid-point of each bin. These nonparametric

7



results are reported in Figures A1-A4. For both inflation and output growth, the nonparametric

mean estimates are very close to those calculated fitting normal and generalized beta densities

to the histograms. The variances for inflation tend to be, on average, slightly larger, but with

very strong comovement. This was also documented, by Clements (2019), when making the

same the variance comparison for the US Survey of Professional Forecasters’ assessments of

inflation. For output growth, the variances calculated directly from the histograms are close

to those computed using the normal and generalized beta densities. Given these similarities

and the advantages cited in Engelberg, Manski and Williams (2008)) of imposing distributional

assumption enabling "sharper empirical analysis", we proceed in the main paper using the

generalized beta, as it allows for asymmetric densities.

C.2 Comparison of uncertainty forecasts against ex post estimates

Here we compare the uncertainty forecasts from the professional forecasters, referred to by

Clements (2014) as ex ante forecasts of uncertainty, with ex post estimates computed as the

standard deviation of the historical mean squared point forecast error. See also Jo and Sekkel

(2019) and Clark, McCracken and Mertens (2020). This analysis serves as a test of whether

judgment about the second moment improves upon an unconditional estimate that assumes the

average level of uncertainty that has been experienced in the recent past will continue into the

future. Clements (2018) undertakes a similar comparison for the US Survey of Professional Fore-

casters, finding that second-moment judgment makes simple statistical density forecasts worse.

Knüppel and Schultefrankenfeld (2019) finds no evidence for their bias, but like Clements (2018)

finds four central banks’judgment-based assessments of inflation uncertainty to be underconfi-

dent at short horizons.

Since the CE, NIESR and SEF point forecasts are similar to those from the MPC, we focus

here on constructing these ex post estimates of forecast uncertainty using the MPC’s point

forecasts. We further focus on the MPC’s output growth forecasts. Recall that the sample of

historical point forecasts from the MPC is shorter for inflation.

We calculate the standard deviation over a rolling window of the last 16 point forecasting

errors made by the MPC. We use a rolling window to allow the standard deviation to change

over time, reflecting changes in historical forecasting performance. We calculate estimates as if

in real-time; i.e. we take into account that when producing a forecast at τ , we can only consult

forecasting errors up to τ − h. We use the second monthly release of GDP as the realization

8



against which the forecast is compared. An implication of this is that at long horizon forecasts

the ex post predictive standard deviation will only adjust at a lag to accommodate recent

changes in underlying forecasting accuracy.

Comparison in Figure A5 of the ex post uncertainty estimates with the ex ante estimates, for

the MPC’s output growth forecasts, reveals that movements in ex post forecast uncertainty are

not matched by the ex ante forecasts. This indicates that the MPC’s assessments of uncertainty

do not directly reflect historical point forecasting performance. For the one-quarter-ahead fore-

casts, the MPC’s ex ante estimates exceed the ex post estimates - suggesting that the MPC

overstated the uncertainty in their forecasts. Clements (2014; 2018) and Knüppel and Schul-

tefrankenfeld (2019) found similar results (for the US SPF and four central bank forecasts,

including the Bank of England). They discuss the tendency for uncertainty forecasts to be

underconfident at short horizons. For correctly calibrated uncertainty forecasts, in population,

we should expect equality of the ex ante and ex post forecasts as discussed in Clements (2014).

But at the longer horizons (bottom two panels of Figure A5), while less volatile, we do see the

MPC’s ex ante uncertainty forecasts move more in-line with changes in their recent forecast

performance, as measured by the ex post forecast standard deviation. This is especially so

around the time of the financial crisis, in 2008-2009. We also observe a tendency for the MPC

to perceive more uncertainty than the ex post estimates during relatively tranquil periods (such

as 2004 and 2016). In contrast, during more turbulent periods (like the aftermath of the finan-

cial crisis), their assessment of the forecast uncertainty is lower than the ex post uncertainty

forecasts. These differences confirm the judgment component to the MPC’s published (i.e. ex

ante) uncertainty forecasts.

