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1 Introduction

Following more than twenty years of practice at the Bank of England, density or fan chart forecasts are

now widely published and used in many contexts as a means of communicating forecast uncertainties. Like

the Bank of England, many forecasters and central banks’ assessments of these future uncertainties are

informed, at least in part, by monitoring past forecast errors.1 As Reifschneider & Tulip (2019) review,

this is the general approach to gauging unconditional forecast uncertainty at the US Federal Reserve, the

European Central Bank, the Reserve Bank of Australia, the Bank of Canada and the Swedish Riksbank.

The Bank of England’s Monetary Policy Committee (MPC) represents its forecast densities as fan

charts, with shades of red (for inflation) and green (for GDP) representing regions with specified prob-

abilities of outturns. Most analysis of these fan charts has drawn on the Bank’s specification of the

underlying probability distribution, defined by a two-piece normal distribution, and devised performance

tests for these density forecasts making the assumption that the density function is described fully. The

two-piece normal creates a skewed density by combining the two halves of two normal densities; and

confers computational advantages over other skewed distributions as it can be analysed using analytical

formula. While this density has been known under different names, and, as explained by Wallis (2014),

has been rediscovered several times, it has a long history dating back to Fechner (1897).2

In this paper we explore two issues. Throughout our focus is on the Bank of England’s density forecasts,

but we note the international relevance of our analysis given similarities with practice at other central

banks and institutions that produce density forecasts.

First, given increased attention (internationally) to forecast errors in the aftermath of the global

financial crisis (e.g. see Alessi, Ghysels, Onorante, Peach & Potter (2014)), we examine whether it might

be sensible for the Bank to depart from the assumption of two-piece normality. As Haldane (2012) has

noted, theory and recent evidence suggest that macroeconomic data exhibit fat tails as well as skewness;

and Adrian, Boyarchenko & Giannone (2019) emphasise non-Gaussian features when measuring the

“vulnerability” of GDP growth to downside risks. Accordingly, we consider how more general density

functions, that nest the two-piece normal, but allow for fat tails might be used to produce density

forecasts.

Secondly, we draw attention to the fact that the Bank does not in fact specify the density function in

full, but describes only the ninety per cent “best critical region” (BCR) which characterises the interval

of shortest length with a target (nominal) coverage rate of 90%. In effect, the Bank publishes, what we

call, “censored” density forecasts that do not take any view on the distribution of the outer tails beyond

1Central banks also use model-based approaches and their subjective judgement to gauge future economic uncertainties.
But as emphasised by Ericsson (2002) and Knüppel (2014, 2018), quoting Wallis (1989), pp.55-56: “the model-based
approach is of little help to the practitioner. It neglects the contribution of the forecaster’s subjective adjustments”.

2As Appendix A.1 explains, two-piece densities should be distinguished from the conceptually similar, but mathematically
distinct, skew-normal classes of densities developed by Azzalini (1985). Outside of macroeconomics and central banking
applications, the use of non-normal, skewed distributions is also growing in finance; e.g. see de Roon & Karehnke (2017).
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saying that it does not overlap with the inner ninety per cent of the distribution. This appears to reflect,

at some level, a Knightian distinction between known and unknown probability distributions (between

risk and uncertainty). We examine the consequences of censoring both for estimation of the parameters

of the density function of past forecast errors and for ex post assessment of forecast performance.

More generally, we propose and explore the properties of a new estimator that fits a potentially skewed

and fat tailed density to the inner 100(1− α)% observations acknowledging that the outtermost 100α%

observations may be drawn from a different distribution. As the censor points are defined by the bounds

of the 100(1−α)% BCR - and therefore not determined exogenously - a fixed point estimator is proposed.

The MPC fix 100α=10% and thereby do not quantify forecast uncertainties in the tails, beyond saying

that there is, in sum, a 100α=10% chance of observing these more ‘extreme’ events. We emphasise that

under asymmetry this need not imply that 100α/2 = 5% of the probability mass falls in each tail: the

BCR need not amount to the region between the 5% and 95% quantiles. While there is no reason to

set α = 10% in other applications, the proposed estimator has relevance when interest resides with the

central region of a density - free from or robust to outliers. In forecasting applications, motivation for this

may reflect the view that outlying forecast errors reflect (realised) unknown unknowns and/or events not

expected to recur, so they should be censored before quantifying expected known unknowns (risk). An

ad hoc but commonly used alternative is to censor all (‘old’) observations that fall outside some historical

window of the data.

The next section of the paper provides an account of density forecasting by the Bank of England’s

MPC. Section 3 describes the forecast data from the Bank of England that we use in our application.

Section 4 sets out the parametric family of skewed distributions that we consider, and fits these to

the MPC forecast errors. Section 5 describes the implications for estimation when the density function

is not fully described. A new fixed-point estimator is proposed that fits the density acknowledging

endogenous censoring of the outlying 100α% observations. Section 6 then explores the properties of

this estimator via three sets of Monte Carlo experiment. Section 7 fits censored densities to the MPC’s

forecast errors, finding that especially for GDP there is much less evidence for skew when the outlying

10% of forecast errors are censored. Section 8 considers the consequences of censoring for evaluating (out-

of-sample) forecast performance: it first sets out tests for the evaluation of censored density forecasts

and then uses these to assess the absolute and relative forecast performance of the MPC’s time-stamped

fan charts. Despite many previous evaluations, this is the first time the MPC’s forecast performance

has been evaluated explicitly acknowledging the censoring. Section 9 concludes. An online Appendix

contains supplementary details, results and robustness checks.
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2 Density Forecasting by the Monetary Policy Committee

In 1993, following Britain’s departure from the Exchange Rate Mechanism in September 1992 and the

adoption of an inflation target, the Bank of England began to publish its Inflation Report. This included

a forecast for inflation over the next two years. Initially uncertainty surrounding the forecast was rep-

resented graphically by a “trumpet” round the inflation projection, the width of which also represented

the mean absolute forecast error, with the errors calculated not only from the Inflation Report forecasts

but from earlier unpublished forecasts. In February 1996 the Inflation Report showed for the first time

the now familiar fan chart. This presented deciles of subjective estimates of the probability distribution

of the Bank’s forecast.

The MPC was set up in June 1997 and it, rather than the Bank, has been responsible for the forecast

of GDP and inflation since then. The MPC continued to present its forecasts in the format adopted

by the Bank in 1996. In these fan charts the deciles of the density function represent nested “best”

critical regions (BCRs). That is, they represent the shortest range of possible outcomes which have the

required probability.3 The outermost decile cannot, of course, be represented in this way unless the MPC

takes the view that the maximum forecast errors are bounded. The decile bands fit naturally round a

central forecast which is defined as the mode of the distribution; and the MPC’s discussions appropriately

focus on the most likely outcome and describe their forecast as representing the mode. Except when the

forecast distribution is unimodal and symmetric, the BCR does not correspond to the central interval.

In a decision theory framework, Wallis (1999) and Askanazi et al. (2018) show that the shortest interval

is the best prediction interval when the loss function takes an all-or-nothing form. This is such that the

loss (or cost) of an outturn falling outside the BCR in question is the same irrespective of how far away

from the BCR the outturn falls.

The MPC came to think that presenting the deciles of the density function gave a misleading indication

of precision and, following a suggestion of Ken Wallis, reinforced by Stockton (2013), modified the charts

in May 2013, to show only three BCRs, associated with thirty per cent, sixty per cent and ninety per

cent of the probability mass. Charts in the original format, showing BCR deciles continue, however, to be

made available on the Bank’s website. In August 2013 the MPC added an additional fan chart showing

its forecast for unemployment constructed on the same principles. Figure 1 shows the density forecast

for GDP growth produced by the MPC in May 2019 with three best critical regions distinguished.

3See Britton, Fisher & Whitley (1998), Wallis (1999) and Askanazi, Diebold, Schorfheide & Shin (2018). To a Bayesian,
the 100(1− α)% best critical region/interval for y might be re-interpreted as the highest posterior density (HPD) interval:

Rα = {y : f(y) ≥ πα}, where

πα is the largest value for which P (y ∈ Rα) ≥ 1− α

A HPD interval has two main properties: (1) the density for every point inside the interval is greater than that for every
point outside the interval and (2) for a given probability the interval is of shortest length; e.g. see Chan & Shao (1999) for
methods to estimate HPD intervals.
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Figure 1: The MPC’s fan chart for GDP Growth (Inflation Report, May 2019)

Notes: The Monetary Policy Committee’s fan chart for GDP growth (from the May 2019 Inflation Report). In
their notes to this chart the Committee writes: “The fan chart depicts the probability of various outcomes for
GDP growth. . . To the left of the vertical dashed line, the distribution reflects the likelihood of revisions to
the data over the past; to the right, it reflects uncertainty over the evolution of GDP growth in the future. . . If
economic circumstances identical to today’s were to prevail on 100 occasions, the MPC’s best collective judgment
is that . . . the mature estimate of GDP growth would lie within the darkest central band on only . . . 30 of those
occasions . . . . The fan chart is constructed so that outturns are also expected to lie within each pair of the lighter
coloured areas on. . . 30. . . occasions. In any particular quarter of the forecast period, GDP growth, CPI inflation
or the unemployment rate are therefore expected to lie somewhere within the fan on 90 out of 100 occasions. And
on the remaining 10 out of 100 occasions they can fall anywhere outside the coloured area of the fan chart.”

The fan charts have, since the MPC became responsible for them, always been described as represent-

ing the best collective judgment of the committee and as such the underlying probability distributions

could take any form that the MPC judged to be appropriate.4 In fact, however, the probability distri-

butions have been almost invariably drawn using a two-piece normal distribution (Fechner 1897). Since

the location parameter of this distribution is the mode, that in turn makes the MPC’s focus on the mode

coherent with the way in which it sees the forecast distribution.

The MPC has always claimed that its judgment of uncertainty is subjective. Given this there is, of

course, no particular reason why it need use the two-piece normal distribution to represent that judgment.

On the other hand, for any committee to complete its deliberations in a reasonable time, it is helpful

to restrict the number of variables up for discussion. The limitations implied by the two-piece normal

distribution have invariably proven to be helpful in this respect and allowed the MPC to devote much less

time to discussing the density function than it does to the modal forecast. More generally, the MPC has

stated that the parameters of the distribution of past forecast errors are helpful as a means of informing

its choices. But if the MPC wishes its choices to be informed by past forecast errors, how best should

we estimate the parameters of the distribution of past forecast errors? This is the issue addressed in this

4See http://www.bankofengland.co.uk/archive/Documents/historicpubs/qb/1998/qb980101.pdf

5



paper. As we discuss, the answer very much depends on the interpretation that the MPC puts on the

fan charts.

Britton et al. (1998)5 give no reason to doubt that the MPC, having adopted the two-piece normal

distribution, had in mind any other distribution for the outermost ten per cent not covered by the fan

chart. In May 2010, however, the Inflation Report stated, for the first time, that “on the remaining

10 out of 100 occasions GDP growth/inflation can fall anywhere outside the green/red area of the fan

chart”. That might be seen as no more than a statement of the obvious fact that the two-piece normal

distribution is unbounded, although a normal distribution would not usually be described in such terms.

In fact the MPC was not expressing any view on the density of points in the outlying ten per cent of

the distribution.6 This was made clear by the discussion of the Greek crisis in the first half of 2015.

In February the MPC could see the risk that the problems faced by Greece might develop into a major

financial crisis with obvious downside risks for growth in the UK. It took the view that the chance of

this happening was less than ten per cent and thus felt perfectly comfortable in producing a symmetric

fan chart. During the Spring, however, the crisis intensified and the MPC judged that the risk of a

disorderly outcome was now higher than ten per cent, with the implication that it needed to show a

degree of downside risk in the fan charts published in the May forecast. In the Inflation Report of May

2015 (p.48) the MPC observed, in its description of the fan chart for GDP growth, “that the risks around

the central projection are skewed slightly to the downside for much of the forecast period, reflecting

the possibility of a disorderly outcome to the current Greek negotiations, rather than balanced as in

February.” The downside risk was represented through the medium of the two-piece normal distribution.

This can be seen by looking at Figure 2.

The top panel of Figure 2 shows the lower and upper 10% censoring points, yL and yU , together with

the modal forecast µ and (subsequent) outturns for the MPC’s two-year ahead GDP growth forecasts.

Figure 3 presents estimates for their two-year ahead inflation forecasts. The Bank publishes the param-

eters of the two-piece normal, as shown graphically in the Inflation Report fan chart, each quarter on its

website; but it does not publish yU and yL and so they have to be backed out by calculating the BCRs of

the two-piece normal. For both GDP growth and inflation, Figures 2 and 3 show that the width of these

censoring bands, yU - yL, has increased over time, implying the MPC perceived “risk” to be increasing.

In particular, there is a marked and fairly rapid increase in the width of the bands in 2008 and 2009,

with the apparent end of the “Great Moderation” as the Global Financial Crisis and inflation (oil price)

shocks hit the UK economy. Note that the dates in the x-axes to Figures 2 and 3 indicate when the

forecasts were made.

