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1 Introduction

What generates the large trading volume activity observed in markets is a long standing question

in the finance literature. While rational expectations models have been widely employed, they

encounter limitations when attempting to explain trading activity solely based on public informa-

tion (Banerjee & Kremer, 2010; Milgrom & Stokey, 1982). These models require the inclusion of

an external process, such as private information, liquidity shocks, or the consideration of hetero-

geneous prior information to generate trading activity. However, these mechanisms often come

with restrictions or rely on external processes, making it challenging to explain the large trading

volumes observed in markets(Glaser & Weber, 2007; Hirshleifer, 2001). One modeling approach

that potentially can generate larger differences and swings in expectations to account for trading

volume is ambiguity (Knightian Uncertainty).

In this paper, I study the effect of ambiguity on trading volume. I propose a trading volume

model that explicitly incorporates ambiguity about public information announcements. To develop

this model, I introduce agents with ambiguous preferences into the difference in prior beliefs model

of Kandel and Pearson (1995). These ambiguous preferences induce heterogeneous interpretations

of public information by affecting expectations, and through this heterogeneity the expectations

channel of ambiguity generates trading activity. The volatility channel of ambiguity plays a

role in amplifying or smoothing the main price channel of trading volume and the differences in

expectations. I derive three testable hypotheses. My first hypothesis H1 postulates that on average

ambiguity positively influences trading volume. My second hypothesis H2 is that ambiguity affects

the conventional positive relationship between price volatility and trading volume by reducing the

elasticity of trading volume to price volatility. Lastly, my third hypothesis H3 proposes that

trading activity linked to ambiguity significantly contributes to the returns of turnover sorted

portfolios, returns typically attributed to liquidity in the literature.

I bring my model to equity data and show that on average a one-standard-deviation increase in

daily Ambiguity translates approximately in a 13%-standard-deviation increase in trading volume

after controlling for price movements and differences in prior beliefs. On a monthly basis, I

find that a one-standard-deviation in Ambiguity translates approximately in a 20%-standard-

deviation increase in trading volume. I also find that Ambiguity distorts the on average positive

elasticity between trading volume and price volatility, weakening this channel. A one-standard-
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deviation increase in price change volatility times daily Ambiguity translates in a -9%-standard-

deviation decrease in trading volume, rather than an increase. I also empirically find that since

1990 approximately 70% of the positive returns of a US long-short Turnover sorted portfolio are

associated to trading volume driven by Ambiguity. The literature traditionally associates these

returns to Liquidity.

Trading volume is a relevant market measure that is widely used for purposes such as measuring

liquidity (Chordia et al., 2001), understanding information transmission or the structure of markets

(Karpoff, 1986) among other uses. Despite its variety of practical uses, it is still an open puzzle

what are the drivers behind the large trading volume observed in most markets and its relation to

market liquidity. Cochrane (Cochrane, 2016) noted that ”volume is the great unsolved problem

of financial economics”, Shleifer (2000) ranked the volume puzzle among the top 20 issues of

behavioural finance, and De Bondt and Thaler (1995) mentioned that volume ”is perhaps the

single most embarrassing fact to the standard finance paradigms”.

There are several empirical studies that have documented the on average high levels of trading

volume in markets. Barber and Odean (2000) report that between 1991 to 1996 the average US

household had a portfolio turnover of around 75%, while the top active quantile of retail investors

showed annual turnover rates of 250%. Dorn and Huberman (2005) report average turnover rates

of around 100% among German retail investors, Barber et al. (2009) report turnover rates of up

to 300% in Taiwan, and Gao (2002) reports turnover rates of 500% in China. According to the

literature, such levels of trading activity can not be explained by rational expectations models

(Dorn & Sengmueller, 2009). Using a rational expectations model calibrated on Nasdaq data, Sen

(2002) obtained an average holding period of 98 months for stocks, a much longer period than the

real Nasdaq average holding period of 5.1 months.

In relation to the practical use of trading volume as a proxy for liquidity (Abdi & Ranaldo,

2017; Avramov & Chordia, 2006; Becker-Blease & Paul, 2006; Eckbo & Norli, 2005; Illeditsch,

2011; Lee, 1993; Rouwenhorst, 1999), there are several empirical studies that have found results

inconsistent with the finance literature (Bekaert et al., 2007; Chordia et al., 2001). One of the most

famous is the study of Chordia et al. (2001), who found a puzzling negative correlation between

stock returns and variability of trading volume. According to the asset pricing literature, for assets

with higher liquidity risk one would have expected higher returns. Bekaert et al. (2007) found that

across 19 emerging stock markets a return based measures of liquidity was priced, while turnover
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was not priced. These inconsistencies have cast doubts on the suitability of volume based measures

of liquidity (Barinov, 2014; Gabrielsen et al., 2011; Johnson, 2008; Le & Gregoriou, 2020; Lee &

Swaminathan, 2000), and have open the question of whether trading volume might be capturing

some other factor(s)?.

With this model I show that the expectations channel of ambiguity plays an important role

in the generation of trading activity and that a large portion of a standard US Turnover portfolio

returns usually associated to liquidity are actually driven by information ambiguity. This research

will contribute to the growing literature on the effects of Ambiguity on markets and informa-

tion transmission through prices (Condie & Ganguli, 2017; Easley & O’HARA, 2010; Epstein &

Schneider, 2010; Mele & Sangiorgi, 2015; Ozsoylev & Werner, 2011). In relation to previous trad-

ing volume models or closed form equations that explicitly incorporate Ambiguity about public

information, to the best of my knowledge there are two previously existing works. The model

of Caskey (2009) about the ambiguous perception of public information and the partially related

model of Hsiao (2019) about the ambiguous perception of others’ beliefs. Both models exploit

the volatility contribution of Ambiguity to generate trading activity, while my model uses the ex-

pectations channel of Ambiguity. The introduction of this expectations channel in a closed form

equation for trading volume and the empirical results showing its statistical significance are the

main contributions of this paper.