C.3 Computation of tilted densities

As described in the main paper, the tilted density f̃τ ,h(Y ) is computed as:

f̃τ ,h(Y ) = fτ ,h(Y ) exp
{
ητ ,h + τ

′
τ ,h(gτ ,h(Y )− ḡ)

}
, (4)

where ητ ,h and τ τ ,h are obtained by numerical approximation of the underlying integrals:

τ τ ,h = arg min
τ

1

D

∑D

d=1
fτ ,h(yd) exp

{
τ ′(gτ ,h(yd)− ḡ)

}
(5)

ητ ,h = log

{
1

D

∑D

d=1
fτ ,h(yd) exp[τ ′τ ,h(gτ ,h(yd)− ḡ)]

}−1
, (6)
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where
{
yd
}D
d=1

are draws from fτ ,h(Y ). We set D = 10, 000.

For the BVAR model, we follow Robertson, Tallman and Whiteman (2005) and set the

probability fτ ,h(yd) = 1/D for each draw obtained via simulation. For the WBS combination,

the predictive density is a combination of densities that have been estimated by applying a

nonparametric density estimator to the component density draws. Using this nonparametric

density, D random draws, yd, are then obtained. We apply the Matlab function randsample()

using as input the nonparametric probabilities computed for each value in a grid of 1, 000 points.

The probabilities for each draw, i.e. fτ ,h(yd), are computed by approximating the density

with a mixture of two-normals such that the probabilities are computed using a closed-form

solution. We use the Matlab procedure fitgmdist that employs the EM algorithm to estimate

the parameters of the mixture of normals using the draws yd for d = 1, ..., D.

C.4 Computation of CRPS

The CRPS evaluates the ‘whole’density, while the threshold-weighted CRPS focuses on accuracy

in the tails.

As explained in the main paper, the CRPS is given as:

CRPSt,h =

+∞∫
−∞

[Ft,h(y)− I(yt+h ≤ y)]2 dy (7)

where Ft,h(.) is the CDF associated with the density forecast ft,h(.) and I(yt+h ≤ y) denotes

an indicator function equal to unity if yt+h ≤ y, 0 otherwise. As do not know the parametric

form of the predictive densities from the statistical models, we compute the CRPS using the

empirical CDF via equation (9) in Krüger, Lerch, Thorarinsdottir and Gneiting (2020).

The threshold-weighted CRPS is:

twCRPSt,h =

+∞∫
−∞

w(y) [Ft,h(y)− I(yt+h ≤ y)]2 dy (8)

where w(y) are positive weights. twCRPSt,h is a proper scoring function; cf. Lerch, Thorarins-

dottir, Ravazzolo and Gneiting (2017). When w(y) ≡ 1 for all y, twCRPSt,h reduces to the

unweighted CRPS, (7). Otherwise, w(y) can be tailored to focus on specific regions of the den-

sity. We specify w(y) to focus on the tails. If we define a Gaussian CDF for y as Φ(y,mean, var)

and let the two thresholds, r1 and r2, define regions in the left and right tails, then w(y) is set
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as:

w(y) = (1− Φ(y, r1, var)) + Φ(y, r2, var). (9)

Computationally, we compute twCRPSt,h via draws yd from the predictive density. We first

sort the draws in increasing order, then we calculate:

twCRPSt,h =
2

D2

D∑
d=1

[(yd − yt+h)(DI (yt+h < yd)− d+ 0.5)]w(yd),

where w(yd) applies the weight function described in the main paper for each draw, I () is an

indicator function andD is the total number of draws. The formula above is a small modification

of equation (9) in Krüger et al. (2020).

D Examples of Tilted Densities using “Tilting Approach 1”

While the literature provides numerous examples illustrating the effects of exponentially tilting

towards a judgment-augmented point forecast (e.g. see Altavilla, Giacomini and Ragusa (2016)),

there are fewer studies that focus on tilting towards judgment-augmented uncertainty and skew

forecasts. In this appendix, we accordingly illustrate how Tilting Approach 1 (as described in

the main paper) affects the shape of the forecast densities. We do so by tilting the output growth

and inflation forecasts from the WBS combination at h = 1, 8 towards the MPC’s judgments

on uncertainty and skew (second and third moments).

We choose a specific forecast origin — 2009Q2 — at the height of the Great Recession to

illustrate the effects of tilting on the shape of the densities. From Figure 1 (in the main paper),

we see that at this forecast origin the MPC’s predicted standard deviation forecast for output

growth is substantially higher than implied by the WBS combination at both h = 1, 8. This is

because, in the face of the emerging recession, the MPC rapidly increased its explicit standard

deviation forecasts during 2009. As Figure 2 (in the main paper) shows, this is accompanied

by the MPC forecasting negative skew, especially at h = 8: the MPC’s skew forecast is −0.53.