5See also http://www.bankofengland.co.uk/publications/Documents/inflationreport/ir02mayfanbox.pdf
6There was also, between 2010 and 2016, some discussion on the MPC about whether, even within the central ninety

per cent of the distribution, it was expressing a precise view on the density or simply giving BCR decile ranges. But this
was not material to its published density forecast and no conclusion was reached.
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It is a matter of interpretation, formalised in the distinction between LCA and LCB in Section 5 below,

but if the MPC took (or is assumed to have taken) a view on whether the unknown tail uncertainties

(summing to 10%) were in the left or right hand tail, we can also compute the probabilities that Y > yU

and Y < yL. Recall for asymmetric densities, given yU and yL are defined as BCRs, these probabilities

need not equal 5%.7

The middle panel of Figures 2 and 3 shows a measure of skew. The MPC represents the skew as

the difference between the mean and the mode of the distribution, But it acknowledges that, in order to

calculate the mean, it is necessary to make some assumption about the distribution of the censored part

of the distribution; it assumes that this follows the same two-part normal distribution as the uncensored

part, despite having no reason to believe this to be the case. Similarly, traditional measures of skewness

rely on full knowledge of the relevant distribution. We therefore prefer to adapt instead the measure

proposed by Arnold & Groeneveld (1995). They suggest as a measure of skewness:

1− 2F (mode) (1)

where F is the cumulative density function. With this defined only over the 90% best critical region we

adapt their measure to provide a measure of skew in the presence of censoring:

Robust skew = 1− 2F ∗(mode)/0.9 (2)

where F ∗ is the probability mass lying between the lower censor point and the mode. Looking at Figure

2, we can see that it was rare for the MPC to see an upside skew for GDP growth. It was most concerned

about downside skew during the recession of 2008/9 and its aftermath. While, as noted above, a downside

skew was introduced during the Greek crisis of 2015, Figure 2 shows that this was in fact quite modest.

In the third panel of each figure we show the scale and (traditional) skew parameters of the two-part

(normal) distribution. While the MPC specifies the two scale parameters for the parts of the distribution

on each side of the mode, we prefer to adopt a single scale parameter σ which would be equal to the

standard deviation in the absence of skew, and a skew parameter γ. The scale parameter takes a value

of σγ to the left of the mode and σ/γ to the right of the mode. This notation follows that adopted by

authors such as Fernandez & Steel (1998), whose specification we use subsequently.

As noted in the introduction, we subsequently consider the use of more general skewed densities as

an alternative to the two-piece normal distribution; and we explore the issues created by trying to fit

only the central ninety per cent of a density function. But, before turning to that, we consider the MPC

forecast error data in more detail.

7Figures A8 and A9 in the online Appendix shows that these probabilities do indeed vary over time and often differ from
5%. The strongest departures from equal (5%) probabilities occur for GDP growth in the aftermath of the financial crisis.
In 2009, for example, the MPC gave close to a 7% probability that GDP, two years ahead, would fall below yL.
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Figure 2: Properties of the MPC’s GDP growth forecasts: 10% BCR censoring thresholds
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Note: µ=modal forecast; yL=lower censor point; yU=upper censor limit. Because of GDP data revisions, two estimates of

the GDP outturn are considered: Growth (2nd) = the ONS’s second GDP Growth Estimate; Growth (Dec 2018) = the

ONS’s estimate of GDP Growth using December 2018 vintage data; Skew (middle panel) = robust measure of skew as in

(2); σ=scale parameter; γ=skew parameter (based on MPC estimate); dates relate to when the forecast was made.

3 Forecast Error Data

As noted above, the MPC publishes density forecasts for economic growth, inflation and unemployment.

The unemployment forecast has been published only since August 2013, not giving enough data to come

to any informed view about forecast errors. We therefore focus our attention on the forecasts for inflation

and output. The MPC publishes its forecasts quarterly up to three years ahead; with rates of change

defined over one year. We focus our attention on forecasts at the two-year horizon because - not least for

an inflation targeting central bank - these are probably of greatest interest, although it would be perfectly

possible to apply our analysis to forecast errors at any other horizon.8 We focus on forecasting errors

relative to the modal forecast provided by the MPC.

The MPC’s first inflation forecast was published in August 1997. We use, however, only the forecasts

from February 1998 onwards, because the earlier forecasts were conditional on constant rather than

8An interesting extension would be to exploit cross-horizon dependencies between the forecast errors when estimating
the forecast error densities. Knüppel (2014, 2018) proposes a pooled (across forecast horizons) estimator of the sample
mean of the squared forecast errors.
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Figure 3: Properties of the MPC’s inflation forecasts: 10% BCR censoring thresholds
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Note: µ=modal forecast; yL=lower censor point; yU=upper censor limit; Skew (middle panel) = robust measure of skew

as in (2); σ=scale parameter; γ=skew parameter (based on MPC estimate); dates relate to when the forecast was made.

market interest rates. From February 1998 to November 2003 these are forecasts of the Retail Price Index

excluding mortgage payments (RPIX) inflation, the target variable (set at 2 1
2 per cent per annum) for

the MPC at the time. Thereafter, from February 2004, with the change in December 2003 to the targeted

measure of inflation to Consumer Price Index (with the target set at 2 per cent), these are forecasts

of CPI inflation. The (eight quarter ahead) forecasts are matched against the subsequent outturns for

annual RPIX inflation (ONS code: CHMK) from 1999q4-2005q3 and CPI inflation (ONS code: D7G7)

from 2005q4-2018q4 to make a time-series of 77 observations.9

When calculating forecast errors for annual GDP growth, given that GDP data are revised, we need

to take a view on what vintage of GDP data to use. Since the MPC set out to forecast the “mature”

values of GDP, as noted in footnotes to their fan charts, we use the latest available data vintage (from

the quarterly national accounts published in December 2018) to define the outturn. This then delivers a

series of GDP errors from 1999q4-2018q3, a time-series of 76 observations. However, in the out-of-sample

analysis below, we do consider GDP errors defined against the third data release (which the ONS call

9While the wedge between RPIX and CPI has tended to increase, there is nothing in the data to suggest that it is wrong
to treat the errors to the inflation forecasts as a single series.
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the Second Quarterly National Account estimate, given that for most of our sample period the first

estimate is called the “preliminary” estimate) and find that results are sensitive to the vintage of GDP

data chosen.10 In the analysis below, we define the forecast error as the outturn minus the forecast, so

that negative errors are outturns below forecast. When referring below (in the figures) to the date of

the forecast error, we continue to refer to the time of the forecast; given our focus on two-year ahead

forecasts, this means the outturn itself was observed two years after the date indicated. The use of the

second quarterly national account estimate as a benchmark does have the benefit that these results are

not affected by forecast “errors” arising from changes to the definition of GDP.

4 The Distribution of MPC Forecast Errors

4.1 A Parametric Framework

In order to explore the suitability of the two-piece normal distribution, and model skewness and kurtosis

in a flexible but practical way, we consider the general family of skew distributions defined in Arellano-

Valle, Gomez & Quintana (2005). Like the two-piece normal these involve joining two distributions, with

different scale (and perhaps shape) parameters. We defer the issue that the MPC has no views on the

outer ten per cent of the distribution until Section 5.

A leading specific density within this family, that we focus on, is the two-piece t distribution described

by Fernandez & Steel (1998). This depends on, in addition to the location, scale and skew parameters,

the number of degrees of freedom of the t- distribution. In Appendix A.1 (for robustness) we explore

more general and alternative skewed specifications. In general, we find that (in-sample) the two-piece t

fits our data competitively relative to these alternatives. We therefore confine our attention to it (and its

limiting case, the two part normal distribution) here. However, we first note that albeit at the expense

of introducing extra parameters which may complicate estimation, especially for our relatively small

sample, the ensuing discussion on the estimation of censored densities is general. It extends to skewed

specifications beyond the two part t and normal. Secondly, in the policy making environment of the MPC,

we suspect that in practice the introduction of not just a fourth (relative to the two-piece normal) but

a fifth extra parameter would impede discussions of the economic interpretation of the parameters of

the densities. Thirdly, from an estimation perspective, with a limited number of observations it is often

helpful to limit the number of parameters to be estimated.

The density function of the two-piece t distribution is given as follows:

f(yt) =
2

σ (γ + 1/γ)

Γ
(
ν+1
2

)
Γ
(
ν
2

)
(πν)

1/2

[
1 +

(yt − µ)2

γ2νσ2

]−(ν+1)/2

if yt < µ (3)

10The ONS changed its publication model and release calendars in the summer of 2018. We continue to use the quarterly
national account estimate, even though, with the preliminary estimate being discontinued, this is now the second rather
than third estimate.
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f(yt) =
2

σ (γ + 1/γ)

Γ
(
ν+1
2

)
Γ
(
ν
2

)
(πν)

1/2

[
1 +

γ2(yt − µ)2

νσ2

]−(ν+1)/2

if yt ≥ µ.

where γ is the scalar skew parameter, γ ∈ (0,∞), ν is the degrees of freedom of the standard Student t

distribution with location, µ, and scale, σ, and Γ(.) is the gamma function.

The mode of the distribution is µ but this is the same as the mean only if γ = 1. The probability

mass to the left of the mode is γ2/(γ2 + 1) while that to the right of the mode is 1/(γ2 + 1). So with

γ < 1 the distribution is skewed to the right and with γ > 1 it is skewed to the left. A large number

of degrees of freedom, ν, implies, of course, that the distribution is very close to normal; while a small

number of degrees of freedom indicates that extreme values are appreciably more common than would

be implied by a normal distribution with the same scale parameter.11

Given a scoring rule or loss function the parameters of this distribution can be estimated. Following

Gneiting & Raftery (2007), optimum score estimators or M-estimators involve maximising the value of

the (proper) scoring rule over the sample. We focus on the logarithmic scoring rule corresponding to

maximum likelihood (ML) estimation.12

The log-likelihood function of a sequence of observations yt, t = 1, ..., T , is, with I(y) an indicator

function, I(y) = 1 if y ≥ 0 and I(y) = 0 if y < 0, given as:

logL = T ln

(
2

σ (γ + 1/γ)

Γ
(
ν+1
2

)
Γ
(
ν
2

)
(πν)

1/2

)
+

T∑
t=1

I (yt − µ) ln

[
1 +

γ2(yt − µ)2

νσ2

]−(ν+1)/2

(4)

+

T∑
t=1

I (µ− yt) ln

[
1 +

(yt − µ)2

γ2νσ2

]−(ν+1)/2

.

For any given sample, the four parameters, µ, σ, γ and ν can be estimated by ML. Our sample

suffers from the drawback that the forecast errors relate to overlapping periods. Nevertheless, parameter

estimation by ML delivers consistent estimates of the four parameter values (White 1980).

4.2 Application to MPC Forecast Errors

We show in Figure 4 the histogram of the errors associated with the forecasts of inflation and, in Figure

5, the corresponding histogram for the forecast errors of GDP; recall that negative numbers indicate an

outturn below forecast. For GDP growth we focus on forecast errors defined against the latest outturns

- given the MPC’s stated target of forecasting “mature” values of GDP. But for completeness Appendix

A.2.1 contains an analogous figure using ONS “second” release GDP data to define the outturns.

Figures 4 and 5 are full-sample histograms and involve using all of the available forecast error data,

discussed in Section 3. There are always questions about the appropriate sample period, or window

11In this specification the scale parameter to the left of the mode is σγ while to the right of the mode it is σ/γ. In the

specification used by the MPC it is
(
σ2

1−φ

)1/2
to the left of the mode and

(
σ2

1+φ

)1/2
to the right of the mode. So it is easy

to express γ in terms of φ and vice versa.
12The logarithmic score is known to be more sensitive to outliers than alternatives such as the Cumulative Ranked

Probability Score (CRPS). Future work might consider estimators that minimise CRPS loss along the lines of Gebetsberger,
Messner, Mayr & Zeileis (2018).
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of data, over which to estimate forecasting models and evaluate forecast accuracy. In the presence of

parameter instability, due to structural breaks, there is a trade-off between bias and forecast error variance

when selecting the ‘optimal’ window of data to use to estimate the parameters of the model or density

function (e.g. see Pesaran & Timmermann (2007)).

Here, given our relatively small samples of forecast error data, we elect to use as much data as possible

when estimating the unconditional densities of the forecast errors. Importantly the point of departure

for our censored estimator, introduced below, is that it lets the whole sample (of length T ) determine

which specific observations within the sample to censor - for a specified coverage rate, set at 90 percent

by the MPC. This contrasts our understanding of practice at the Bank of England. Elder, Kapetanios,

Taylor & Yates (2005) state that the MPC use, as a starting point, a rolling ten-year window to inform

their judgement of uncertainty; with in more recent years (post financial crisis) shorter windows used, in

effect, to censor forecast error observations not believed to be representative of current uncertainties. As

well as ignoring all ‘old’ data (certainly more than 40 quarters old) irrespective of their properties, this

practice also ignores the censoring that is later imposed when the MPC publish the fan chart only for

the central 90% of observations.

For both inflation and GDP growth in Figures 4 and 5 we also show the estimated ML parameters

of the two-piece t and two-piece normal distributions fitted to the underlying forecast errors.13 The

darkest shaded region on each figure indicates the thirty per cent best critical region for the distribution.

The band round this extends the best critical region to sixty per cent, and the palest band takes it to

ninety per cent. Thus these bands correspond to what the MPC would display if it used the two-piece t

distribution to represent forecast uncertainty, and based its judgments (entirely) on past forecast errors.

We also show on the charts the density functions estimated by fitting two-piece normal distributions to

the same observations.

While the inflation forecast errors are skewed to the right, those for GDP are even more clearly

skewed but to the left. This skew is especially pronounced when the two-piece normal is fitted to the

GDP forecast errors. Figure 5 shows forecast errors of up to (minus) eight per cent for GDP growth;

these arose from a failure to forecast the recession of 2008/9. If one thinks that the underlying frequency

of recessions is less than one in seventeen years (the length of our sample of data, in years), then it is

possible that this figure overstates the true skew to the distribution of forecast errors. On the other hand,

there have been six major recessions in the UK since the end of the First World War,14 suggesting that

an average frequency of about once in seventeen years (6%) is reasonable, and in that sense our data do

not overstate the risk of forecasts being disrupted by recession.