The rest of the paper is organized as follows. Section-2 describes the theoretical model. Section-

3 summarizes the data used in the empirical estimations. Section-4 presents the main empirical

results regarding the proposed trading volume, Ambiguity and price change relation. Section-5

presents the empirical results regarding the effects of Ambiguity on the trading volume to price

volatility elasticity. Section-?? presents an empirical application of the model that dissects the

returns of a standard US Turnover sorted Portfolio. Finally, section 7 presents my conclusions.

2 Model

The model is based on a setup similar to Kandel and Pearson (1995). The setup is composed

of two competitive markets, each with two investor types selecting optimal portfolios based on

their own prior beliefs. The key feature of the model is that type-A investors interpret public

information ambiguously. The proportion of these ambiguity-averse (or ambiguity-loving) type-A
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investors operating in both risk-less and risky asset markets is denoted by π, while the proportion

of type-B ambiguity-neutral investors is represented by 1− π.

Both investor types receive a public signal denoted as S, which contains information about the

unknown payoff X̃. The type-A investors prone to ambiguity-averse (or ambiguity loving) behav-

ior, interprets this signal S in an uncertain manner, considering various mental representations or

models. After observing the public signal S, both investor types update their beliefs and adjust

their portfolios accordingly.

The model dynamics consist of three time periods. In period 1, both investor types construct

their initial portfolios based on their individual prior beliefs. In period 2, both investor types

observe the public signal S, which provides information about the unknown payoff X̃ of the risky

asset. Armed with this new information, all investor types update their beliefs and adjust their

portfolios accordingly. This portfolio adjustment leads to trading volume from period (1) to period

(2). Finally, in the last period (3), the risky-asset payoff is realized. For the sake of simplicity in

this setup (Kandel & Pearson, 1995), investors, when building their portfolios at time (1), do not

expect a second opportunity or reason to trade in the future.

2.1 Ambiguity Neutral Investors (Type-B)

The type-B investors utility function is denoted by UB
(
θBt
)
, where θBt represents this investor

type allocation in the risky asset during period (t). W
(
θBt
)
represents the final wealth level for

type-B investors at period 3. This final wealth level W
(
θBt
)
depends on its initial wealth wB

t at

period (t) and the risky asset allocation θBt determined during the same period. In period 1, this

investor type maximizes its expected final utility based on his prior beliefs. Moving to period 2,

they update their beliefs about the distribution of the risky-asset payoff and adjusts its portfolio

accordingly. Finally, in period 3, the risky asset pays off.

This investor type has a standard CARA utility function with absolute risk aversion given by

γ and maximizes the following expected utility.EB
[
−e−γ ∗ W(θBt )

]
if t = t1

EB
[
−e −γ ∗ W(θBt )

∣∣∣S] if t = t2

(2.1)
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The final wealth W
(
θBt
)
of this investor type at period 3 is given by the expression below.

W
(
θBt
)
= wB

t + θBt ∗
(
X̃ − Pt

)
(2.2)

In period 1, this investor type initially believes that the risky-asset payoff X̃ follows a normal

distribution with parameters N
(
µB
X , σ2B

X

)
and precision ρBX = 1/σ2 B

X . However, upon observing

the unexpected signal S, this investor type updates its beliefs. They perceive the signal as biased,

containing information about both the risky-payoff amount X̃ and a measurement bias or error

ϵ. This investor type believes that the measurement error distributes N
(
µB
ϵ , σ2B

ϵ

)
with precision

ρBϵ = 1/σ2 B
ϵ . The total error term of the signal is Ẽ which according to this investor type is

composed of just a measurement error and has precision ρBE .

S = X̃ + ϵ̃ (2.3)

A type-B investor with bullish prior beliefs or a positive interpretation of public information

would assume that the measurement bias mean µB
ϵ is negative. Conversely, a type-B investor with

bearish prior beliefs would believe that the signal has a positive bias µB
ϵ , misleadingly indicating

an expectation above the true expected value of X̃.

2.2 Ambiguity Averse/Loving Investors (Type-A)

The ambiguity-averse/loving A investor type is characterized by a utility function denoted as

UA
(
θAt
)
, with θAt representing their risky asset allocation decided during period (t). Wt

(
θIAt
)

represents this investor type final wealth level at period 3 based on his allocation at (t). Initially,

in the first period, this investor type expected utility looks similar to that of a CARA agent

(ambiguity-neutral), as the source of ambiguity arises in period 2 after observing the signal S.

In this second period 2, after incorporating the information from signal S, this investor type

maximizes their expected utility by considering the ambiguity surrounding signal S according to

their Smooth Ambiguity Utility function.

EA
[
−e−γ ∗ W(θAt )

]
if t = t1

EA
[
−
(
−EA

[
−e −γ ∗ W(θAt )

∣∣∣S,M] )γa∣∣∣S] if t = t2

(2.4)
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The parameters γ and γa are the risk aversion and the ambiguity aversion coefficients of the

utility function, and W
(
θAt
)
represents the final wealth of this investor type given his risky asset

allocation θAt at (t).

W
(
θAt
)
= wA

t + θAt ∗
(
X̃ − Pt

)
(2.5)

The investor type-A maximizes at time 2 his expected utilities obtained after evaluating his

terminal wealth under n-different models Mn by selecting the optimal asset mixture. In this

function, the first expectation operator addresses the traditional risk concept associated with the

payoff X̃, while the second expectation handles the ambiguity surrounding S, by evaluating the

terminal wealth under different M models. In this particular setup, each model M represents a

specific way of interpreting the public information.

Regarding this investor type beliefs about the risky-asset payoff X̃, they initially assume a

normal distribution with parameters N
(
µA
X , σ2A

X

)
and precision ρAX = 1/σ2 A

X . Additionally, they

believe that the signal S is subject to a measurement bias or error ϵ̃ that distributes N
(
µA
ϵ , σ2A

ϵ

)
and has precision ρAϵ = 1/σ2 A

ϵ .

Despite these prior beliefs, this investor type is not completely certain about the appropriate

model for interpreting the signal S. This ambiguity is represented by different models M ∈ Mn,

each characterized by a model-dependent signal component δ̃. This δ̃ distributes across Mn

according to the normal distribution N
(
µA
δ , σ2A

δ

)
. Similarly to the previous investor type, a

bullish investor who tends to interpret information positively would perceive the mean bias µA
δ +µA

ϵ

of the signal as negative, causing the signal S to misleadingly appear below the true expected value

of X̃.