But the WBS combination also predicts this, similarly forecasting negative skew of −0.60. For

inflation, the MPC forecast more uncertainty than the WBS combination at h = 1 although at

h = 8 their forecasts are more similar. The skew forecasts for two-years-ahead inflation from

the WBS combination are small and negative, but small and positive for the MPC. For the

one-quarter-ahead forecasts, both skew forecasts are positive, but the MPC’s predicted skew
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(0.45) is larger than the WBS combination (0.09).

Figure A7 compares the original (WBS combination) forecast, f2009Q2,h(Y ), with the tilted

densities, f̃2009Q2,h(Y ). We illustrate the effects of tilting both towards the MPC’s uncertainty

and skew forecasts. Each figure includes a bar to represent the subsequent realization, yt+h.

For the one-quarter-ahead forecasts, the left-hand-side panels of Figure A7 show that tilting

the fairly bell-shaped WBS combination densities towards the higher MPC’s predicted variance

increases the tail probabilities in both of the tilted densities. The tilted densities exhibit local

peaks (multi-modalities) in both tails. We note that if one did not constrain the other moments

of the tilted density to remain the same as the WBS density, tilting towards the higher variance

delivers a fairly similar shaped density but with changes to the density skewness and kurtosis;

see Figures A8 and A9 in the online appendix.

Turning to the two-year-ahead forecasts, for inflation (bottom right panel of Figure A7) we

see that the tilted density is similar to the original density. This is to be expected when the

moments of the original density are fairly close to the variance and skew forecasts from the MPC.

But for output growth (top right panel of Figure A7), we see changes relative to the original

density when tilting towards the MPC’s variance forecast (but not its skew forecast, as this is

similar to the original skew forecast). Targeting the higher uncertainty forecast by the MPC, we

see that the tilted density exhibits more probability mass in the tails, especially the right-tail

where a peak is observed. Again we note that if one did not constrain the other moments of

the tilted density to remain the same as the WBS density, tilting towards the higher variance

delivers a similarly shaped density but with changes to the density skewness and kurtosis; see

Figure A10.
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Table A1: Evaluating the effect of judgment on the AR densities: “Tilting Approach 1” 
 

Forecast  
Horizon 

Statistical 
Model 

Judgment: moments from professional forecasters 

  Mean Variance   Skew 
 AR(2) MPC NIESR CE SEF MPC SEF  MPC SEF 

 
Panel A: Forecasting UK Output Growth (Forecast Origin: 2001Q1-2016Q1) 
 CRPS Ratios between the CRPS of tilted and original density 

1 0.29 0.99 0.96 0.86  1.63   0.994  
4 0.97 0.85 0.86 0.79 0.86 0.97 1.00  0.996 1.014 
8 1.07 1.06 0.99  0.93 0.96 0.99  1.000 1.031 
 tw-CRPS Ratios between the tw-CRPS of tilted and original density 
1 0.07 0.74 1.03 0.90  2.57   1.024  
4 0.19 1.39 1.20 1.22 1.03 0.54 0.51  0.985 1.051 
8 0.17 1.23 1.07  0.93 0.40 0.15  1.000 1.103 

 
Panel B: Forecasting UK CPI Inflation (Forecast Origin: 2004Q1-2016Q1) 

 CRPS Ratios between the CRPS of tilted and original density 
1 0.19 0.61 1.15 0.65  1.04   1.040  
4 0.69 0.94 1.06 0.88 1.03 1.02 1.10  1.017 1.019 
8 0.75 1.18 1.09  1.07 0.94 1.09  1.012 1.013 
 tw-CRPS Ratios between the tw-CRPS of tilted and original density 
1 0.06 0.51 1.19 0.50  1.06   1.015  
4 0.20 1.06 1.07 0.65 0.67 0.83 0.86  1.028 1.064 
8 0.22 1.67 1.28  1.14 0.53 0.26  1.017 1.032 

 
Panel C: Forecasting Output Growth and Inflation (across forecast horizons and loss functions)   

Prop. Improved 
Prop. Sign Improved 
Prop. Sign. Worsened 

63% 38% 68% 50% 61% 63%  34% 0% 
11% 9% 18% 0% 34% 38%  3% 0% 
8% 0% 0% 0% 6% 13%  6% 50% 