13Estimation was performed in Matlab. Results were also cross-checked and verified with those from R using the sn and
twopiece packages.

14There was, in addition, a two-quarter recession at the time of the General Strike in 1926, and a fall in output from 1944
to 1946 as the war effort was wound down. But these episodes are not generally treated as business cycle recessions.
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Figure 4: Inflation: Forecast Error Histogram and Two-Piece Normal and t Densities

Note: RPIX forecasts (until Nov. 2003); CPI forecasts thereafter. 77 observations used. The p-values from tests for the
uniformity of the probability integral transforms (for the 77 forecast error observations, as seen in the histogram, evaluated
against the CDF of the fitted density), using an Anderson-Darling test are: 0.52 (2Pt), 0.02 (2PN), 0.17 (for a one-piece t)
and 0.00 (for a one-piece normal).

In both cases the number of degrees of freedom fitted to the distributions is low, at 3.97 for inflation

and 2.51 for GDP. It can be seen in both figures (including from inspection of the statistical tests referred

to in the note to each figure), and particularly for GDP, that the two-piece t distribution does a better job

of fitting the histogram density in the centre of the distribution than the two-piece normal distribution.

This is confirmed by supplementary statistical evidence in Appendix A.1. While the t distribution is

often described as having fat tails, the counterpart of this is a concentration of probability mass in the

centre of the distribution. The problem with the two-piece normal distribution, once fitted to the sort

of data we have here, is not so much that it means the probability of extreme events is understated.

Rather it is that it understates the concentration of mass in the centre of the the distribution. It is also

interesting that the two-piece t suggests less forecast error bias (a lower value for µ) than the two-piece

normal density. For GDP this fall in bias is quite marked, with µ dropping from 0.90% to 0.03% when

using the two-piece t rather than the two-piece normal density.

Despite their greater flexibility, the t distributions appear to have trouble in accommodating the

extremes of the histograms. If, instead of being fitted to the whole distribution, they were fitted only to

the central part, one might expect to see less skew, and perhaps a higher number of degrees of freedom.

Thus the MPC might nevertheless be justified in assuming normality because it takes no view on the

distribution of forecast errors outside the ninety per cent BCR. We explore this next by fitting censored

13



Figure 5: GDP Growth: Forecast Error Histogram and Two-Piece Normal and t Densities

Note: Latest release GDP estimates used to define the ‘outturn’. 76 observations used. The p-values from tests for the
uniformity of the probability integral transforms (for the 76 forecast error observations, as seen in the histogram, evaluated
against the CDF of the fitted density), using an Anderson-Darling test are: 0.35 (2Pt), 0.00 (2PN), 0.29 (for a one-piece t)
and 0.00 (for a one-piece normal).

two-piece t and normal distributions to the inflation and GDP forecast errors.

5 Fitting Censored Distributions

The principles of fitting censored distributions when the censor points are given exogenously are under-

stood well. Typically it is clear whether observations are censored or not, but not where they lie in the

censored region. In that situation, Diks, Panchenko & van Dijk (2011) have shown that in computing the

likelihood function the censored observations are given a likelihood equal to the chance of being in the

censored region, conditional of course on the parameters of the distribution. This yields ML estimates of

the parameters, with standard properties.

The situation we face is different in two respects. First of all, while we have observations outside

the 90% BCR we do not wish their position to have any influence on the estimated parameters of the

distribution. This can be achieved if they are treated as though they are censored with a likelihood

defined by the probability of being in the censored region. Thus, conditional on known censor points,

this difference is not material for estimation.

The second difference is, however, very material. In the situation we face the censor points are defined

by the bounds of the 90% BCR and thus by the parameter estimates. In such a situation the “regularity

conditions” needed to prove, in particular, asymptotic normality of ML estimators are well known to be

violated because the support of the density depends on its parameters, as in (5); e.g., see Woodroofe
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(1972) and Smith (1985). We show that, in our case, the estimator degenerates in finite samples, and

develop an alternative fixed point estimator whose properties we examine by means of Monte Carlo

simulations.

5.1 Motivating a fixed point estimator

If the lower cut point, beyond which data are censored, is yL and the upper cut point, above which data

are censored, is yU , then the conventional way of setting out the censored log likelihood is:

logLCA =

 log(F (yL)) if (y < yL)
logL if (yL ≤ y ≤ yU )
log(1− F (yU )) if (y > yU )

 , (5)

where F (y) defines the CDF of the density function, F (y) =
∫ y
−∞ f(y)dy, and the BCR, set in our

application to define a 100α=10% censored region, satisfies:

f(yU , β)− f(yL, β) = 0 (6)

F (yU , β)− F (yL, β) = 1− α. (7)

This likelihood function, however, still assumes that the MPC has a view on whether points are likely

to be in the upper or the lower tail of the distribution, notwithstanding that the density function within

those tails is not specified. It is hard to say how far that represents the MPC’s views; certainly the issue

was not discussed between 2010 and 2016.

An alternative likelihood function which is completely agnostic as to whether observations are going

to be above the upper cut point or below the lower cut point can be defined, with conditions (6) and (7)

again imposed, as:

logLCB =

 log(F (yL) + 1− F (yU )) if (y < yL)
logL if (yL ≤ y ≤ yU )
log(F (yL) + 1− F (yU )) if (y > yU )

 . (8)

While it might be desirable to compare the outcomes of using LCB rather than LCA, the reality of

estimation with small samples is that we need to take advantage of the greater structure provided by LCA

in order to be able to estimate the parameters of the distribution recursively. We subsequently show the

importance of the distinction between LCA and LCB ; it proves to be very material when fitting distributions

to GDP forecast errors.

In either case, estimation of β = [µ, σ, γ, ν], subject to (6) and (7), becomes more difficult, indeed

potentially degenerate. This is because the censor points are treated as endogenous (or proportionate),

rather than fixed (assumed known) due to discontinuities (boundary problems) as movements in the BCR

cut points place observations either in the censored or the uncensored region.

Intuitively, for fixed (finite) T , we explain the degeneracy of full ML estimation of β, yL and yU as
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follows. We illustrate for LCA although the same point is pertinent for LCB . Consider:

max
β,yL,yU

∑
logLCA(yt, β) + λ1 (F (yU , β)− F (yL, β)− (1− α)) (9)

+ λ2 (f(yU , β)− f(yL, β)).

Suppose that we have a value of σ sufficiently small such that only one observation from a sample,

say yA, is in the uncensored region and that this is the value given to the mode of the distribution, µ:

µ = yA. All other observations are then in the censored region - with, say, T1 observations below yL and

T2 observations above yU . Then, when the constraints are met:

logLC = T1 logF (yL, β) + log f(yA, β) + T2 log(1− F (yU , β)) (10)

But as σ shrinks, for fixed T , log f(yA, β) will increase without limit:

logLC →∞ as σ → 0. (11)

In the absence of censoring (or as T →∞), this would be offset by the likelihood associated with the

other observations falling. But with the censored likelihood, for fixed T , that is not the case. In other

words, the censor points yL and yU change as σ shrinks, but the probability of being in the censored

tails, and thus F (yU , β) and F (yL, β), will not change. For fixed T the overall log likelihood, logLC , is

therefore unbounded as σ shrinks to zero; there is no interior solution.

Accordingly, we suggest the following fixed-point estimator in finite-samples. It is motivated by the

observation that, in large samples, estimates (for β) produced by maximising logLC , with fixed censor

points, are independent of the censor points, provided all the uncensored observations are genuinely drawn

from the specified distribution.

The proposed fixed point estimator is calculated by means of the following two steps:

Step 1: βr+1 = max
β

∑
logLCj (yt, β, yL,r, yU,r) (12)

Step 2: compute BCR of f(yt | βr+1)⇒ yL,r+1, yU,r+1 (13)

where we search over values of yL,r and yU,r (r = 1, ..., R∗) to minimise Pr+1 = (yL,r+1 − yL,r)2 +

(yU,r+1 − yU,r)2. If Pr+1 = (yL,r+1 − yL,r)2 + (yU,r+1 − yU,r)2 converges to zero as R∗ increases, this

provides a solution at which the ML estimates of the parameters of the censored distribution deliver

censor points which, when used in estimation, deliver the same parameter estimates.

The contribution of each observation to the log likelihood depends on whether it is in the censored

region or not. The log likelihood will not be continuous in the parameters because, for some parameter

sets, observations may be uncensored while for others they will be censored. In large samples this effect

is likely to be small; the contribution of each observation to the total log likelihood is low. But in small

samples the discontinuities will be relatively greater and it may not be possible to find a solution for
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which the quadratic term converges to zero. If the minimum Pr = (yL,r+1 − yL,r)2 + (yU,r+1 − yU,r)2 is

larger than zero, only an approximation will have been found. It has to be a matter of judgement as to

how good or bad that approximation is.

In practice in our experiments we found that, especially in moderate samples, maximisation of L

or LCj (for fixed censor points) could prove problematic for some samples: the ML estimates of γ can

diverge. Similar findings are reported by Sartori (2006) and Azzalini & Arellano-Valle (2013) for their

skew normal and t densities (considered in more detail in Appendix A.1). This is because the likelihood

can be monotone and the Fisher information matrix singular at the discontinuity point when skewness

disappears, γ = 1. Accordingly, in the out-of-sample application below where sample sizes are smaller,

in the spirit of Sartori (2006) and Azzalini & Arellano-Valle (2013), to avoid boundary estimates we

maximise a penalised log-likelihood function, PLCj (yt, β), rather than LCj , where

PLCj (yt, β) =
∑

logLCj (yt, β)− 1

2
Pλ(|(γ − 1)|) (14)

and Pλ(|(γ − 1)|) is a nonnegative penalty function. We use the Lasso penalty, Pλ(|(γ − 1)|) = λ |(γ − 1)|

where λ is a tuning parameter. When λ = 0 estimation reduces to LCj (yt, β); and the higher the value of

λ the more deviations from symmetry are penalised. We select λ by optimising the in-sample censored

fit. We note that there is a connection between use of PLCj (yt, β) and Bayesian a posteriori estimates

with a Laplace prior on (γ − 1).

6 Monte Carlo Experiments

We carry out three sets of Monte Carlo experiment to assess the performance of the proposed fixed point

estimator, (12)-(13). We also make comparison with the penalised estimator, (14). We focus on censoring

at 100α=10%.

6.1 Experiment 1: Performance for different sample sizes

The first set of simulations test the performance of the censored estimator, under both LCA and LCB , in

samples of different sizes as the degree of skew varies. Comparison is made with the uncensored ML

estimator, L. T observations are drawn from a two piece t distribution, where (ν, µ, σ, γ) = (5, 0, 1, 1.5)

and (5, 0, 1, 2.5). γ = 1.5 and γ = 2.5 correspond to moderate and high (positive) skew. We consider

T = 40, 100, 500, 1000, noting that the Bank of England’s use of just 40 observations to estimate their

forecast error densities. We report results based on R = 1000 replications. For computational reasons we

work with 1/v = 0.2 rather than ν itself. For γ = 2.5, we also report results for PLCj (yt, β). We do not

report (in part for space reasons) results for PLCj (yt, β) when γ = 1.5 since, as will be seen, the utility

of the penalised estimators, relative to the unpenalised ones, is found to be greater in populations with

high skew.
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The mean and median values and the standard deviations (across the 1000 replications) of the es-

timates of the four parameters are shown in Table 1. We also report the proportion (averaged across

the R replications) of the T observations that, for the censored estimators, are classified as falling in the

censored region.

Not surprisingly, for large samples (T = 1000) Table 1 shows higher standard errors for the parameters

fitted to the censored data using the fixed point method, than to the uncensored data by ML. At the same,

time, however, the results confirm that in large samples the censored estimators work well, especially when

skew is moderate (γ = 1.5) rather than extreme (γ = 2.5): under both LCA and LCB when γ = 1.5 the mean

and median values equal (to two decimal places) those in the data-generating-process.15 When γ = 2.5,

LCA continues to have this property but there is extra noise in the estimates for LCB , which imposes less

structure than LCA. This is seen by LCB showing deviations from the true parameter estimates for γ. These

deviations reflect a few outlying estimates, for some iterations, with the median values closer to the true

parameter values than the mean ones. Both LCA and LCB correctly place, on average across R, 10% of

observations in the censored region with little variation even for small T .

Once the sample size drops to 100, the problems with estimation of γ really start to appear. This is

so for LCA but especially LCB . An increasing number of the R draws return inaccurate (high, divergent)

estimates of γ: the median parameter estimates remain closer to the true values than the mean ones.16

With LCA there is slight evidence of bias (looking at the mean across replications) when the true γ = 1.5;

but when instead LCB is used, we can see that the mean parameter estimate for γ is contaminated by

some very high values (for these draws this is accompanied by extremely low values for σ). Essentially

the divergence problems reported by Sartori (2006) and Azzalini & Arellano-Valle (2013) emerge. The

problem is worse when γ = 2.5 than when γ = 1.5; and there is evidence of it even when the distribution

is not censored and the likelihood function L is used. These problems become more acute when the

sample size drops to 40 observations. At this stage, the mean estimates for γ from LCA, LCB and L all give

contaminated results due to the increased risk that for some replications the estimates for γ diverge. Use

of the penalised estimator does offer some help in these smaller samples when γ = 2.5 especially for LCB .