In summary, the investor type-A believes that the signal S consists of three components: the

risky payoff X̃ information, an ambiguous model-dependent component δ̃, and a measurement

error ϵ̃. The total error term of the signal is denoted as Ẽ and has precision ρAE according to
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investor type-A.

S = X̃ + δ̃ + ϵ̃ = S + Ẽ (2.6)

X̃ ∼ N
(
µA
X , σ2A

X

)
δ̃ ∼ N

(
µA
δ , σ2A

δ

)
ϵ̃ ∼ N

(
µA
ϵ , σ2A

ϵ

)
2.3 Market Equilibrium in Period 1

In the initial period 1, each investor type seeks to maximize their expected final utility at period

3 based on their own prior beliefs.

The type-B ambiguity neutral investors maximize the following expected utility at period 1.

max
θBt1

EB
[
UB
(
θBt1
)]

= max
θBt1

−e−γ∗(wB
t1 + θBt1∗ (EB[X̃]−Pt1 )) + 1

2
∗γ2∗θ2Bt1 ∗VARB [X̃] (2.7)

The type-B investors optimal allocation in the risky asset at period 1 is given by the expression

θBt1 below.

θBt1 =

(
µB
X − Pt1

)
∗ ρBX

γ

The ambiguity-averse/loving type-A investors maximize at period 1 the following expected

utility.

max
θAt1

EA
[
UA
(
θAt1
)]

= max
θAt1

−e−γ∗(wA
t1 + θAt1∗ (EA[X̃]−Pt1 )) + 1

2
∗γ2∗θ2At1 ∗VARA[X̃] (2.8)

The type-A investors optimal investment in the risky asset at period 1 is determined by the

expression θIAt1 below.

θAt1 =

(
µA
X − Pt1

)
∗ ρAX

γ

The aggregate demands of both investor types will converge in the risky asset market, estab-

lishing a market clearing price in equilibrium.The type-B ambiguity neutral investors aggregate

demand is (1−π) ∗ θBt1, while the type-A investors aggregate demand is π ∗ θAt1. In equilibrium the
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0-net-supply risky-asset market clears according to the following equation.

(1− π) ∗ θBt1 + π ∗ θAt1 = 0 (2.9)

The price Pt1 represents the equilibrium price at which the risky asset market clears in period

1 and is given by the following expression.

Pt1 =
µ̄X

t1

ρ̄X
t1

(2.10)

where

µ̄X
t1
= π ∗ µA

X ∗ ρAX + (1− π) ∗ µB
X ∗ ρBX

ρ̄X
t1
= π ∗ ρAX + (1− π) ∗ ρBX

The resulting equilibrium allocation at period 1 for both ambiguity-averse/loving type-A and

ambiguity neutral type-B investors is given by the expressions θAt1 and θBt1 below.

θBt1 =
π ∗ ρAX ∗ ρBX ∗

(
µB
X − µA

X

)
γ ∗ ρ̄X

(2.11)

θAt1 =
(1− π) ∗ ρAX ∗ ρBX ∗

(
µA
X − µB

X

)
γ ∗ ρ̄X

2.4 Arrival of Public Information and Update of Beliefs at Period 2

At the beginning of period 2, public information arrives through the signal S, which is visible

to both investor types. Although both types of investors receive the same raw information, their

interpretations differ due to their prior heterogeneous beliefs and the ambiguity faced by type-A

investors.

The type-B ambiguity neutral investors believe that the signal S they are receiving follows this

functional form S = X̃+ ϵ̃. Based on this, they update their beliefs about the mean and volatility

of the future risky asset payoff X̃, constructing the posterior beliefs EB
[
X̃
∣∣∣S] and VARB

[
X̃
∣∣∣S].

These posterior beliefs are derived from normal conditional distributions.

EB
[
X̃
∣∣∣S] = ρBX ∗ µB

X + ρBE ∗
(
S − µB

ϵ

)
ρBX + ρBE

(2.12)
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VARB
[
X̃
∣∣∣S] = (

ρBX + ρBE
)−1

The type-A ambiguity averse/lover investors believe that the signal S comprises the risky-payoff

X̃ information, an ambiguous model-dependent component δ̃ and a measurement bias or error ϵ̃.

S = X̃ + δ̃ + ϵ̃. Based on this assumption, this investor type consistently updates his beliefs

about the mean and volatility of the future risky-asset payoff X̃, constructing the conditional

M model-dependent posterior beliefs EA
[
X̃
∣∣∣S,M] and VARA

[
X̃
∣∣∣S,M], and the unconditional

posterior beliefs EA
[
X̃
∣∣∣S] and VARA

[
X̃
∣∣∣S]. These posterior beliefs are also based on normal

conditional distributions.

EA
[
X̃
∣∣∣S] = ρAX ∗ µA

X + ρAE ∗
(
S − µA

δ − µA
ϵ

)
ρAX + ρAE

(2.13)

V arA[X̃|S] =
[
ρAX + ρAE

]−1

EA
[
X̃
∣∣∣S,M] = ρAX ∗ µA

X + ρAϵ ∗
(
(S − δ)− µA

ϵ

)
ρAX + ρAϵ

V arA[X̃|S,M ] =
1

ρAX
−

ρAS ∗ ρ2A
δ

ρ2A
X

ρ2Aδ − ρ2AS

2.5 Market Equilibrium in Period 2

After integrating the information from signal S into their beliefs, both investor types update their

portfolio compositions. The ambiguity neutral type-B investors update their risky asset allocations

θBt2 following the expected utility maximization below.

max
θBt2

−e−γ∗(wB
t2 + θBt2∗ (EB[X̃|S]−Pt2 )) + 1

2
∗γ2∗θ2Bt2 ∗VARB [X̃|S] (2.14)

The resulting optimal risky asset allocation of the type-B investors is given by the following

expression.