 
Notes:  Tilting Approach 1 imposes one judgment-based predictive moment at a time, keeping the 
three other moments (up to the 4th moment) at the statistical model values. Values in bold: 
statistically significant improvement in forecast accuracy due to judgment. Underlined: statistically 
significant worsening due to judgment. These are based on a two-sided 10% level test of the null of 
equal forecast accuracy with small sample correction, see eq. (14). The tw-CRPS thresholds are 𝑟! =
0 and 𝑟" = 4%, and these are for year-on-year growth rates. Results for SEF for forecast origins 
from 2006Q2 onwards only. Panel C: Prop. Improved denotes the percentage of occasions (across 
variables (output growth and inflation, forecast horizons (h=1 to 8) and scores (CRPS and tw-
CRPS)) that judgment improves the accuracy of the statistical model’s density forecast. Prop. Sign. 
Improved denotes the percentage of occasions that this improvement is statistically significant at 
the 90% significance level (using individual t-tests).  Proportion Sign. Worsened denotes the 
percentage of occasions that judgment leads to a statistically significant worsening of forecast 
performance.  
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Table A2: Evaluating the effect of judgment on the BVAR densities: “Tilting Approach 1” 
 

Forecast  
Horizon 

Statistical 
Model 

Judgment: moments from professional forecasters 

  Mean Variance   Skew 
 BVAR MPC NIESR CE SEF MPC SEF  MPC SEF 

 
Panel A: Forecasting UK Output Growth (Forecast Origin: 2001Q1-2016Q1) 
 CRPS Ratios between the CRPS of tilted and original density 

1 0.31 0.93 0.90 0.81  1.60   1.001  
4 1.02 0.79 0.80 0.73 0.82 0.99 1.00  1.003 1.118 
8 1.13 1.00 0.93  0.88 0.97 1.00  1.013 1.184 
 tw-CRPS Ratios between the tw-CRPS of tilted and original density 
1 0.07 0.65 0.90 0.80  2.21   0.998  
4 0.17 1.37 1.15 1.21 1.05 0.63 0.51  0.995 1.060 
8 0.16 0.99 0.83  0.79 0.63 0.27  1.033 1.042 

 
Panel B: Forecasting UK CPI Inflation (Forecast Origin: 2004Q1-2016Q1) 

 CRPS Ratios between the CRPS of tilted and original density 
1 0.20 0.63 1.13 0.67  1.04   1.002  
4 0.71 0.85 1.00 0.86 0.98 1.00 1.09  1.004 1.000 
8 0.79 1.04 1.00  0.98 0.96 1.11  1.002 1.004 
 tw-CRPS Ratios between the tw-CRPS of tilted and original density 
1 0.05 0.57 1.18 0.43  1.07   1.002  
4 0.22 0.79 0.91 0.69 0.59 0.85 0.86  1.007 1.014 
8 0.24 1.17 1.06  0.92 0.57 0.31  1.007 1.016 

 
Panel C: Forecasting Output Growth and Inflation (across forecast horizons and loss functions)   

Prop. Improved 
Prop. Sign Improved 
Prop. Sign. Worsened 

66% 63% 78% 88% 69% 50%  14% 0% 
13% 13% 34% 25% 38% 38%  0% 0% 
0% 0% 0% 0% 3% 13%  22% 38% 

 
Notes: See Notes to Table A1. 
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Table A3: Evaluating the effect of judgment on the WBS combination densities using the 
logarithmic score: “Tilting Approach 1” 
 

Forecast  
Horizon  

Statistical 
Model 

Judgment: moments from professional forecasters 

  Mean Variance  Skew 
 Comb. MPC NIESR CE SEF MPC SEF  MPC SEF 

 
Panel A: Forecasting UK Output Growth (Forecast Origin: 2001Q1-2016Q1) 
 Log Score Differences between the Log Score of tilted and original density 

1 -0.75 0.03 0.05 0.23  -2.27   -0.01  
4 -3.06 0.10 0.13 0.36 0.03 0.01 -0.37  0.00 -14.0 
8 -3.36 -0.15 0.04  0.18 -0.08 0.07  -0.23 -17.7 

 
Panel B: Forecasting UK CPI Inflation (Forecast Origin: 2004Q1-2016Q1) 

 Log Score Differences between the Log Score of tilted and original density 
1 -0.13 -0.31 -2.04 -0.35  -3.14   -0.03  
4 -1.89 -0.18 -0.53 0.33 -2.39 -0.37 -1.32  0.00 -0.05 
8 -1.99 -0.22 -0.46  0.18 0.02 -1.73  0.01 -0.03 