While it does not prevent the mean estimate for γ (across replications) from rising above the true value,

the median estimates are closer to the true values than when a penalty is not imposed. We therefore

conclude that in very small samples it may prove helpful, in effect, to have a prior that the data are

symmetric. As even if they are not, imposing this view via the penalised estimator improves the accuracy

of the median estimates even when the data are in fact highly skewed. The penalised censored estimators

continue to place 10% of the 40 observations in the censored region. In larger samples (e.g. T = 1000),

15Convergence was also satisfied, with Pr converging to zero. An alternative and simpler method which would also work
in large samples would be to set fixed censor points to exclude the upper and lower ten per cent of the observations. This
would allow the parameters to be estimated straightforwardly.

16We note that if were to assume negative rather than positive skew in the data-generating process, i.e. γ = 1/γ, then
the estimated γ are at risk of diverging to zero rather than infinity.
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imposing a penalty does cause γ to be underestimated slightly, and in turn σ to be overestimated. But

this bias is relatively modest, about 1% for LCA (for the median estimates) and about double this for LCB .

6.2 Experiment 2: Performance for mixed distributions

The second set of experiments explore the performance of the censored estimators when not all of the

underlying data are drawn from the same (skewed) distribution: in particular when (what will be) the

censored observations come from a different distribution. Following Experiment 1, T observations are

first drawn from a two piece t distribution, where (ν, µ, σ, γ) = (5, 0, 1, 1.5) and (5, 0, 1, 2.5). But then

each of the 10% of these T observations that falls outside the 90% best critical regions, yL and yU , as

estimated for each replication, is dropped and replaced, depending on whether it falls below yL or above

yU , with a random draw from a uniform density between −10 and yL or yU and +10.

As in Experiment 1, Table 2 reports results for T = 40, 100, 500, 1000, where R = 1000. Let us

consider the larger sample results first. When T = 1000, we find that the censored estimators, again

especially LCA, do a good job at estimating the true parameter values, despite the censoring. They also

correctly place 10% of observations in the censored region. But, as expected, the uncensored estimator -

that assumes all T observations come from a single density - is not able to return as accurate estimates.

It tends to over-estimate 1/v, in an attempt to capture the 10% of tail observations drawn from the

uniform densities.
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As T decreases and γ increases, we again observe a higher chance that the censored estimates for

γ diverge for some replications: as the mean estimates for γ again become too large with the standard

deviation estimates for γ elevated. Table 2 shows that in smaller samples this afflicts LCB more than LCA.

The median estimates for LCA are closer to the true parameter values than the mean ones, especially so

for smaller T . For T = 40 and γ = 2.5, focusing on the median estimates for γ, LCA is considerably

more accurate than LCB , with LCB again tending, for an increasing number of replications, to overestimate

γ (and underestimate σ). Use of the penalised estimator mitigates this small-sample concern further.

The median estimates for the penalised estimator, under LCA, are within 10% of the true parameter

estimates when T = 40. But it does not eliminate the risk of the skewness estimates diverging, as the

mean estimates from PLCA still diverge suggesting that in any specific application with small-samples care

should be exercised, and parameter estimates closely inspected, if boundary values are to be avoided.

The uncensored estimator continues to over-estimate 1/v in small samples.

6.3 Experiment 3: Small sample confidence intervals for the MPC’s forecast
errors

Finally, we are interested in testing whether any parameter estimates produced when fitting the censored

two-piece t to the time series of forecast errors could have been, in reality, generated by an underlying

symmetric normal distribution. Since our time series of forecast errors has 76 or 77 observations, we

carry out our Monte Carlo test for samples of the same length, as well as considering the smaller sample

of T = 40 and larger samples, T = 500, 1000. An issue we have to address is that the forecast errors

relate to GDP growth or inflation over four quarters. If (unobserved) quarterly forecast errors are

independently distributed, then errors over four quarters will follow a moving average process. If the

underlying distributions is symmetric normal, then so too will be the four-quarter errors. Thus, in order

to generate the data used in this experiment we draw T + 3 values, each denoted by uk from a normal

distribution with unit variance. We then construct T observations

εk = (uk + uk+1 + uk+2 + uk+3) /2; k = 1, ..., T (15)

so that εk has the same variance as uk but also follows the moving average process which arises from

analysis of four-quarter forecast errors. To each set of T observations we fit the skewed t distributions,

both uncensored and on the assumption that the distribution is fitted only to the central 90% of the

observations. The true parameters values are (1/ν, µ, σ, γ) = (0, 0, 1, 1).
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Table 3 shows the mean, median and standard deviation of each parameter taken from the R = 1000

draws, together with the upper and lower ninety per cent confidence limits.

A number of things stand out from Table 3, beyond the obvious point that the fit of LCA and LCB is

much worse, with the confidence intervals wider, with small samples than with T = 1000 observations.

1/ν cannot be expected to be symmetric around its true value of zero, so a bias inevitably exists in the

small-sample estimates. A related bias appears in the estimate of σ. A low number of degrees of freedom

and a high value of σ are both ways of accommodating observations distant from the mode, so bias in one

implies a bias in the other. There is little evidence of bias in the mode, µ, since the confidence limits are

reasonably symmetric. γ appears skewed to the right, especially so for small samples and for LCB rather

than LCA; the confidence limits are asymmetric.

When the distribution is not censored the estimates for σ and γ in Table 3 are better determined than

when censor points are estimated simultaneously. This is not very surprising. But for smaller samples a

bias does appear in L’s estimates for µ. It is also worth noting that, even when the distribution is not

censored, when T = 77 an estimate of 1/0.14 = 7 degrees of freedom has a 5% chance of arising from an

underlying normal distribution.

When the data are censored so that the distribution is fitted to only the central 90% of observations,

then the estimated value of the number of degrees of freedom has to be 2.7 (2.2) or lower under LCA (LCB)

before one can reject, at a 90% level, the hypothesis that the underlying distribution is normal.

There is again evidence of a higher possibility of divergence in the censored estimates of γ (and in

turn those for σ) for smaller samples as evidenced by a higher standard deviation for γ. But LCA is less

contaminated than LCB by some high values for γ. Contamination for both estimators is worse when T

drops from 77 to 40, which should be borne in mind in our out-of-sample application (section 8.2 below).

We note that the median estimates for γ from LCA and LCB remain accurate, close to unity, even when

T = 40. But, as seen from comparison with Table 1, this feature is specific to when there is no skew in

the population data. Recall we found that when there is population data skew, the median estimates for

γ from LCA and LCB differ from the true value - and the penalised estimators are likely to be preferred in

such small-samples. Table 3 shows that with symmetric data the penalised estimators continue to lower

the chance of divergent estimates for γ.

Overall, Table 3 shows that in small samples LCA continues to be preferred to LCB as its estimates for

the four parameters are better determined - its mean and median estimates are closer to the true values

with lower standard deviations and tighter and more symmetric confidence bands. But (even without

the population data skew considered in Tables 1 and 2) there remains a chance in smaller samples

that estimation using LCA delivers divergent values for γ. So in practice, including in the out-of-sample

application in Section 8.2 below, we recommend looking closely at the parameter estimates for fear they
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involve an (economically) unappealing boundary value for γ. If the estimated value of γ diverges, the

resulting density in effect becomes a half or folded density; for an illustration of such a cliff-edged density

see Figure A1 in the online Appendix. If estimates do diverge, based on the results in Tables 1 to 3, we

suggest use of our penalised estimator as it is found to mitigate, albeit not eradicate, the possibility of

boundary values in small samples. Moreover, in any applications when estimation does appear to reflect

divergence - with the estimates of γ (or 1/γ) rising above a threshold value of say 5 or 10 implying a half

or folded density - the estimates might be rejected and model/density estimation reconsidered.

7 Censored densities fitted to the MPC forecast errors

We now fit the censored density functions to the MPC’s forecast errors for inflation and GDP. We use

LCA because, consistent with the Monte Carlo evidence and attempts to fit LCB to the forecasts errors

(reported in section A.2.2 of the online Appendix), we found LCA better able to avoid boundary solutions

for γ when fitting the two-piece normal distribution. In all cases Pr = 0 (for large r), confirming

satisfactory estimation. The results for inflation are shown in Figure 6 and those for GDP in Figure 7.

Looking at GDP growth first, comparing with the uncensored distributions of Figure 5, we see that

not allowing the outlying ten per cent of the observations to influence the shape of the distribution has a

considerable effect on skewness. For the two-piece normal density the degree of skew present in Figure 7

drops considerably. Many of the negative forecast errors (observed over the period of the financial crisis)

are now censored, placed in the left tail, rather than accommodated, as in Figure 5, via a higher skew

estimate. It remains the case, however, that a t distribution with a low number of degrees of freedom, 3.9,

is needed to capture the peak of the distribution of the GDP forecast errors. Although Table 3 shows that

this falls within the 90% confidence interval for a normal density when there are only T = 77 observations.

The two-piece normal distribution does a poorer job of reflecting the peak of the distribution in Figure

7 because of the extra spread needed to fit the outer parts of the uncensored region; right skew is also

present.

By way of contrast, as shown in section A.2.3 of the online Appendix, if uncensored two-piece t and

normal densities are fitted not to all the forecast errors as in Figure 5, but just to a sample of GDP

growth errors before or after the financial crisis, we also find much less skew than in Figure 5. This is

especially so for the two-piece normal density. This supports the view that analysing forecast errors over

a rolling window, as is apparently practiced at the Bank of England, also amounts to a form of censoring.

But it is ad hoc and inconsistent with the fact that the density is later, at a second step, censored. In

fact, when using only forecast errors since the financial crisis, there is no skew to the two-piece normal

and the preferred density is normal (symmetric) with a similar variance to the two-piece t in Figure 7.

One implication of this type of censoring is that the probability of large forecast errors is much lower
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Figure 6: Inflation: Forecast Error Histogram and Censored Two-Piece Normal and t Densities using LCA
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Note: RPIX forecasts (until Nov. 2003); CPI forecasts thereafter. 77 observations used. The p-values from tests for the
uniformity of the in-sample probability integral transforms (for the forecast error observations, seen in the histogram, that
are not censored), using an Anderson-Darling test are: 0.94 (2Pt) and 0.12 (2PN). 9% of the observations fall outside 2Pt
and 15% outside 2PN.

than in Figure 5 or Figure 7.

Turning to inflation, comparison of Figures 4 and 6 shows censoring to have a less material affect on

the skew parameter of the estimated distributions than it did for GDP growth. There is evidence that

extending the two-piece normal to the two-piece t helps when censoring - as the ML estimate for ν is lower

in Figure 6 than Figure 4. The smaller value for ν, which is now outside the 90% small-sample confidence

interval for a normal density (cf. Table 3), enables the distribution to accommodate the concentration

of probability mass close to zero better; a lower variance is also required than in Figure 4. We observe

in Figure 6 wider censoring bounds using the two-piece t rather than the two-piece normal; with close

to 10% of observations placed outside these bounds. We also note that when testing the uniformity of

the probability integral transforms (computed by evaluating the CDF for all non-censored observations)

we see some evidence, as the p-values are higher, that the two-piece t fits the non-censored observations

better.17

In summary, we conclude that inference on the estimated parameters is affected if the censored nature

of the forecast density is (correctly) acknowledged when fitting distributions to past forecast errors. In

particular, notably for GDP, one would not produce nearly so a skewed density having censored the

outlying ten percent of observations. The shape of fan charts (estimated from past forecast errors) can

be materially affected by whether the censoring is accommodated in estimation.

17Section A.2.3 of the online Appendix also plots uncensored densities fitted to rolling windows of inflation forecast errors.
These densities do not resemble those in Figure 6.
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Figure 7: GDP Growth: Forecast Error Histogram and Censored Two-Piece Normal and t Densities using
LCA
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Note: 76 observations used. Latest release estimates used to define the outturns. The p-values from tests for the uniformity
of the in-sample probability integral transforms (for the forecast error observations, seen in the histogram, that are not
censored), using an Anderson-Darling test are: 0.40 (2Pt) and 0.23 (2PN). 11% of the observations fall outside 2Pt and
13% outside 2PN.

8 Evaluation of censored density forecasts

The MPC’s density forecasts attract considerable attention as the focal point of monetary policy debate

and communication. This attention has involved testing the forecasts to evaluate their ex post accuracy.

But none of these studies have, at least directly, acknowledged the censoring. While all previous eval-

uations of the MPC densities ignore censoring, those that reduce the density to fewer than 10 intervals

and then evaluate these can be coincidentally robust to it since they do not, in effect, test the fit of the

density in the censored tails.18

We first consider, in section 8.1, evaluation tests appropriate for censored density forecasts before

considering, in section 8.2, their application to the MPC densities and our forecast error data.

8.1 Evaluation tests

Following the distinction made when evaluating (uncensored) density forecasts, we consider statistical

tests, suitable for censored density forecasts, for both absolute and relative forecast accuracy. The for-

mer test forecast accuracy relative to the ‘true’ but unobserved density; and prominent tests (following

Diebold, Gunther & Tay (1998)) involve application of goodness-of-fit tests to the probability integral

18Previous studies at the Bank of England include: Boneva, Fawcett, Massolo & Waldron (2018); Independent Evaluation
Office (2015); Hackworth, Raidia & Roberts (2013); Elder et al. (2005). External studies include: Wallis (2003); Wallis
(2004); Clements (2004); Mitchell (2005); Mitchell & Hall (2005); Hall & Mitchell (2007); Dowd (2007); Dowd (2008);
Boero, Smith & Wallis (2011); Gneiting & Ranjan (2011) and Galbraith & van Norden (2012).
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transforms (PITs). The latter involve comparison of two or model competing density forecasts via appli-

cation of scoring rules.19

8.1.1 PITs based evaluation of censored density forecasts

Let f and F continue to denote the (time-varying) probability and cumulative density functions of the

(two-sided) censored density forecast; and let yt denote the subsequent outturn with t = 1, ..., T now

denoting the out-of-sample evaluation period. The forecast density is assumed to be censored at 100α%

(α ∈ (0, 1)), between the thresholds yL,t and yU,t, where yU,t > yL,t, such that
yU,t∫
yL,t

f(yt) = 1− α.