θBt2 =
EB[X̃|S]− Pt2

γ ∗ VARB[X̃|S]

θBt2 =
ρBX ∗ µB

X + ρBe ∗
(
S − µB

eME

)
− Pt2 ∗

(
ρBX + ρBe

)
γ

The ambiguity averse/loving type-A investors update their portfolios according to their Smooth
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Ambiguity utility functions, employing various M models to assess the information from signal

S. This investor type optimizes their portfolios according to the maximization of the following

expected utility.

max
θAt2

wA
t2 + θAt2 ∗

(
EA[X̃|S]− Pt2

)
− 1

2
∗ γ ∗ θ2At2 ∗ VARA[X̃|S] ∗

[
1 + (γa − 1) ∗

(
VARA[X̃|S]−VARA[X̃|S,M ]

VARA[X̃|S]

)]
(2.15)

The optimal risky asset allocation θIAt2 of the type-A investors is given by the following expres-

sion.

θAt2 =
EA[X̃|S]− Pt2

γ ∗ V arA[X̃|S] ∗ νA

θAt2 =
ρAX ∗ µA

X + ρAE ∗ (S − µA
ϵ − µA

δ )− Pt2 ∗ (ρAX + ρAE )

γ ∗ νA

where

νA =

[
1 + (γa − 1) ∗

(
VARA[X̃|S]− VARA[X̃|S,M ]

VARA[X̃|S]

)]
V arA[X̃|S]− V arA[X̃|S,M ]

V arA[X̃|S]
=

ρAX ∗ ρA 3
ϵ

(ρAδ ∗ ρAϵ + 2 ∗ ρAX ∗ ρAϵ + ρAX ∗ ρAδ ) ∗ (ρAX + ρAϵ ) ∗ (ρAϵ + ρAδ )

At the end of period 2, after both investor types have optimized their portfolios based on the

new information from S, their risky asset demands will come together in the market, establishing

a market clearing price in equilibrium. The aggregate demand of the ambiguity neutral type-

B investors is denoted by (1 − α) ∗ θBt2, and the demand of the ambiguity-averse/loving type-A

investors is denoted by α ∗ θIAt2 . The 0-net-supply risky-asset market clears at time 2 according to

the following equation.

(1− πA) ∗ θBt2 + πA ∗ θIAt2 = 0 (2.16)
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The market clearing price at time 2, price Pt2, is given by the expression below.

Pt2 =
µ̄X + ρ̄E ∗ S− µ̄ϵ −

π

νA
∗ ρAE ∗ µA

δ

ρ̄X + ρ̄E
(2.17)

where

µ̄X =
π

νA
∗ ρAX ∗ µA

X + (1− π) ∗ ρBX ∗ µB
X

µ̄ϵ =
π

νA
∗ ρAE ∗ µA

ϵ + (1− π) ∗ ρBE ∗ µB
ϵ

ρ̄X =
π

νA
∗ ρAX + (1− π) ∗ ρBX

ρ̄E =
π

νA
∗ ρAE + (1− π) ∗ ρBE

The expressions µ̄X and µ̄ϵ represent population and precision-weighted averages of both in-

vestor types prior beliefs about the risky asset payoff X̃, and the signal measurement errors,

respectively. µA
δ in the numerator represents the mean bias effect of the ambiguity expectations

channel on the price Pt2. On the other hand, ρ̄X and ρ̄E denote population-weighted averages of

the two investor types prior belief precisions regarding the risky asset payoff X̃ and the signal S

total error.

2.6 Trading Volume Expression

In this section, I present the main results of this work: the relationship between trading volume,

ambiguity and price changes. I will begin by introducing a simplified model version 1, which omits

differences in prior beliefs and the influence of the price channel on trading volume. Following

that, I will delve into a model version 2 that incorporates the price channel of trading volume.

Finally, I will conclude with a full model version 3, which encompasses ambiguity, differences in

prior beliefs and the impact of the price channel on trading volume.

Regarding the ambiguity mechanism driving trading volume in this model, put plainly, when

signal S conveys fresh information, it spurs investors to trade the risky asset in order to align

their portfolios with their updated beliefs. Despite both investor types receiving identical signals,

ambiguity introduces heterogeneity, giving rise to distinct posterior beliefs about the risky asset’s

payoff (X). This heterogeneity, induced by ambiguity, is the driving force behind this trading

activity.

To derive the closed form trading volume model presented below, I utilize the change in
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allocation of the risky asset for one investor type, multiplied by the proportion of these investors

in the economy. In this market with a net supply of zero, the buying activity of one investor type

corresponds to the selling activity of the other, and vice versa.

∣∣(1− π) ∗∆θIBt2
∣∣ = ∣∣π ∗∆θIAt2

∣∣ (2.18)

where

∆θIA = θIAt2 − θIAt1

∆θINA = θINA
t2 − θINA

t1

Based on these symmetrical trading volume expressions, I arrive at the model below. Addi-

tional details provided in the Appendix-B.

Version 1: Only ambiguity channel

Market Trading Volume V21 from period 1 to period 2, only ambiguity channel present while price

channel and heterogeneous prior beliefs switched off.

V21 = |αV | (2.19)

where

αV =

[
(1− π) ∗ π

νA
∗ ρAE ∗ ρBE

γ ∗ ρ̄E

]
F1

∗ µA
δ

In this simplified model version, trading volume is directly linked to the bias effect of µA
δ ,

originating from the influence of the expectations channel of ambiguity on the posterior beliefs

held by type-A investors. This effect is further modulated by the factor F1. It is worth highlighting

that both the numerator and denominator of F1 encompass the inverse of the coefficient νA and the

precision term ρAE from type-A investors. The value of νA is determined by the level of ambiguity

aversion γa, and similarly, both the precision term ρAE and νA depend on the ambiguity volatility

σ2A
δ .

As illustrated in the top panel of figure-1 below, the factor F1 exhibits a decreasing trend

as ambiguity aversion γa increases. It reaches its minimum value of zero for type-A investors

characterized by extreme ambiguity aversion γa approaching infinity, and conversely, it attains
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a maximum positive value for those investors who favor ambiguity with γa values close to 0.

The intuition here is that as ambiguity aversion grows, type-A investors tend to avoid risky

assets, regardless of signal-related expectations, including those associated with ambiguity. In

this simplified scenario, since both types of investors shared the same prior beliefs at time 1,

they did not take any positions in the risky asset. Consequently, at time 2, an increased level of

ambiguity aversion leads type-A investors to stay out of the market, resulting in a lack of trading

activity.