 
Panel C: Forecasting Output Growth and Inflation (across forecast horizons and loss functions)   

Prop. Improved 
Prop. Sign. Improved 
Prop. Sign. Worsened 

50% 50% 86% 75% 44% 25%  44% 0% 
6% 13% 19% 25% 0% 0%  6% 0% 
0% 13% 0% 25% 25% 25%  0% 25% 

 
Notes: See notes to Table A1. The log score statistics are computed having first fitted a kernel to the predictive 
draws. For the longer horizon forecasts of output growth, during the 2008/2009 recession realizations fell in a 
region of the forecast density with probabilities near zero, leading to log score values near minus infinity. To 
minimize the effects of these outliers, in this table we adopt the ad hoc strategy of setting all log scores less 
than -25 to -25. For the differences in the log score, positive values indicate improvements due to judgment. 
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Table A4: Evaluating the effect of judgment on the WBS combination densities: “Tilting 
Approach 1” but not constraining the kurtosis (4th moment) 
 

Forecast  
Horizon 

Statistical 
Model 

Judgment: moments from professional forecasters 

  Mean Variance  Skew 
 Comb. MPC NIESR CE SEF MPC SEF  MPC SEF 

 
Panel A: Forecasting UK Output Growth (Forecast Origin: 2001Q1-2016Q1) 
 CRPS Ratios between the CRPS of tilted and original density 

1 0.28 1.03 0.99 0.88  1.26   0.997  
4 0.93 0.85 0.87 0.79 0.88 1.00 1.00  1.001 1.009 
8 1.09 1.03 0.95  0.88 0.99 1.01  1.000 1.011 
 tw-CRPS Ratios between the tw-CRPS of tilted and original density 
1 0.07 0.67 0.99 0.85  1.49   1.000  
4 0.16 1.28 0.97 1.11 0.77 0.88 0.82  0.999 1.026 
8 0.09 1.41 1.04  0.78 0.91 0.30  1.068 1.054 

 
Panel B: Forecasting UK CPI Inflation (Forecast Origin: 2004Q1-2016Q1) 

 CRPS Ratios between the CRPS of tilted and original density 
1 0.14 0.84 1.44 0.83  1.27   1.002  
4 0.68 0.88 1.08 0.87 1.12 0.99 1.04  1.003 1.003 
8 0.86 0.98 0.94  0.91 0.97 1.09  1.005 1.008 
 tw-CRPS Ratios between the tw-CRPS of tilted and original density 

1 0.04 0.80 1.06 0.46  1.28   0.996  
4 0.17 0.76 1.08 0.50 0.53 1.06 0.93  0.995 1.008 
8 0.20 0.97 0.82  0.61 1.06 0.68  0.961 0.946 

 
Panel C: Forecasting Output Growth and Inflation (across forecast horizons and loss functions)   

Prop. Improved 
Prop. Sign. Improved 
Prop. Sign. Worsened 

66% 72% 86% 88% 38% 50%  44% 13% 
3% 9% 13% 13% 3% 38%  3% 0% 
9% 3% 0% 0% 19% 25%  0% 13% 

 
Notes: See notes to Table A1.  
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Table A5: Evaluating the effect of judgment on the BVAR densities: “Tilting Approach 2”  
 
Forecast 
Horizon 

Statistical 
Model 

Judgment: moments from professional forecasters 

  Mean Variance Skew Mean + Var Mean + Var 
+ Skew 

 BVAR MPC SEF MPC SEF MPC SEF MPC SEF MPC SEF 
 

Panel A: Forecasting UK Output Growth (Forecast Origin: 2001Q1-2016Q1) 
 

 CRPS Ratios between the CRPS of tilted and original density  
1 0.31 0.90  1.15  1.00  1.09  1.21  
4 1.02 0.76 0.82 1.00 1.00 0.99 0.99 0.75 0.80 0.76 0.80 
8 1.13 1.01 0.88 0.98 0.99 0.99 0.96 1.00 0.87 1.01 0.87 
 tw-CRPS Ratios between the tw-CRPS of tilted and original density  
1 0.07 0.61  1.19  0.99  0.96  1.23  
4 0.17 1.48 1.06 0.70 0.50 1.00 0.92 1.25 0.69 1.26 0.69 
8 0.16 1.08 0.79 0.66 0.27 0.96 0.91 0.74 0.15 0.77 0.16 