The PITs are defined, in the usual way, as zt = F (yt). But, given the censoring, we also define PIT

thresholds zL,t = F (yL,t) and zU,t = F (yU,t); e.g., zL,t = 0.05 and zU,t = 0.95 for 10% censoring with

symmetric thresholds (about the mean). The censored density forecast f(yt) is well-calibrated when zc,t,

defined as:

zc,t = zt if zL,t < zt < zU,t, (16)

rather than zt, is uniformly distributed. So calibration should involve testing E(zc,t) = 0.5(zL,t + zU,t)

= 0.5 and V ar(zc,t) = (1/12)(zU,t− zL,t)2. Outside of the uncensored range, zL,t < zt < zU,t, calibration

of f(yt) requires correct unconditional coverage:

1

T

T∑
t=1

I(zt ≤ zL,t) + I(zt ≥ zU,t) = α. (17)

Practically, with statistical testing in mind, it is convenient to adjust the range of zc,t to accommodate

the censoring, by defining and then subjecting
{
zc,t−zL,t

zU,t−zL,t

}T
t=1

to standard goodness-of-fit tests, such as

the likelihood ratio (LR) test proposed by Berkowitz (2001). But such tests should be complemented

with a separate test for correct unconditional coverage, (17), via, for example, a Christoffersen (1998) LR

test. As Askanazi et al. (2018) explain, a consequence of using BCRs is that under correct unconditional

coverage no other set of interval forecasts (extracted from the same density forecast) with shorter intervals

can also satisfy this condition.

A joint test is offered by considering a two-sided variant of the censored LR test proposed by Berkowitz

(2001). This ignores the degree of forecast failure in both the 10% (left and right-hand-side) tails but

importantly does account for their frequency (as argued for by, e.g., Diks et al. (2011)). Specifically,

following Berkowitz (2001), take an inverse normal CDF transformation, Φ−1, of the PITs to define

19In both cases, we consider unweighted versions of the tests, although we note that with greater assumed knowledge of
the MPC’s loss function tests could be developed that attach more importance to predicting accurately the probabilities
in certain (uncensored) ranges of (economic) interest. See Clements (2004) for an interesting application to the MPC’s
forecasts, albeit one that does not acknowledge the censoring. As emphasised by Diebold et al. (1998) and Granger &
Pesaran (2000), a rationale for the statistical based PITs tests is that if one cannot reject correct calibration in an absolute
sense then the density forecast can be considered ‘optimal’ irrespective of the form of the MPC’s loss function.
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z∗t = Φ−1(zt); and also define z∗L,t = Φ−1(zL,t) and z∗U,t = Φ−1(zU,t) such that:

z∗c,t = z∗t if z∗L,t ≤ z∗t ≤ z∗U,t (18)

z∗c,t = z∗L,t if z∗t < z∗L,t (19)

z∗c,t = z∗U,t if z∗t > z∗U,t (20)

so that the log likelihood function for estimation of m and s, which should be (0, 1) under correct

calibration, is given as:

L(m, s | z∗c,t) =
∑

z∗L,t<z
∗
c,t<z

∗
U,t

log
1

s
φ

(
z∗c,t −m

s

)
(21)

+
∑

z∗c,t=z
∗
L,t

log Φ

(
z∗L,t −m

s

)

+
∑

z∗c,t=z
∗
U,t

log

(
1− Φ

(
z∗U,t −m

s

))
.

Therefore, a censored (or tail) LR test statistic can be constructed as:

LRtail = −2(L(0, 1)− L(m̂, ŝ)) (22)

that is distributed χ2(2) under the null hypothesis that the censored density forecast is correctly calibrated

(i.e., m = 0 and s = 1). This two degrees of freedom variant of Berkowitz’s test (see Clements (2004))

does not test for independence in the PITs; we should not expect independence, under correct calibration,

in applications like ours where the forecast horizon is greater than one-step ahead.

We can also evaluate the censored density forecast by reducing to it a series of (albeit there are

an infinite number of) interval forecasts. Following Wallis (2003), a Pearson chi-squared test dividing

the PITs into k intervals might be constructed. As Wallis (2003) explains, this is a generalisation of

Christoffersen’s test for k > 2 intervals. How we construct these k intervals depends on how we should

interpret the underlying density forecast. For example, for the MPC’s density forecasts these intervals

should arguably be constructed not using quantiles but BCRs. This is an important illustration of how

the way in which the MPC choose to communicate their forecast affects the appropriate evaluation test.

8.1.2 Scoring rules with censored density forecasts

Scoring rules evaluate the quality of probability forecasts by assigning a numerical score based on the

forecast and the subsequent outturn. As Gneiting & Raftery (2007) review, various scoring rules have

been proposed. We focus on a popular one from within the class of strictly “proper” scoring rules - the

logarithmic score - and show how it can be applied in a manner that acknowledges the censoring.20 While

20A scoring rule is said to be “proper” if it always ranks the true conditional density forecast above any incorrect density
forecast; see Gneiting & Raftery (2007). As Diks et al. (2011) and Gneiting & Ranjan (2011) explain, care has to be
exercised when evaluating densities over regions of interest to ensure the scoring rule is proper. An alternative scoring rule,
the Continuous Ranked Probability Score (CRPS), is also popular. It too can be straightforwardly applied to censored
density forecasts, in effect by integrating the quantile scores between zL,t and zU,t.
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the previous literature has not applied these tests specifically to the MPC’s forecasts, their development

reflects interest in other areas of applied statistics in assessing predictive accuracy in regions of perceived

interest.

Diks et al. (2011) propose conditional and censored logarithmic scores; and discuss their interpretation

and properties. They find that a censored scoring rule performs better in many cases, and so in our

application we focus on it. The average censored logarithmic score, in our context, is defined as the

out-of-sample analogue of logLCA seen in (5):

LS
C

A =
1

T

∑T

t=1

[
{I(yt − yL,t)(1− I (yt − yU,t))} log f(yt)+

I (yt − yU,t) log(1− F (yU,t)) + (1− I (yt − yL,t)) logF (yL,t)

]
(23)

Similarly, an out-of-sample analogue, LS
C

B , can be defined for logLCB as seen in (8).

LS
C

A considers the likelihood associated with the outturn yt being in the uncensored region. But when

an outturn falls in the censored region, like (21), it ignores the shape of f(yt). However, knowledge of the

asymmetries in tail risks is acknowledged. logF (yL,t) > log(1 − F (yU,t)) when (1− F (yU,t)) > F (yL,t),

i.e. when the forecaster believes there to be higher chance they are going to be surprised on the upside

than downside so that the upside is censored more than the downside. Tests of equal forecast performance,

across competing censored density forecasts, can be constructed based on their LS
C

values as discussed

in Diks et al. (2011) and Gneiting & Ranjan (2011). We use these in our application below.

8.2 Evaluating the MPC’s (censored) forecasts

We first evaluate the ex post accuracy of the MPC’s density forecasts, but extend previous studies by

acknowledging the censoring explicitly. We then compare the MPC forecasts with benchmark statistical

density forecasts formed by recursively fitting censored normal, t, two-piece normal and two-piece t

densities to the MPC’s historical (modal) point forecast errors. This is done as if in real-time. This

comparison helps us both assess the relative value of the MPC’s judgement-informed forecasts; it also

serves as an illustrative example of what data-based forecasts, acknowledging the censoring, could have

been presented in real-time to the MPC ahead of each quarterly Inflation Report.

8.2.1 Evaluating the MPC’s forecasts as censored density forecasts

Figure 8 provides a visual impression of the calibration of the PIT values implied by the MPC’s GDP

growth and inflation density forecasts. GDP ‘outturns’ are defined using both “final” and second esti-

mates. PIT histograms are shown both ignoring (left plots) and then reflecting (right plots) the self-

imposed censoring that the MPC applies. We note that application of the joint test, LRtail, seen in (22),

rejected calibration of both the inflation and GDP growth density forecasts (with p-values of 0.00 in all

cases). To help understand this rejection we now look for uniformity of the PITs and the coverage rates

of the censored density forecasts separately.
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Figure 8: MPC Inflation and GDP Forecast PITs (for 2 year ahead forecasts) calculated using outturns
from 1999q4 to 2018q3/q4

Note: The histogram figures on the left ignore the MPC’s censoring and plot zt; those on the right do not and plot{
zc,t−zL,t

zU,t−zL,t

}
. The GDP histograms are shown using both the final or latest (December 2018) data release and the second

data release to define the GDP outturns.

Specifically, the left panels of Figure 8 show histograms for the PITs, zt, for the 76 or 77 forecasts,

with ten bins of width 0.1. The plots on the right are for the rescaled PITs acknowledging the censoring:{
zc,t−zL,t

zU,t−zL,t

}
. Note that the MPC know zL,t and zL,t (given their 10% BCR thresholds) at the time they

make their forecasts. So subsequent PITs outside this range should not be tested for uniformity.21

If the MPC did not censor its density forecasts, the more any of these PITs histograms deviate from

uniformity the weaker the evidence for correct forecast calibration. But, with censoring, only the plots on

the right-hand-side of Figure 8 must be uniform. That is, non-uniformity of the PITs in the plots on the

left could be a feature not of calibration failure, but of failing to account for the censoring in evaluation.

Thinking about the left plots, we should not expect 10% of PITs to be less than 0.1 or 10% to be greater

than 0.9 when the density forecast is asymmetric - given the MPC’s use of BCRs.

The uncensored PITs plot in the top left of Figure 8 - for inflation - is reminiscent of figures in

Independent Evaluation Office (2015) (see Box 4 on their pages 50-51). That is, relative to forecast, there

were too many high outturns for inflation; in other words, the MPC understated the probability of high

inflation outturns, especially from 2007. But this specific plot, as discussed, does not acknowledge the

censoring. When we correct for this and look instead at the top right plot the story seems to change.

The top right histogram plot appears more uniform. This suggests that the MPC’s forecasts were not so

21In Section A.4 of the online Appendix we also show plots having reduced the density forecast to 10 interval forecasts.
As anticipated in Section 8.1, we break the density forecast into interval forecasts based on both (central) percentiles and
10% BCRs. We find inference is sensitive to this choice.
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bad after all, when we rightly acknowledge the censoring. We subject each of the histograms in Figure 8

to Pearson chi-squared tests as discussed in Wallis (2003) and find p-values of 0.14 (top left), 0.85 (top

right). These p-values therefore confirm our visual impression that calibration is better in the top right

than top left panel of Figure 8.

The second and third rows of Figure 8 provide the PITs plots for the MPC’s GDP forecasts, defining

errors against final vintage and second release GDP outturn data, respectively. Comparison of these

two rows suggests that calibration is still imperfect, but stronger, when measured against final release

rather than second release GDP data. This is because the plots against the second release data reveal a

greater tendency for the MPC’s GDP forecasts to be too low. This is reflected by the downward slope

of the histograms in the bottom panels of Figure 8 and in particular an empty bin from 0.9 − 1. These

differences illustrate the importance of GDP data revisions, the tendency for these revisions to be positive

(see Galvao & Mitchell (2019)) and the MPC’s stated ambition of forecasting “mature” GDP data.

But looking more closely in Figure 8 at GDP forecast performance against the final vintage data, we

see that inference about calibration is again sensitive to censoring. The PITs plot in the middle left panel

shows that when we do not acknowledge the censoring we see many outturns fall towards the left of the

MPC’s density - this reflects, in part, the forecasting errors made over the crisis with outturns falling well

below forecasts (this is no longer true). While this is still true of the plots on the middle right, which

acknowledge the censoring, the pattern of density forecasting errors is a little different.

8.2.2 Comparison of the Estimated Parameters with those used by the MPC

We now move on from an assessment of the MPC’s forecasts to a comparison between its density forecasts

and those generated using the methods set out above. We compare the MPC’s own (censored) judgement-

based density forecasts with censored two-piece normal (2PN) and two-piece t densities (2Pt) recursively

fitted to the MPC’s historical (modal) point forecast errors. We also experiment with censored symmetric

densities - the normal and t - aware from the Monte Carlo study that estimation of censored asymmetric

densities may suffer from divergent skew estimates especially in smaller samples.

In what follows we assess the performance of the forecasts generated by the different parameter sets;

thereby we identify if, when and how the MPC’s judgement deviated from the data-based evidence.

These exercises involve recursively re-estimating the parameters of the 2Pt, 2PN, Normal and t den-

sities using information that would have been available to the forecaster in real-time. Specifically, we

consider that the forecaster had access to the MPC’s historical forecast errors (for GDP defined against

the latest available GDP vintage extracted from the Bank of England’s “GDP real-time database”22) but

lagged to reflect both publication lags (for GDP) and the fact that they have to wait two years to define

the forecast error (for their 2-year ahead forecasts). The four censored densities are fitted uncondition-

22Available at http://www.bankofengland.co.uk/statistics/Pages/gdpdatabase/default.aspx
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ally, albeit recursively adding an observation each quarter, to the historical forecast errors dating back

to 1998q1. We estimate the error densities using PLCA, although we note that for the majority of the

recursive estimations this amounts to use of LCA since the estimated λ = 0. But on occasion, consistent

with the Monte Carlo findings in Tables 1 to 3, imposing a penalty prevented divergent estimates for

γ.23 We then set the mode of these densities to the latest modal forecast from the MPC and thereby

compute censored forecast densities for GDP growth and inflation, noting that if X ∼ 2Pt(µ, σ, γ,ν) and,

if W = c+X, then W ∼ 2Pt(c+ µ, σ, γ, ν). We start making forecasts in 2003q2 for 2005q1 (two years

ahead), and recursively update the sample so that the final forecast we make is in 2016q4 (2017q1) of

2018q3 (2018q4, for inflation). This means our out-of-sample window is from 2005q1 to 2018q3 for GDP

and to 2018q4 for inflation.