The lower panel of figure-1 shows that the factor F1 diminishes as the ambiguity volatility

σ2A
δ increases. F1 reaches its peak when the ambiguity volatility σ2A

δ approaches zero, and it

approaches zero as the ambiguity volatility tends towards infinity. Here the intuition is that as

ambiguity volatility rises, the signal-to-noise ratio of S decreases. This leads to a disregard of all

information contained in signal S because of its low quality, including the expectations associated

to ambiguity.

Figure 1. Effect of γa and σ2A
δ on factor F1 . This graph shows how the the val-

ues of γa and σ2A
δ affect the factor F1 multiplying µA

δ . The top panel achieves a maxi-

mum of
ρAδ ∗ρAϵ ∗π∗(1−π)∗(ρAϵ +ρAX)∗(2ρAϵ ∗ρAX+ρAδ ∗(ρAϵ +ρAX))

γ∗(ρA2
δ ∗(ρAϵ +ρAX)+ρA2

ϵ ∗(1−π)∗ρAX∗(ρAϵ +2ρAX)+ρAδ ∗ρAϵ ∗(ρAϵ +ρAX)∗(ρAϵ ∗(1−π)+ρAX∗(3−π)))
when γa goes to 0, a value

of π∗(1−π)∗ρAϵ ∗ρAδ
γ∗(ρAδ +ρBϵ ∗(1−π))

when γa is 1 and a value of 0 when γa tends to infinity.
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Version 2: Ambiguity channel and price channel

Market trading volume V21 from period 1 to period 2, when ambiguity channel and price channel

are present while heterogeneity in prior beliefs is switched off.

V21 = |αV + βV ∗∆P21| (2.20)

where

αV =

[
(1− π) ∗ π

νA
∗ ρAE ∗ ρBE

γ ∗ ρ̄E

]
F1

∗ µA
δ

βV =

[
π
νA

∗ ρAX ∗
(
ρBE − ρAE

)
ρ̄E

]
F2

In this model version, trading volume is determined by the combination of two drivers: the

bias effect µA
δ resulting from the expectations channel of ambiguity, and the trading volume linked

to price changes. The impact of price changes is then scaled by βV , which incorporates both

the inverse of the type-A investors coefficient νA and the precision term ρAE in its numerator and

denominator. The value of the coefficient νA hinges on both the degree of ambiguity aversion γa

and the ambiguity volatility d σ2A. Similarly, the precision term ρAE also depends on the ambiguity

volatility σ2A. This last interdependence creates a distinction between ρBE and ρAE , even when the

prior beliefs ex ambiguity about the signal S and the measurement error are homogeneous.

As shown in the upper panel of figure-2 above, this last introduced factor F2 is positive and

declines as ambiguity aversion γa increases. It reaches its lowest point at zero for type-A investors

characterized by extreme ambiguity aversion with γa tending toward infinity. Conversely, for

investors who embrace ambiguity and possess γa values close to 0, this factor F3 attains its

maximum value. he intuition here echoes the previous version. As ambiguity aversion increases,

type-A investors choose to steer clear of the risky asset, preserving their initial allocation risk-free

asset allocation established at time 1 under homogeneous prior beliefs.
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Figure 2. Effect of γa and σ2A
δ on factor F2 . This graph shows how the the val-

ues of γa and σ2A
δ affect the factor F2 multiplying. The top panel achieves a maximum of

π∗ρAϵ ∗ρAX∗(ρAϵ +ρAX)∗(2∗ρAϵ ∗ρAX+ρAδ ∗(ρAϵ +ρAX))
γ∗

(
ρA 2
δ ∗(ρAϵ +ρAX)

2
+ρA 2

ϵ ∗(1−π)∗ρAX∗(ρAϵ +2∗ρAX)+ρAδ ∗ρAϵ ∗(ρAϵ +ρAX)∗(ρAϵ ∗(1−π)+ρAX∗(3−π))
) when γa goes to 0, and a value of

π∗ρAX∗ρAϵ
ρAδ +ρAϵ ∗(1−π)

when γa is 1.

The lower panel of figure-2, shows that the behavior of the factor F2 varies for different levels of

ambiguity volatility and is influenced by the degree of ambiguity aversion γa. For small values of

γa, the factor F2 increases with increasing ambiguity volatility, eventually reaching the maximum

value as depicted in the figure. Conversely, for larger values of γa, the factor F2 exhibits a more

complex behavior, characterized by two distinct regions. Initially, in the first region, this factor

increases with ambiguity volatility, but it then reverses its trend and decreases until it reaches a

limit when the ambiguity volatility tends to infinity, as illustrated on the right side of the figure.

Here, the intuition is that as ambiguity volatility rises, type-A investors who have a preference for

ambiguity (γa¡1) become more inclined to trade the risky asset in response to changes in market

conditions as reflected by prices. Conversely, for ambiguity-averse investors with larger ambiguity

aversion (γa¿1), an increase in ambiguity volatility motivates type-A investors to maintain their

risk-free asset holdings from time 1 established under homogeneous prior beliefs, reducing their

inclination to trade as ambiguity volatility intensifies.
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Version 3: Ambiguity channel, price channel and heterogeneous prior beliefs

Full model market trading volume V21 from period 1 to period 2, when ambiguity channel, price

channel and heterogeneous initial beliefs are present.