 
Panel B: Forecasting UK CPI Inflation (Forecast Origin: 2004Q1-2016Q1) 

 

 CRPS Ratios between the CRPS of tilted and original density  
1 0.20 0.57  1.08  1.00  0.71  0.73  
4 0.71 0.82 0.98 1.03 1.09 0.99 0.99 0.85 1.07 0.85 1.07 
8 0.79 1.03 0.97 1.02 1.01 0.99 0.99 1.08 1.08 1.09 1.08 
 tw-CRPS Ratios between the tw-CRPS of tilted and original density  
1 0.05 0.46  1.10  1.01  0.66  0.65  
4 0.22 0.70 0.58 0.92 0.85 0.99 0.98 0.57 0.22 0.57 0.22 
8 0.24 1.15 0.91 0.66 0.91 0.99 0.99 0.85 0.21 0.86 0.20 

 
Panel C: Forecasting Output Growth and Inflation (across forecast horizons and loss functions)   
Prop. Improved 

Prop. Sign. Improved 
Prop. Sign. Worsened 

59% 88% 44% 63% 66% 100% 78% 75% 75% 75% 
16% 25% 28% 25% 31% 63% 9% 50% 9% 16% 
0% 0% 6% 13% 3% 0% 0% 0% 3% 0% 

 
Notes: In contrast to Tilting Approach 1, Tilting Approach 2 does not constrain other moments at their values 
from the statistical model (here the BVAR).  Also see notes to Table A1.  
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Table A6: Data Description and Data Transformation for WBS Combination 
 
  Transformation 
Name  Description BVAR MIDAS 
Target Variables 
Output Growth GDP expenditure-based method, chained-volume 

measure, seasonally-adjusted, available on monthly 
vintages (ONS real-time database). 

log Log-dif 

Inflation CPI Index, All-items, seasonally adjusted, Datastream: 
UKCONPRCF 

log Log-dif 

BVAR with Macro Variables  
Consumption Final Household Consumption, chained-volume measure, 

seasonally adjusted. ONS real-time database.  
log  

Investment Gross Fixed Capital Formation, chained-volume measure, 
seasonally adjusted. ONS real-time database 

log  

Real Wages Unit Labour Cost Index – whole economy, seasonally 
adjusted. UKLCOST.E. Real values computed using the 
CPI index.  

log  

Hours  Actual hours worked per week, seasonally adjusted. 
UKYBUS..O 

log  

Bank rate End-of-period Bank of England Base Rate.  UKPRATE. level  
Medium-sized Models  
Industrial Prod.  Index of Production – total manufacturing excluding 

construction, constant prices, seasonally adjusted. 
UKIPTOT.G 

log Log-dif 

Business Confidence CBI Monthly Enquiry, Industrial Trends, Volume of 
Expected Output – Balance - UKCBIOPB 

level Level-dif 

Employment Overall employment, all aged 16 and over, seasonally-
adjusted, LFS, UKMGRZ..O 

log Log-dif 

Unemployment Unemployment rate, all aged 16 an over, LFS, 
UKUN%O16Q 

level level 

Consumer Confidence GFK Consumer Confidence Index, UKGFKCCNR level Level-dif 
House Prices LSL/Acadametrics Average House Price in pounds, 

seasonally-adjusted, UKFTHPI.B 
log Log-dif 

Stock Prices FTSE, all-share index, end of period, UKSHRPRCF log Log-dif 
Exchange Rates Real Effective Exchange Rates – CPI based, UKOCC011 log Log-dif 
House Prices _2 Home Sales, output price index. UKPROPRCF log log-dif 
Short rate 3-month Treasury bills (OECD; UKOIR077R) level level 
Yield Spread 10-year bond yields (OECD; UKOIR080R) – short rate level level 
Retail Prices Retail Price index, all items excluding mortgage interest, 