Figure 9 shows the time series of the scale and skew parameters, σ and γ, for the GDP distributions

used by the MPC and also for the distributions fitted recursively to past GDP forecast errors when using

the two-piece normal and two-piece t distributions. It confirms that divergent estimates of γ are avoided

by the censored estimators despite the small samples, especially at the beginning of the out-of-sample

period. We also show the reciprocal of the number of degrees of freedom for the two-piece t distribution,

1/ν. Looking first at the MPC’s parameters, we can see that there was a sharp increase in σ at the time

of the financial crisis. Specifically, in late 2008 and during 2009 the MPC increased σ: the MPC saw a

break, while the data based methods adjust only gradually. This is borne out by the fact that a negative

(four-quarter) GDP growth rate outturn was not observed (published) until late January 2009 (with the

ONS estimate for 2008q4 growth). Data revisions subsequently identified 2008q3 as the first quarter of

negative growth and also increased the depth of the recession.24 The MPC has gradually retreated from

the high values set at the height of the crisis, although the recent numbers show an increase. The skew

parameter was set close to 1 until the crisis, when it was raised delivering a pronounced downside skew.

Since then it has gradually declined, albeit with some reversals. The increase in skew associated with the

2015 Greek crisis is very modest, as our earlier graph showed.

Looking now in Figure 9 at the fitted parameters for the two-part normal distribution, we see that, as

might be expected with recursive estimation, it did indeed take some time for σ to rise to accommodate the

GDP forecasting errors of the financial crisis. The sharp fall in σ in late 2015 is explained by the fact that,

with accrual of data, what had previously been large errors in the non-censored part of the distribution

23Even when imposing a penalty we found it hard to obtain sensible fitted densities using PLCB . LCA and PLCA impose
more discipline in estimation, and this appears to help, especially out-of-sample with the smaller sample sizes. To estimate
λ we searched over a grid, selecting that λ that maximised LCA.

24We undertook structural break tests for a break in the unconditional variance of the forecast errors, to see how quickly
the forecast error data alone would have picked up a change. Under the assumption that the forecast errors follow a normal
distribution with mean zero, then

√
π/2 |yt − µ| is an unbiased estimator of the standard deviation of yt−µ. We may then

test for a structural break in the unconditional volatility of the forecast errors by testing for a break in the mean of their
absolute values. We treat the break point as unknown and use the sup-Wald statistic with approximate asymptotic p-values
as in Hansen (1997). Recursive application of these tests suggests that a break would not have detected statistically, with
a p-value less than 0.05, until late 2011 although the p-values do decline from late 2009.
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Figure 9: Data-based and MPC Parameters for the GDP Fan Chart (2 year ahead forecasts)
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Note: Recursively updated latest vintage used to define GDP outturns. Dates refer to when the two-year ahead forecast
was made.

are moved to the censored part of the distribution, weakening their influence on the parameter. The skew

parameter also rose in the aftermath of the crisis and has drifted back, as censoring is able to do more

work.

Figure 9 also shows the parameters for the two-piece t distribution. Here the rise in σ is even slower

and more modest than with the two-part normal distribution. This is because the increased frequency

of large errors is initially accommodated by a falling number of degrees of freedom (rising value of 1/ν).

There is also much more movement in the skew parameter. Only late in the period does recursive

estimation suggest that the spread is better explained by the value of σ than a low value of ν.25

The most striking feature of the inflation parameters in Figure 10 is that throughout the MPC sets

a value of σ which is large relative to that implied by the data. The MPC also saw very little skew. In

contrast, the data-based parameters show a clear upside risk. A likely explanation of this is that the

MPC bases its value of σ on past errors on the assumption that there is no skew present. The positive

skew observed with, say, the fitted two-piece normal distribution is indicative that upside risks are much

greater than downside risks for inflation. In turn this reflects the sticky downward nature of many prices

and the rarity with which inflation rates below zero are observed. With the fitted parameters it is not

until the very low inflation rates of 2015-2016 influence the calculations that we see the skew rises closer

to 1 and the pattern of inflation errors is instead explained by a higher value of σ. But even here the

difference between the two-part t and the two-part normal is clear. The two-part t prefers to rely on a

25As can be seen from Figure 9 the degrees of freedom parameter ν does temporarily, in the aftermath of the financial
crisis, fall to unity and below. Given we define our censored densities between finite intervals, infinite moments, as observed
for Cauchy distributions, are not a concern; for related discussion see Nadarajah & Kotz (2007).
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Figure 10: Data-based and MPC Parameters for the Inflation Fan Chart (2 year ahead forecasts)
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decreased number of degrees of freedom and puts less weight on the value of σ than does the two-piece

normal distribution.

8.2.3 Out-of-sample comparison of the MPC with data-based censored density forecasts

Our comparison of forecast performance takes two forms. First we assess the number of occasions on

which an outturn fell in the outer, censored part of the distribution. Secondly, we compare the forecast

scores for the different distributions.

Table 4 reports the percentage of times that an outturn subsequently fell in the censored region of the

MPC’s or the data-based fan chart. We show results for: i) the full forecast period, ii) the period for which

recursive (data-based) forecasts are possible and iii) the period since the financial crisis of 2008-09. Table

5 then reports the densities’ average logarithmic scores, LS
C

A and LS
C

B , over the latter two out-of-sample

evaluation periods - when a comparison between the MPC and the data-based densities is possible. Recall

the higher the score the better the relative performance of the density. The score for the best performing

density is highlighted in bold in Table 5. Each data-based censored density forecast is also tested relative

to the MPC, with an asterisk indicating rejection of the null of equal forecast performance at the 95%

level using HAC standard errors.26

We draw our main conclusion from Table 4: the data-based censored forecasts are, on average over the

longer out-of-sample window (from 2005q1-2018q3/q4), too narrow. This reflects overconfidence, a lack

26For completeness, Section A.4 of the online Appendix also provides some PITs plot for the data-based densities as well
as the MPC. These are consistent with the analysis below using both scoring rules and looking at the proportion of outturns
that fall inside the censored region, (17).
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Table 4: Percentage of outturns falling in the 10% BCR censored region of the MPC and data-based
two-year ahead inflation and GDP growth density forecast (dates refer to outturns, with the forecasts
made two years previously)

99q4-18q4 99q4-18q3 05q1-18q4 05q1-18q3 11q4-18q4 11q4-18q3
Inflation GDP Growth Inflation GDP Growth Inflation GDP Growth

2nd Latest 2nd Latest 2nd Latest
MPC 13 13 11 18 16 16 3 4 0

2Pt − − − 41 22 22 38 4 0
2PN − − − 43 29 23 38 17 0
N − − − 29 23 23 41 21 11
t − − − 41 31 29 14 7 0

of perceived risk - as more than 20%, and up to 40%, of outturns subsequently fell outside the data-based

90% BCRs. Calibration is better, i.e. closer to 10%, for the MPC forecasts but still too high (over this

period from 2005, although it is better over the full-sample from 1999). The tendency for the BCRs,

especially for the data-based densities, to be too narrow is much greater for inflation than GDP. It is also

greater in the earlier part of the evaluation period than the latter period since the financial crisis. This is

seen by, in general, the lower proportion of outturns falling in the censored region since 2011q4 especially

for GDP growth (when measured using the latest vintage data). Indeed, except for the normal density,

Table 4 shows that no GDP outturns fell in the censored region of any of the other densities from 2011q4.

So, since the financial crisis the BCR bounds from both the data-based and MPC densities widened but

for GDP growth by too much; too few (latest vintage) GDP outturns are subsequently censored except

when using the (one-piece) normal. Figures A17 -A20 in AppendixA.4.3 illustrate these features visually

for the 2Pt and 2PN density forecasts for inflation and GDP (latest vintage); Figures 2 and 3 above

showed analogous plots for the MPC.

The fact that too few GDP outturns fell in the censored region since 2011q4 of course needs quali-

fication. As discussed earlier, with (big) recessions occurring about every seventeen years (roughly the

length of our full sample) and assuming that these are the main cause of large forecast errors, we need one

recession in seventeen years of GDP data to get a good impression of censoring. In such circumstances,

and also bearing in mind the Monte Carlo evidence that estimation can be problematic in small-samples

especially of only about T = 40 observations, judgement is likely to work better. The implication of this

is also that, as seen in Table 4, we should expect a very low proportion of outturns to fall in the MPC’s

censored region when looking at the sub-period 2011q4-2018q3.

Table 5 complements this discussion of coverage by reporting the censored logarithmic scores over the

two more recent evaluation periods. The ranking of the different forecasts proves sensitive to whether

we use LS
C

A or LS
C

B . Recall LS
C

A penalises outlying observations, that fall in the censored regions, more

heavily than LS
C

B that does not take a stance on the relative frequency of outlying observations in the
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left and right tails. This explains why, for a given forecast, LS
C

A ≥ LS
C

B . Looking at inflation first, using

LS
C

A we see that, consistent with Table 4, none of the data-based forecasts match the performance of the

MPC. But these gains for the MPC are not statistically significant. But for LS
C

B the data-based densities

are more competitive and the normal density, in fact, delivers the highest score over both evaluation

periods. This is at apparent odds with Table 4 where the normal density was seen to censor too many

inflation outturns. We rationalise this by noting that by having narrower BCR intervals for inflation

(than the MPC) the data-based densities do, in general, have poorer coverage rates. They censor too

many observations. But when an inflation outturn does fall within its narrower BCR a higher score is

awarded than for the MPC with its wider BCR intervals. The penalty for placing too many observations

outside the BCR interval is weaker for LS
C

B than LS
C

A given that the cost is capped at ln(0.1) for LS
C

B .

In large(r) samples, as proper scoring rules, both censored scoring rules would reward correct coverage.

For GDP growth when using the latest vintage estimates, Table 5 shows the MPC densities to be

superior than the data-based densities under both LS
C

A and LS
C

B . These gains are statistically significant.

Although the second release is not the stated target for the MPC, the importance of data revisions is

revealed by observing that when using the second release GDP data to define the outturns, the two-piece

normal does outperform the MPC in three of the four cases considered in Table 5. These gains are not,

however, statistically significant.

The averaged scores reported in Table 5 may, of course, mask temporal changes in absolute and relative

forecast performance. Accordingly, to provide an indication of the relative and potentially time-varying

performance of the five forecasts, we looked at their quarter-by-quarter censored log scores. For space

reasons, results are shown in Section A.4 of the online Appendix. But summarising, we found that the

data-based forecasts have a more volatile performance over time. They do especially poorly, relative to

the MPC, when inflation or GDP growth peaks or troughs. But they often perform better during more

stable periods.

This leads us to conclude not that the data-based censored density forecasts developed here are

superior to judgement-based forecasts, like those from the MPC, - in fact the reverse holds in general -

but that they offer a helpful benchmark. It is by comparison with these data-based alternatives that the

judgements made by the MPC about the parameters of its forecast densities can be understood. We

therefore encourage their routine production and analysis, as an input into subsequent discussions.
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Table 5: Out-of-sample average censored log scores, LS
C

A and LS
C

B

Evaluation: 2005q1-2018q3/q4 Evaluation: 2011q4-2018q3/q4

LS
C

A LS
C

B LS
C

A LS
C

B

Inflat GDP Growth Inflat GDP Growth Inflat GDP Growth Inflat GDP Growth
2nd Latest 2nd Latest 2nd Latest 2nd Latest

MPC -1.60 -1.70 -1.68 -1.47 -1.61 -1.57 -1.60 -1.68 -1.44 -1.58 -1.66 -1.44

2Pt -1.88 -1.71 -1.92* -1.47 -1.62 -1.76* -2.29 -1.85* -1.81* -1.61 -1.84* -1.81*
2PN -1.75 -1.63 -1.82* -1.48 -1.52 -1.68* -2.03 -1.72 -1.73* -1.59 -1.65 -1.64*
N -1.70 -1.75 -1.87* -1.40 -1.55 -1.68* -1.81 -1.81* -1.72* -1.53 -1.67 -1.64*
t -1.70 -1.76 -1.88* -1.52 -1.61 -1.73* -1.82 -1.86 -1.72* -1.75 -1.81 -1.72*
Notes: The score for the best performing density is highlighted in bold. Each data-based censored density forecast is

tested relative to the MPC, with an asterisk indicating rejection of the null of equal censored forecasting performance at
the 95% level using HAC standard errors. Dates for the two evaluation periods refer to outturns, with the forecasts made

two years previously
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9 Conclusion

This paper considers a hitherto largely overlooked feature of the Bank of England’s published fan charts.

The MPC at the Bank of England, in effect, publish “censored” density forecasts that do not take any

view on the outer ten percent of the distribution beyond saying that it does not overlap with the inner

ninety per cent. The probabilities in the ten percent tails are unknown, they are not specified: they

may well be drawn from a different (perhaps unknown or unspecified) distribution to the inner ninety

percent. While there is no reason, in other applications, to fix the censoring at ten percent, what the

Bank of England appear to be providing are density forecasts that communicate the known unknowns

but also acknowledge the (possibility of) unknown unknowns. Indeed, an important question for future

research, in anticipating applications beyond the MPC, is whether the degree of censoring should vary

over time. This could reflect the judgement of the forecaster - at times when the forecaster is especially

uncertain about their probability forecasts, they may choose to censor more than ten percent of their

density forecast. By setting the censoring at ten percent the MPC are stating that there is a one in

ten chance that the unexpected happens; although their use of BCRs and asymmetric forecast densities

means that this ten percent need not be evenly split between the left and right tails of the forecast

density. The MPC could communicate this directly - if they wished to alert the public to upside or

downside uncertainties, as opposed to risks.