V21 = |αV + βV ∗∆P21| (2.21)

where

αV =

[
(1− π) ∗ π

νA
∗ ρAE ∗ ρBE

γ ∗ ρ̄E

]
F1

∗ µA
δ

+

[
π ∗ (1− π)2 ∗

(
1

νA
− 1

)
∗
(

ρBE
ρ̄E ∗ γ

)
∗

(
ρAX ∗ ρBX

ρ̄X
t1

)]
F3

∗
(
µB
X − µA

X

)
+

[
(1− π) ∗ π

νA
∗ ρAE ∗ ρBE

γ ∗ ρ̄E

]
F1

∗
(
µA
ϵ − µB

ϵ

)

βV =

[
π
νA

∗ ρAX ∗
(
ρBE − ρAE

)
ρ̄E

]
F2

In this full version of the model, the trading volume is proportional to the bias effect µA
δ created

by the expectations channel of ambiguity, the difference in prior beliefs about the risky asset

payoff
(
µB
X − µA

X

)
, the difference in prior beliefs about the measurement error

(
µA
ϵ − µB

ϵ

)
, plus the

trading volume associated to the change in price. The difference in prior beliefs about the risky

asset
(
µB
X − µA

X

)
gets multiplied by the factor F3 which has on the denominator the contribution

of the inverse of the coefficient νA and the type-A investor precision ρAE that’s averaged inside the

term ρ̄E . The difference in prior beliefs about the measurement error
(
µA
ϵ − µB

ϵ

)
gets multiplied

by the factor F1 previously analyzed, factor that decreases when either ambiguity aversion γa or

ambiguity volatility σ2A
δ increases.

As illustrated in the upper panel of figure-3 below, the newly introduced factor F3, which

multiplies the difference in prior beliefs regarding the risky asset payoff
(
µB
X − µA

X

)
, exhibits a

decreasing pattern with respect to ambiguity aversion γa. Specifically, it starts at a positive

maximum when γa is 0, then crosses through zero when γa equals 1, and ultimately approaches a

negative limit when γa tends to infinity. Due to the absolute value operator in the final trading

volume expression, this behavior gives rise to two distinct regions. The first region corresponds

to γa values within the interval [0, 1], where the factor F3 decreases gradually, reaching zero as
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ambiguity aversion increases toward 1. In the second region, for γa values in the range [1,∞],

the factor F3 increases steadily, ultimately reaching the absolute value of the limit depicted in

the figure. The underlying intuition here is that as ambiguity aversion decreases from 1 to 0 in

the initial region, type-A investors will increase the size of their positions in the risky asset. The

direction of this adjustment is driven by the difference in net expectations between type-A and

type-B investors, which incorporates their difference in beliefs regarding the risky asset’s payoff

(µB
X − µA

X). In the subsequent region, characterized by an increase in ambiguity aversion from 1

to infinity, type-A investors tend to exit the risky asset market. They liquidate their positions in

the risky asset, initially established in period 1, resulting in higher trading activity. In instances

of extreme ambiguity aversion, type-A investors divest their entire position established in period

1, regardless of the information contained in the signal S.

The lower panel of Figure 3 illustrates how the factor F3 behaves concerning ambiguity volatil-

ity σ2A
δ and ambiguity aversion γa. When γa is positive, an increase in ambiguity translates in an

increase of F3, whereas negative γa values lead to a decrease in F3 with rising ambiguity volatility.

When γa equals one, F3 remains at zero. Furthermore, due to the absolute value operator in the

final trading volume formula, an overall surge in ambiguity volatility results in an elevated F3 as

long as γa is not zero. The intuition here is that for investors who embrace ambiguity with γa be-

low 1, as ambiguity volatility increases, they will seek to increase the size of their positions in the

risky asset. Conversely, for averse ambiguity investors with γa greater than one, rising ambiguity

volatility encourages them to liquidate their initial non-zero position in the risky asset. In terms

of trading volume, both scenarios lead to increased trading activity. However, for investors who

are ambiguity-neutral with γa equal to 1, this ambiguity volatility mechanism has no impact.
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Figure 3. Effect of γa and σ2A
δ on factor F3 . This graph shows how the the val-

ues of γa and σ2A
δ affect the factor F3 multiplying. The top panel achieves a maximum of

π∗(1−π)2∗ρA 3
ϵ ∗ρBϵ ∗ρA 2

X ∗ρBX
γ∗

(
ρA 2
δ ∗ρ̄X

t1
∗(ρAϵ +ρAX)

2
+ρA 2

ϵ ∗ρBϵ ∗(1−π)∗ρAX∗(ρAϵ +2∗ρAX)+ρAδ ∗ρAϵ ∗(ρAϵ +ρAX)∗
(
3∗(1−π)∗ρBϵ ∗ρAX+ρAϵ ∗(π∗ρAX+ρ̄X

t1
)
))

∗ρ̄X
t1

when γa goes

to 0, a value of 0 when γa is 1 and a value of −π∗(1−π)∗ρAX∗ρBX
ρ̄X
t1

when γa tends to infinity. The bottom

panel shows the effect of the ambiguity volatility on the factor F3 for different levels of ambiguity
aversion.

2.7 Ambiguity and the Trading Volume to Price Volatility Elasticity

In this section, I examine the influence of ambiguity on the elasticity relationship between trading

volume and price volatility. To derive this elasticity relationship, I make the assumption that,

on average, changes in price ∆P21 follow a normal distribution, akin to the approach taken by

Bollerslev et al. (2018) for differences in prior beliefs. I begin by presenting a simplified version

1 of the elasticity relationship, which includes both ambiguity and the price channel of trading

volume. In the complete version 2 of the elasticity relationship, I introduce heterogeneity in prior

beliefs. Further details can be found in Appendix C.

Version 1: Price and ambiguity channel

Elasticity ξ between trading volume and price volatility when the price and ambiguity channels

are present, while heterogeneous prior beliefs are switched off.
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ξ =
∂E[V21]/E[V21]

∂σp/σp

=
1

1 + Ψ

(
|αv|

|βv| ∗ σp

) (2.22)

where

Ψ(x) =
x ∗ (Φ(x)− 1/2)

ϕ(x)

αV =

[
(1− π) ∗ π

νA
∗ ρAE ∗ ρBE

γ ∗ ρ̄E

]
∗ µA

δ

βV =

[
π
νA

∗ ρAX ∗
(
ρBE − ρAE

)
ρ̄E

]

and

Φ(x) = Normal CDF

ϕ(x) = Normal Density

In this simplified version, the elasticity is influenced by a combination of two factors: the

impact of the bias effect, denoted as µA
δ , within the term αV from the expectations channel of

ambiguity, and the influence of price changes on trading volume, associated to the term βV . Both

αV and βV include the inverse of the coefficient νA, as well as the precision term ρAE in their

numerators and denominators. Ambiguity aversion, denoted as γa, affects this elasticity through

the νA coefficient, while ambiguity volatility also plays a role by affecting both the νA coefficient

and the precision term ρAE .