not seasonally-adjusted. UKRPAXMIF 
log Log-dif 

Oil Prices Crude Oil prices index (IMF), not seasonally-adjusted. 
WDI76AADF 

log Log-dig 
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Figure A1: Alternative Methods to Estimate the Mean and the Variance of the Bank of 
England Survey of External Forecasters histograms for one-year-ahead Inflation Forecasts. 
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Figure A2: Alternative Methods to Estimate the Mean and the Variance of the Bank of 
England Survey of External Forecasters histograms for two-year-ahead Inflation Forecasts. 
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Figure A3: Alternative Methods to Estimate the Mean and the Variance of the Bank of 
England Survey of External Forecasters histograms for one-year-ahead Output Growth 
Forecasts 
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Figure A4: Alternative Methods to Estimate the Mean and the Variance of the Bank of 
England Survey of External Forecasters histograms for two-year-ahead Output Growth 
Forecasts 
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Figure A5: Predicted uncertainty (standard deviation) for MPC: ex post (or implicit, “imp”) 
vs ex post (or explicit “exp”) variance forecasts for output growth 
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Figure A6: AR, BVAR and WBS combination forecasted skew for the two-year-ahead 
forecasts  
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Figure A7: Illustrating the effects of tilting the WBS combination density forecasts towards 
the MPC’s variance and skew forecasts made in 2009Q2 using “Tilting Approach 1” 
 
 

 
Notes: Each panel plots the original (WBS combination) and two tilted density forecasts, the first tilting 
towards the MPC’s variance forecast and the second tilting towards the MPC’s skew forecast. The densities are 
estimated by fitting a kernel (normal with a fixed bandwidth) to the draws from the original and tilted 
densities. The solid vertical line is the realization of the variable.  
Top left panel: the first four moments of the WBS combination forecast are -5.03, 0.31, 0.05 and 2.97. The 
MPC’s variance forecast is 0.69 and their skew forecast is -0.13.  
Top right panel: the first four moments of the WBS combination forecast are 2.23, 2.86, -0.61 and 3.4. The 
MPC’s variance forecast is 5.4 and their skew forecast is -0.54.  
Bottom left panel: the first four moments of the WBS combination forecast are 1.89, 0.10, 0.09 and 3.00. The 
MPC’s variance forecast is 0.26 and their skew forecast is 0.45.  
Bottom right panel: the first four moments of the WBS combination forecast are 0.73, 1.47, -0.10 and 2.58. The 
MPC’s variance forecast is 1.33 and their skew forecast is 0.07. 
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Figure A8: Illustrating the effects of tilting the WBS combination density forecasts towards 
the MPC’s variance forecasts made in 2009Q2 using “Tilting Approach 1”: one-quarter-
ahead output growth  
 

 
 
Notes: Histograms for original and tilted samples (D=100,000).  
Top panel: WBS combination forecast.  
Middle panel: is the tilted density, tilting towards the MPC variance forecast of 0.69 keeping the other first 
three moments unchanged. The first four standardized moments of the original forecast are -5.03, 0.31, 0.05 
and 2.97.  
Bottom panel:  is the tilted density, tilting towards the MPC variance forecast of 0.69 but not constraining the 
other first three moments to remain unchanged. The first four standardized moments of the tilted forecast are -
5.03, 0.69, -0.22 and 2.58. 
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Figure A9: Illustrating the effects of tilting the WBS combination density forecasts towards 
the MPC’s variance forecasts made in 2009Q2 using “Tilting Approach 1”:  one-quarter-
ahead Inflation 
 

 
Notes: Histograms for original and tilted samples (D=100,000).  
Top panel: WBS combination forecast.  
Middle panel: is the tilted density, tilting towards the MPC variance forecast of 0.26 keeping the other first 
three moments unchanged. The first four standardized moments of the original forecast are 1.89, 0.10, 0.09 and 
3.00.  
Bottom panel: is the tilted density, tilting towards the MPC variance forecast of 0.26 but not constraining the 
other first three moments to remain unchanged. The first four standardized moments of the tilted forecast are 
1.95, 0.26, 0.37 and 2.69. 
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Figure A10: Illustrating the effects of tilting the WBS combination density forecasts towards 
the MPC’s variance forecasts made in 2009Q2 using “Tilting Method 1”:  two-year-ahead 
output growth  
 

 
 
Notes: Histograms for original and tilted samples (D=100,000).  
Top panel: WBS combination forecast.  
Middle panel:  is the tilted density, tilting towards the MPC variance forecast of 5.4 keeping the other first 
three moments unchanged. The first four standardized moments of the original forecast are 2.23, 2.86, -0.61 
and 3.40.  
Bottom panel: is the tilted density, tilting towards the MPC variance forecast of 5.4 but not constraining the 
other first three moments to remain unchanged. The first four standardized moments of the tilted forecast are 
1.81, 5.35, -0.91 and 3.15. 
 
 
 
 