We examine the consequences of censoring both for estimation of the parameters of the density function

of past forecast errors - which the MPC use as the basis for constructing their forecasts - and for ex post

evaluation of the MPC’s forecasts.

Accordingly, we propose and then evaluate, through Monte Carlo, a new fixed point estimator that

fits a potentially skewed and fat tailed density to the inner observations but does not take a view on what

distribution the outer observations come from. Our estimator is relevant to any researcher with a small

sample of data who is concerned that the outtermost observations may be drawn from a distribution

different from that defining the central observations. More specifically, we hope that our estimator will

become increasingly relevant for the MPC and the Bank of England as sample sizes are now large enough,

according to our Monte Carlo evidence, to estimate censored skewed and fat tailed densities more reliably

than was possible in our out-of-sample experiments which had to split the available sample.

In re-evaluating the MPC’s density forecasts, but for the first time acknowledging the censoring, we

find that the MPC’s two-year ahead inflation densities are in fact better calibrated than if the censoring

is (incorrectly) ignored. Comparison with data-based censored forecasts also reveals the value of the

MPC’s judgement about the width of the censoring bounds - a measure of risk. The importance of

acknowledging the censoring when fitting densities to past forecast errors is seen via comparison with

uncensored densities. Censored density forecasts, especially for GDP growth, are less skewed: in effect,
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the skew present in the uncensored density is a consequence of forcing all observations to be drawn from

the same (potentially fat tailed and skewed) density. Given the importance of assessments of skew for

statements about the balance of risks in the macroeconomy (e.g. see Adrian et al. (2019)), this paper

demonstrates that the choice of statistical estimator used to produce the density forecast is more than a

dry statistical issue.
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A Online Appendix: Supplementary Results for:

Forecasting with Unknown Unknowns: Censoring and Fat
Tails on the Bank of England’s Monetary Policy Committee
by Mitchell and Weale

A.1 Estimation of skew densities

In order to explore further the suitability of the two-piece t and normal distributions we consider the

general family of skew distribution parameterisations defined in Arellano-Valle et al. (2005) and Rubio

and Steel (2014).27 Like the two-piece normal of Fechner (1897), this family of distributions involves

joining two distributions, but not necessarily normal, with different scale parameters σ1 and σ2 on either

side of the location parameter, µ. Specifically, Arellano-Valle et al. (2005) reparameterise these two

scale parameters in terms of a common scale, σ, and a skewness parameter, α, and define the family of

distributions as:

f(yt|µ, σ, α) =
2

σ (a(α) + b(α))
f

(
yt − µ
σb(α)

)
if yt < µ (A.1)

f(yt|µ, σ, α) =
2

σ (a(α) + b(α))
f

(
yt − µ
σa(α)

)
if yt ≥ µ (A.2)

where f is a symmetric density and a(α) and b(α) are known and positive asymmetry functions. Asym-

metries are introduced when a(α) 6= b(α).

A leading specific density within this family (when a(γ) = γ, b(γ) = 1/γ, for γ > 0 and f(.) is the t

density), that we focus on in the main paper, is the two-piece t distribution described by Fernandez &

Steel (1998)28:

f(yt|µ, σ, γ) =
2

σ (γ + 1/γ)

Γ
(
ν+1
2

)
Γ
(
ν
2

)
(πν)

1/2

[
1 +

(yt − µ)2

γ2νσ2

]−(ν+1)/2

if yt < µ (A.3)

f(yt|µ, σ, γ) =
2

σ (γ + 1/γ)

Γ
(
ν+1
2

)
Γ
(
ν
2

)
(πν)

1/2

[
1 +

γ2(yt − µ)2

νσ2

]−(ν+1)/2

if yt ≥ µ. (A.4)

This estimates, as well as the location and scale parameters, the number of degrees of freedom of the

t-distribution.

Generalisations of (A.1)-(A.2) involve introducing additional (shape) parameters; see Rubio and Steel

(2015). Rubio and Steel’s (2015) five-parameter double two-piece distribution (DTP) uses different scale

but also different shape parameters either side of the mode, µ. The DTP family contains the original

27Arellano-Valle et al. (2005) generalise Mudholkar and Hutson (2000) who introduced the so-called epsilon-skew-normal
family of densities. This family reparameterises Fechner (1897) so that the two piece normal is re-expressed in terms of
an explicit skewness parameter. When this parameter equals zero, the epsilson-skew normal density reduces to the normal
density.

28This is an instance of the so-called Two-Piece Scale (TPSC) family of densities introduced by Rubio and Steel (2015)
when a(α) = σ1/σ, b(α) = σ2/σ; σ1 and σ2 denote the scale of each of the two distributions being joined.
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two-piece densities as a subclass, as well as a four-parameter distribution (DTSH) that varies only the

shape on each side of the mode. Rubio and Steel (2015) define the DTP as:

f(yt|µ, σ1, σ2, δ1, δ2) =
2ε

σ1
f

(
yt − µ
σ1

; δ1

)
if yt < µ (A.5)

f(yt|µ, σ1, σ2, δ1, δ2) =
2(1− ε)
σ2

f

(
yt − µ
σ2

; δ2

)
if yt ≥ µ (A.6)

where

ε =
σ1f (0; δ2)

σ1f (0; δ2) + σ2f (0; δ1)
; (A.7)

or

f(yt|µ, σ, γ, δ1, δ2) =
2

σc(γ, δ1, δ2)
f (0; δ2) f

(
yt − µ
σb(γ)

; δ1

)
if yt < µ (A.8)

f(yt|µ, σ, γ, δ1, δ2) = f (0; δ1) f

(
yt − µ
σa(γ)

; δ2

)
if yt ≥ µ (A.9)

where

c(γ, δ1, δ2) = b(γ)f (0; δ2) + a(γ)f (0; δ1) . (A.10)

Special cases of DTP include the distribution considered by Zhu and Galbraith (2010) that allows the

number of degrees of freedom in (A.3)-(A.4) to be different on each side of the mode. Note also how the

DTP includes four-parameter two piece scale (TPSC) distributions, such as the two-piece t distribution

seen in (A.3)-(A.4), by setting δ1 = δ2 = δ, when f(.) is a t density. Rubio and Steel (2015) also consider

the subfamily of two-piece shape (TPSH) distributions obtained when σ1 = σ2 = σ in (A.5)-(A.6). This

produces distributions with different shape parameters in each direction; following Rubio and Steel (2015)

let ζ explain the difference between the shapes on either side of the model, where δ1/δ2 = b∗(ζ)/a∗(ζ)

and {a∗(ζ), b∗(ζ)} are positive differentiable functions.

We consider five-parameter DTP and four-parameter DPSC and TPSH distributions with f(.) chosen

to be the t density and the symmetric sinh-arcsinh (SAS) distribution of Jones and Pewsey (2009),

denoted sJP with asymmetry parameter ε. The SAS distribution allows for both heavier and lighter tails

than the normal distribution which is a special case when δ1 = δ2 = 1 and γ = 0.

As a robustness check, we compare the in-sample fit of the two-piece t distribution with these other

classes of distributions. As in Rubio and Steel (2015) we do so through classical information criteria

(the AIC and BIC) based on the ML estimates. Estimation makes use of the sn package in R and R

packages available at http://rpubs.com/FJRubio/DTP and http://rpubs.com/FJRubio/BTV. For com-

parison purposes, we also consider the skew normal distribution of Azzalini (1985) and the skew t distri-

bution of Azzalini and Capitanio (2003).29 The skew normal of Azzalini (1985) is defined by the density

function

f(yt|µ, σ, α) =
2

σ
φ(
yt − µ
σ

)Φ(α
yt − µ
σ

) (A.11)

29The skew t distribution of Azzalini and Capitanio (2003) has also found recent application in macroeconomics; e.g. see
Adrian et al. (2019).
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where φ and Φ denote the standard normal probability density function and distribution function, re-

spectively, and α which regulates the skew or shape. The skew t of Azzalini and Capitanio (2003) is

defined by the density function

f(yt|µ, σ, α, ν) =
2

σ
f(
yt − µ
σ
|µ, σ, ν)F (α

yt − µ
σ

√
ν + 1

ν +
(
yt−µ
σ

)2 |µ, σ, ν + 1) (A.12)

where f and F denote the Student t density function and distribution function, respectively with ν

degrees of freedom. Again α regulates the shape; when α = 0 the skew t reduces to the t and when

α = 0 and ν = ∞ the density reduces to the Gaussian with mean µ and standard deviation σ. And we

consider the Normal Laplace distribution of Ramierez-Cobo et al. (2010) which is the convulution of a

normal distribution and a two-piece Laplace distribution with location 0 and two parameters α and β.

The Normal Laplace density has heavier tails than the normal density.

Table A1 shows the ML parameter estimates and the AIC and BIC values for these twelve density

functions when fitted to the forecast error data considered in Section 3. Looking across all three forecast

error series, we see that the two piece t fits the data competitively relative to the alternatives. While

improvements in in-sample fit are achieved by the more flexible DTP and TPSC (with four or five

parameters), the more parsimonious (three parameter) two piece t is always ranked in the top half of the

twelve densities in terms of goodness of fit - according to both the AIC and BIC. The ML parameter

estimates, across the different densities, also confirm the impression from Figures 2, 3 and Figure A1

(below) that asymmetries are most important for GDP growth. There is also, consistent with results in

the main paper, evidence that allowing for fat tails improves fit. For both sets of GDP forecast errors,

the two piece normal density (and the skew normal density of Azzalini (1985)) do not fit the data as well

as the two piece t (and the skew t density of Azzalini and Capitanio (2003)). When using second release

data, as in Figure A1, we also see that the skewed normal densities have divergent skew parameters, in

contrast to the skewed t densities.

For inflation, Table A1 shows that the BIC, which favours parsimony, in fact selects a Gaussian

density as the preferred density. But when using the AIC this Gaussian density ranks only eighth, with

the asymmetric t and normal densities offering improvements in fit.
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Table A1: GDP and inflation forecast error data (considered in Section 3): ML estimates of different
skewed and fat tailed density functions and AIC and BIC values

GDP final

AIC BIC µ̂ σ̂ γ̂ or α̂ ν̂ δ̂ ζ̂
2Pt 294.57 303.90 0.03 1.01 1.30 2.51
2PN 327.28 331.94 0.90 1.35 2.13
DTP SAS 288.33 299.98 −1.13 15.45 −0.98 7.95 −0.96
DTP t 297.21 308.87 0.35 1.10 0.44 2.93 −0.08
TPSC SAS 296.06 305.38 −0.16 0.52 0.22 0.52
TPSH SAS 291.91 301.23 −0.21 0.62 0.60 −0.17

sJP 293.91 303.23 −0.22 0.56 (ε̂) −0.22 (β̂) 0.55
SN 304.15 311.14 1.46 3.00 −4.83
St 293.12 302.44 0.50 1.33 −1.20 2.75

Normal Laplace 294.58 303.90 0.65 4.76 0.62 (β̂) 0.79
N 327.28 331.94 −0.74 2.03
t 327.28 331.94 −0.74 2.03 15.78

GDP second release

AIC BIC µ̂ σ̂ γ̂ or α̂ ν̂ δ̂ ζ̂
2Pt 275.51 284.84 0.54 0.67 2.50 2.93
2PN 281.08 288.08 1.14 0.29 10.00
DTP SAS 271.82 283.47 −0.41 9.11 −0.95 9.13 −0.95
DTP t 276.20 287.86 0.46 0.98 0.63 26.06 −0.90
TPSC SAS 275.46 284.78 0.56 0.60 0.75 0.60
TPSH SAS 272.78 282.10 0.01 0.74 0.85 −0.39

sJP 282.32 291.65 1.77 0.02 (ε̂)− 6.64 (β̂) 1.22
SN 279.90 286.89 1.15 2.93 −311573.60
St 275.07 284.39 0.85 1.78 −6.17 3.19

Normal Laplace 275.08 284.41 0.48 5.24 0.58 (β̂) 0.40
N 319.97 324.63 −1.05 1.93
t 319.97 324.63 −1.05 1.93 12.60

Inflation

AIC BIC µ̂ σ̂ γ̂ or α̂ ν̂ δ̂ ζ̂
2Pt 247.60 256.97 −0.06 0.86 0.79 3.97
2PN 247.73 254.76 −0.08 1.13 0.78
DTP SAS 246.63 258.35 −0.40 0.54 −0.67 0.59 −0.23
DTP t 249.60 261.31 −0.05 0.88 −0.22 4.05 0.04
TPSC SAS 244.66 254.04 −0.09 0.53 −0.24 0.64
TPSH SAS 244.86 254.23 0.07 0.54 0.66 0.10
sJP 262.09 271.46 −2.42 7.54 (ε̂) 1.84 4.83
SN 251.30 258.33 0.33 1.19 0.00
St 248.12 257.50 −0.68 1.41 1.55 10.75

Normal Laplace 248.40 257.77 0.13 0.96 1.06 (β̂) 0.09
N 249.30 253.99 0.33 1.19
t 249.30 253.99 0.33 1.19 15.59
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Figure A1: GDP Growth (Second Release Outturns): Forecast Error Histogram and Uncensored Two
Piece Normal and t Densities

Note: Second release GDP estimates used to define the ‘outturn’. 76 observations used. The p-values from tests for the
uniformity of the probability integral transforms, using an Anderson-Darling test, against the 76 observations are: 0.15

(2Pt), 0.00 (2PN), 0.00 (for a one-piece t) and 0.01 (for a one-piece normal).