In the top panel of Figure 4 shows that when the magnitude of the expectation channel

bias generated by ambiguity, represented as µA
δ , is large in either positive or negative terms, the

elasticity decreases. The intuition here is that when the expectation channel of ambiguity becomes

the predominant driver of trading activity, trading volume appears increasingly disconnected from

price fluctuations. In the most extreme scenarios, the elasticity approaches zero.

The middle panel of the figure indicates that ambiguity aversion γa has no impact on elasticity.

This is because ambiguity aversion affects both αV and βV in equal proportions. As a result, any

alterations in ambiguity aversion do not change the relative importance between the expectations

channel of ambiguity and price changes as drivers of trading volume.
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Figure 4. Effect of γa and σ2A
δ on Elasticity. This graph shows how the values of γa and

σ2A
δ affect the elasticity ξ between trading volume and price volatility.

The bottom panel of Figure 4 shows that as ambiguity’s volatility increases, the elasticity Ψ(x)

tends to its maximum value of 1. The underlying intuition here is that heightened ambiguity

volatility diminishes the quality of the signal S, which includes the effects stemming from the

expectations channel of ambiguity µA
δ . As ambiguity volatility approaches infinity, it dampens

the expectations channel of ambiguity as a driver of trading volume. Consequently the primary

force influencing trading volume becomes price changes alone. This is why, in extreme volatility,

elasticity converges to a one-to-one relationship between trading volume and price volatility.
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Version 2: Price channel, ambiguity channel and heterogeneous beliefs

Full elasticity expression ξ between trading volume and price volatility when the price channel,

ambiguity channel and heterogeneous prior beliefs are present.

ξ =
∂E[V21]/E[V21]

∂σp/σp

=
1

1 + Ψ

(
|αv|

|βv| ∗ σp

) (2.23)

where

Ψ(x) =
x ∗ (Φ(x)− 1/2)

ϕ(x)

αV =

[
(1− π) ∗ π

νA
∗ ρAE ∗ ρBE

γ ∗ ρ̄E

]
F1

∗ µA
δ

+

[
π ∗ (1− π)2 ∗

(
1

νA
− 1

)
∗
(

ρBE
ρ̄E ∗ γ

)
∗

(
ρAX ∗ ρBX

ρ̄X
t1

)]
F3

∗
(
µB
X − µA

X

)
+

[
(1− π) ∗ π

νA
∗ ρAE ∗ ρBE

γ ∗ ρ̄E

]
F1

∗
(
µA
ϵ − µB

ϵ

)

βV =

[
π
νA

∗ ρAX ∗
(
ρBE − ρAE

)
ρ̄E

]
F2

and

Φ(x) = Normal CDF

ϕ(x) = Normal Density

In this full version of the elasticity expression, the introduction of heterogeneous prior beliefs

results in two additional terms associated to
(
µB
X − µA

X

)
and

(
µA
ϵ − µB

ϵ

)
. Here, the elasticity

relating trading volume to price volatility is influenced by the bias effect µA
δ arising from the

expectations channel of ambiguity, as well as the differences in prior beliefs regarding the risky asset

payoff
(
µB
X − µA

X

)
and the difference in prior beliefs concerning the measurement error

(
µA
ϵ − µB

ϵ

)
.

In terms of ambiguity-related coefficients, the expectations channel of ambiguityδA exclusively

influences the first component of the αV term. This effect can lead to a maximum elasticity of

1, which occurs when the bias µA
ϵ neutralized the impact of differences in prior beliefs regarding

the risky asset payoff
(
µB
X − µA

X

)
and the measurement error

(
µA
ϵ − µB

ϵ

)
. This is illustrated in the
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top panel of figure-5 below. The underlying intuition is that when the expectations channel of

ambiguity becomes the dominant factor driving trading volume in any direction, the sensitivity

of trading volume to price changes diminishes.

The ambiguity aversion coefficient γa since it appears on the portions of alphaV associated to

the expectations channel of ambiguity µA
ϵ , the differences in prior beliefs about the measurement

error
(
µA
ϵ − µB

ϵ

)
and the betaV coefficient that multiplies changes in prices, does mainly affect

the elasticity through the differences in prior beliefs about the risky asset payoff
(
µB
X − µA

X

)
. The

mechanism is that, as the ambiguity aversion increases, the effect of
(
µB
X − µA

X

)
starts increasing

and this contributes to decrease the heterogeneity if the sign of
(
µB
X − µA

X

)
points in the same

direction as the effect of
(
µA
ϵ + µA

ϵ − µB
ϵ

)
, or initially increase the net heterogeneity if the they

point in the opposite directions. The intuition here is that as ambiguity aversion increases, type-

A investors will tend to sell their assets regardless of market price conditions, thereby reducing

elasticity. In extreme cases, they liquidate their entire t1 position, which are proportional to(
µB
X − µA

X

)
, bringing the elasticity down to 0. Conversely, when ambiguity aversion decreases

below 1, type-A investors aim to increase the magnitude of their positions in the risky asset

independently of market price conditions, also resulting in decreased elasticity to price changes.

Changes in ambiguity volatility influence the impact of the ambiguity expectations channel

δA, the impact of the difference in prior beliefs about the measurement error
(
µA
ϵ − µB

ϵ

)
, and

the impact of the difference in the in prior beliefs about the risky asset payoff
(
µB
X − µA

X

)
. As

ambiguity volatility increases, the net effects caused by δA and
(
µA
ϵ − µB

ϵ

)
start to diminish. In

extreme cases, the primary driving force of trading volume becomes price changes, leading to an

elasticity that tends to approach 1. However, ambiguity volatility also impacts the influence of

the difference in prior beliefs about the risky asset payoff
(
µB
X − µA

X

)
, causing the elasticity to

deviate from its maximum as ambiguity volatility increases on the right-hand side of the figure.