A.2 Fitting uncensored and censored densities: robustness

Here we report supplementary results referred to in the main body of the paper.

A.2.1 Use of second release estimates to define forecast errors

Figure A1 shows the uncensored two-piece t and normal densities fitted to forecast errors using the second

release GDP growth data as the outturn. Comparison with Figure 5, that shows analogous densities but

with outturns measured using “mature” estimates of GDP, reveals that data revisions matter. Figure

A1 indicates more skew to the forecast errors when second release data are used as outturns. For the

two-piece normal the skewness parameter diverges to 89.7. For the two-piece t, γ rises from 1.3 to 2.5.

A.2.2 Censored densities: use of LCB

Figures A2 and A3 show the consequences of fitting LCB rather than LCA to the inflation and GDP (final

vintage) forecast errors. Here the quadratic criterion, Pr, also converges to a value of 0 but only for

the two-piece t densities. For the two-piece normal densities, despite experimentation, it did not prove

possible to obtain satisfactory estimation and Pr > 0 even as r → ∞. The estimated densities failed to

meet the requirements of a BCR (i.e. the probability density of being at either censoring point should be

equal); we therefore do not report them. Recall LCA distinguishes the lower from the upper tail, with each

having its own probability. This means that the process of fitting is likely to place some observations in
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Figure A2: Inflation: Forecast Error Histogram and Censored Two Piece t Density using LCB
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Note: RPIX forecasts (until Nov. 2003); CPI forecasts thereafter. 77 observations used. The p-values from tests for the
uniformity of the probability integral transforms, using an Anderson-Darling test, are: 0.84 (2Pt). 10% of the observations

fall outside 2Pt.

each tail rather than locating all the censored observations in only one of the tails as in LCB - our focus

here. The expected number of observations in each tail depends on the skew parameter.

Figure A2 shows that for inflation the two-piece t fits the data with a very low number of degrees of

freedom. We also observe, which is odd, that LCB places all of the censored observations in the left tail -

and as a result, to fit the remaining errors, it requires a much more skewed density than LCA in Figure 2.

For GDP growth, Figure A3 indicates both less evidence for asymmetry relative to LCA (Figure 3)

and that the nature of the observed asymmetry has switched from right to left skew. This is because the

majority of the censored observations associated with the recession are now all in the lower tail. As a

result, the distribution is more symmetric because no attempt is made to place any censored observations

in the right-hand tail, as in Figure 3 using LCA. We also, find, however, that even when no effort is made

to accommodate the recession (given that the recessionary data are censored), a low number of degrees

of freedom is selected.
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Figure A3: GDP (final vintage): Forecast Error Histogram and Censored Two Piece t Density using LCB
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Note: Latest release GDP estimates of used. 76 observations used. The p-values from tests for the uniformity of the
probability integral transforms, using an Anderson-Darling test, are: 0.91 (2Pt). 9% of the observations fall outside 2Pt.
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A.2.3 Densities using specific windows of data

Figures A4-A7 follow in the spirit of practice at the Bank of England by plotting some illustrative

(uncensored) densities fitted to specific (rolling) samples of forecast error data.

For inflation, Figures A4 and A5 consider, respectively, the first ten years of our forecast error data

and the last ten years. For GDP growth, we select the sample period more carefully/subjectively, aware

of the effects of the global financial crisis in 2008 on the GDP forecast errors. Accordingly, Figure A6

considers a sample of forecast error data before the crisis; while Figure A7 considers a sample after the

crisis. Experimentation revealed that the choice of estimation window for these uncensored densities

could have a large effect on the shape of the densities fitted to the GDP forecast errors. The dates in the

figures refer to outturns, with the forecasts made two years previously.

Figure A4: Inflation: Forecast Error Histogram and Uncensored Two Piece Normal and t Densities fitted
to Error data from 1999q4-2008q3
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Figure A5: Inflation: Forecast Error Histogram and Uncensored Two Piece Normal and t Densities fitted
to Error data from 2009q1-2018q4
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Figure A6: GDP growth: Forecast Error Histogram and Uncensored Two Piece Normal and t Densities
fitted to Error data from 1999q4-2008q2
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Figure A7: GDP growth: Forecast Error Histogram and Uncensored Two Piece Normal and t Densities
fitted to Error data from 2011q2-2018q3

-10 -8 -6 -4 -2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Forecast Errors in GDP

Two piece t (2Pt) distribution
__

 Param.  

  = 1.25e+07

  = -0.706

  = 0.956

  = 1.03

__
Two piece normal (2PN) distribution

 Param.  

  = -0.707

  = 0.956

  = 1.03

A9



A.3 Further Properties of the MPC’s Forecasts

A.3.1 Probabilities of Outturns Falling Above or Below the MPC’s Censor Points

It is a matter of interpretation, formalised in the distinction between LCA and LCB in equations (5) and

(8), but if the MPC took (or is assumed to have taken) a view on whether the unknown tail uncertainties

(summing to 10%) were in the left or right hand tail, we can then sensibly compute the probabilities

that Y > yU and Y < yL. Recall for asymmetric densities, given yU and yL are defined as BCRs, these

probabilities need not equal 5%.

Figures A8 and A9 (focusing on the middle panels) show that these probabilities vary over time and

often differ from 5%. The strongest departures from equal (5%) probabilities occur for GDP growth in

the aftermath of the financial crisis. In 2009, for example, there was close to a 7% probability that GDP,

two years ahead, fell below yL.
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Figure A8: Properties of the MPC’s GDP growth forecasts: 10% BCR censoring thresholds
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Figure A9: Properties of the MPC’s inflation forecasts: 10% BCR censoring thresholds
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A.3.2 Evaluation of interval forecasts defined using the central percentiles or the BCRs

Here we illustrate empirically that it matters whether interval forecasts are extracted from the MPC’s

density forecasts based on central percentiles or k = 10 BCRs. In Figures A10 to A12 we plot PIT

histograms using both of these options for inflation and the two measures of GDP growth (final vintage

and second release).

In each Figure, the top left plot (for comparison purposes) repeats the relevant panel from Figure 8

by showing histograms for the PITs, zt. The top right plot is for the censored PITs:
{
zc,t−zL,t

zU,t−zL,t

}
. The

bottom two panels plot the PITS having sorted them into k = 10 bins. In effect, this involves reducing

the density forecast to ten interval forecasts. As anticipated in Section 8.1, we break the density forecast

into interval forecasts based on both (central) percentiles and 10% BCRs: in each case, the PITs are

arranged so that the far left bin indicates how many observations fell in the outermost 10% interval (both

left and right tail, so for intervals based on percentiles this is PITs both between 0 and 0.05 and between

0.95 and 1); the bin to the immediate right of this plots the number of observations that fell between

the 10% and 20% interval (both left and right tail, so for intervals based on percentiles this is PITs

both between 0.05 and 0.1 and between 0.9 and 0.95), and so on, until the bin on the far right plots the

number of outturns that fell in the innermost 10% interval (so for intervals based on percentiles this is

PITs between 0.45 and 0.55).

If the MPC did not censor its density forecasts, the more any of these PITs histograms deviate from

uniformity the weaker the evidence for correct forecast calibration. But, with censoring, only the plots on

the right-hand-side of Figures A10 to A12 should be uniform. That is, non-uniformity of the PITs in the

plots on the left could be a feature not of calibration failure, but of failing to account for the censoring

in evaluation.

The uncensored PITs plot in the top left of Figure A10 - for inflation - looks familiar compared

to figures in Independent Evaluation Office (2015) (see Box 4 on their pages 50-51). That is, relative

to forecast there were too many high outturns for inflation; in other words, the MPC understated the

probability of high inflation outturns, especially from 2007. But this specific plot, as discussed, does not

acknowledge the censoring. When we correct for this and look instead at the top right plot the story

seems to change. The top right histogram plot appears more uniform. This suggests that the MPC’s

forecasts were not so bad after all, when we rightly acknowledge the censoring. The bottom two plots

also appear to indicate less bias, than the top left plot, although when we look at the bottom right plot

there do appear to be too many observations falling in the centre of the density. We did subject each of

the histograms in Figure A10 to Pearson chi-squared tests as discussed in Wallis (2003) and find p-values

of 0.14 (top left), 0.85 (top right), 0.55 (bottom left) and 0.28 (bottom right). So these p-values do

confirm our visual impression that calibration is better both in the top right than top left panel, but not
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in the bottom left than bottom right (though the test in the bottom left, as in the top left, is incorrect,

as it ignores the censoring).

Figures A11 and A12 plot the PITS for the MPC’s GDP forecasts, defining errors against final

vintage and second release GDP outturn data, respectively. Comparison of these two figures suggests

that calibration remains imperfect, but slightly stronger, when measured against final release rather than

second release GDP data. Comparing the bottom left and bottom right plots we also see that the shape

of the histograms is sensitive to whether we define the ten intervals using percentiles or BCRs. There is

tentative evidence that calibration is better when BCRs are used - as is the MPC’s (albeit overlooked)

intention. This is confirmed by p-values from the Pearson chi-squared test: 0.04 (bottom left) and 0.25

(bottom right) in Figure A11 and 0.00 (bottom left) and 0.23 (bottom right) in Figure A12.
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Figure A10: MPC Inflation Forecast PITs (2 year ahead forecasts made from 1998q1-2017q1 of outturns
in 1999q4-2018q4)

Figure A11: MPC GDP Growth Forecast PITs, final vintage (2 year ahead forecasts made from 1998q1-
2016q4 of outturns in 1999q4-2018q3)

Figure A12: MPC GDP Growth Forecast PITs, second vintage (2 year ahead forecasts made from 1998q1-
2016q4 of outturns in 1999q4-2018q3)
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Figure A13: PIT histograms for the censored densities over the out-of-sample evaluation period, 2005q1-
2018q3/q4

A.4 Additional out-of-sample results: 2005q1-2018q3/q4

A.4.1 PITs plots

Figure A13 plots histograms for the rescaled PITs,
{
zc,t−zL,t

zU,t−zL,t

}
, for the MPC and all four data-based

censored forecasts over our (longer) out-of-sample period analysed in Tables 4 and 5. None of the

histograms appear particularly uniform. But the MPC’s inflation density forecasts do appear flatter. All

of the data-based density forecasts, like the MPC, are unable to deliver uniform PITs for GDP growth.

There remains a preponderance of outturns falling towards the left of the GDP density forecast, largely

due to the failure to forecast (two years ahead) the global financial crisis and ensuing recession in the

U.K..

A.4.2 Time-varying out-of-sample performance

To provide an indication of the relative and potentially time-varying performance of the five forecasts,

Figures A14 to A16 plot their quarter-by-quarter censored logarithmic scores. To make it easier to

observe when an outturn falls in the the censored region, we report results using LS
C

B - since this gives

a (constant) score of log(0.1) = −2.3 when the outturns falls in the censored region - irrespective of

whether this is the upper or lower tail. We do this for inflation in Figure A14 and for GDP, against both

measures of the outturn, in Figures A15 and A16.

The Figures show that the data-based forecasts are more volatile in terms of their performance over
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time. They do especially poorly, relative to the MPC, when inflation or GDP growth peaks or troughs.

But they often provide better performance during the more stable periods.

We observe that the MPC forecasts descend to the lower bound score, of −2.3, far less frequently than

the data-based forecasts. In other words, out-of-sample the (subsequent) outturns fell in the censored

region of the data-based density forecasts far more frequently than they did for the MPC density. This

is consistent with the finding in Table 4 that outturns fall in the censored region much more than 10%

of the time: the data-based densities censor too many observations out-of-sample. In contrast, the MPC

densities, especially over the longer-sample, have a much better coverage rate, closer to 10%. This suggests

that the data-based forecasts set too narrow a width for the 90% BCR. In contrast, no doubt reflecting

their access to more up-to-date information than the data-based forecasts which use forecast error data

at least two years out-of-date, the MPC appear better able to set the (time-varying, as seen in Figures 2

and 3) widths of the 90% BCR intervals.
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Figure A14: Censored log scores (LSCB,t) of MPC and data-based density forecasts of inflation
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Figure A15: Censored log scores (LSCB,t) of MPC and data-based density forecasts of GDP growth (second
estimate)
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Figure A16: Censored log scores (LSCB,t) of MPC and data-based density forecasts of GDP growth (latest
estimate)
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A.4.3 Properties of the data-based censored forecasts

To understand the time-varying performance of the data-based forecasts when estimated recursively, as if

in real-time, Figures A17 to A20 show the evolution over time of the BCRs, the underlying distributional

parameters and the error associated with the modal point forecast. For comparative purposes, alongside

the 2PN error plot we also indicate the Bank of England’s (the MPC’s) own forecasting error for its

modal forecast. We show results both for inflation and GDP growth, for both 2Pt and 2PN, focusing on

use of the latest or final vintage GDP to measure the outturns - given this is the MPC’s stated preference.

Figure A17: Properties of the data-based censored forecasts for 2Pt GDP Growth (final vintage outturns):
evolution over time of the 10% BCR censoring thresholds, distributional parameters and point forecasting
error
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Figure A18: Properties of the data-based censored forecasts for 2PN GDP Growth (final vintage out-
turns): evolution over time of the 10% BCR censoring thresholds, distributional parameters and point
forecasting error
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Figure A19: Properties of the data-based censored forecasts for 2Pt Inflation: evolution over time of the
10% BCR censoring thresholds, distributional parameters and point forecasting error
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Figure A20: Properties of the data-based censored forecasts for 2PN Inflation: evolution over time of the
10% BCR censoring thresholds, distributional parameters and point forecasting error
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