The intuition here is that as ambiguity volatility increases, the impact of the signal S on type-A

investors weakens, rendering the trading activity of type-A investors more responsive to market

price conditions alone. This initially results in an upward trend in elasticity as ambiguity volatility

increases. Additionally, there is a secondary effect associated with the sizing of type-A investors’

positions, which depends on their ambiguity aversion. When ambiguity volatility rises, ambiguity-

averse type-A investors will seek to reduce the magnitude of their positions, while ambiguity-loving

type-A investors will seek to increase them, regardless of market conditions like prices. This second
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source of trading activity, not directly linked to price conditions, causes the elasticity to decrease.

In cases of extreme ambiguity volatility, this latter effect takes precedence, reducing the elasticity

towards 0.

Figure 5. Effect of µA
δ , γa and σ2A

δ on Elasticity. This graph shows how the values of µA
δ ,

γa and σ2A
δ affect the elasticity ξ between trading volume and price volatility.

3 Empirical Evidence: Data

The empirical validation of the model proposed in this work relies on data comprising price and

trading volume series of the SPY ETF, along with measures of Ambiguity and differences in prior

beliefs.
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Prices and Trading Volume

The data for SPY prices and trading volumes in daily and monthly frequencies is sourced from

Bloomberg. Daily regressions utilize data spanning from 2013 to 2018, while monthly regressions

cover the period from 2000 to 2020. Monthly regressions relying on daily frequency data cover

the period 2013 to 2018.

Intraday calculations utilize 15-minute sampled TAQ data from NASDAQ to construct daily

frequency αV and βV coefficients.

Ambiguity

This research employs two Ambiguity measures: the news-based Economic Policy Uncertainty

Index (EPU)(Baker et al., 2016) and the market price based measure of Izhakian (2020).

I utilize both the daily (Baker et al., 2021) and monthly (Baker et al., 2016) versions of the

Economic Policy Uncertainty Index. The daily measure (TEU-SCA) represents an ambiguity

index extracted daily from Twitter text messages up to 4 pm U.S. EDT Time, while the monthly

measure corresponds to the original EPU measure extracted from U.S. newspapers. The daily

measure spans from 2013 to 2018, and the monthly measure covers the period from 2000 to 2020.

In the rest of the text I identify these series by AMBEPUD and AMBEPUM respectively.

The Izhakian (2020) ambiguity measure represents a market price-based indicator designed to

approximate the implicit volatility of investors’ beliefs. Unlike the previous type of measures, this

index is directly extracted from prices rather than from text and correlates negatively with the

EPU measure. To maintain consistency in the economic interpretation of both measures’ results,

I inverted the sign of the Izhakian (2020) measure. The series used in this research is of monthly

frequency and covers the period from 2000 to 2020. In the rest of the text I identify this serie by

AMBIZHM .

Differences in Prior Beliefs

As proxies for differences in prior beliefs, I employ two types of a daily disagreement measures

extracted from the social media investing platform StockTwits (Cookson & Niessner, 2020) and

a monthly analysts’ forecast dispersion measure extracted from the IBES database.

The two types of daily investor disagreement are based on data collected from the social me-

dia investing platform StockTwits by Cookson and Niessner (2020) on a daily basis up to 4pm
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U.S. EDT Time from 2013 to 2018. Both series types represent the standard deviation of bullish-

ness/bearishness beliefs across users of the StockTwits platform. The users bullishness/bearishness

information is extracted from messages posted on the platform. For messages not explicitly tagged

as bullish or bearish by the users, their text content is used to infer their sentiment. This text-

based classification of unlabeled messages is performed by a maximum-entropy machine learning

algorithm (Cookson & Niessner, 2020). One disagreement series type is calculated within the

same type of users’ investment approach, and it is more closely related to differences in infor-

mation sets (Cookson & Niessner, 2020). The other type is extracted across users with different

investment approaches and is more likely caused by different ways or models of interpreting in-

formation (Cookson & Niessner, 2020). In the following sections I refer to these two types of

measures by PBELWI and PBELAC respectively. For both types of measures, I use a direct SPY

extracted reading and a S&P 500 proxy, constructed as an equally weighted mean of the S&P 500

stocks’ readings. In the rest of the text I identify these series by {PBELWI,ETF , PBELAC,ETF}

and {PBELWI,IND, PBELAC,IND} respectively. Monthly regressions are performed using the

monthly means of these series.

The IBES proxy for differences in prior beliefs is a monthly equally weighted average of the

individual S&P500 companies’ forecast dispersion measures. Each company’s forecast dispersion

measure is calculated as the standard deviation across the most recent earnings forecasts, scaled

by the corresponding company’s monthly average price. This series covers the period from 2000

to 2020. In the rest of the text I identify this serie by PBELIBES.

4 Empirical Evidence: Trading Volume and Price Rela-

tion

In this section, I empirically test the trading volume model presented in section 2.6 using SPY

data at both daily and monthly frequencies.

To validate the hypothesis that ambiguity affects trading volume, I examine the statistical sig-

nificance of the ambiguity time series in explaining the αV term of the volume-price relation. This

mechanism represents the expectations channel of ambiguity. I also assess the statistical signifi-

cance of ambiguity volatility in explaining the βV term of the volume-price relation. Furthermore,

I investigate whether ambiguity has, on average, a positive effect on trading volume.
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Methodology

I validate the theoretical model of section 2.6 through daily and monthly frequency regressions.

These regressions involve the SPY ETF trading volume series as the dependent variable and

include as explanatory variables changes in price, proxies of ambiguity, proxies of differences

in prior beliefs, proxies of ambiguity volatility, price volatility, and time controls. To test the

hypothesis that ambiguity affects the volume-price relation even after accounting for price changes,

I examine the statistical significance of the coefficients associated with mean ambiguity {αamb}

and ambiguity volatility {βσamb
, β∆σamb

}. Additionally, I expect that mean ambiguity U would

positively impact trading volume {αamb} activity.

V = αV + βV ∗∆P + ϵ (4.1)

αV = 1 + αpbel ∗ PBEL+ αamb ∗ AMB + ϵ

βV = 1 + βσamb
∗ σAMB + βp ∗ σP + ϵ

V =
(
c+αpbel ∗PBEL+αamb ∗AMB

)
α
+
(
βp + βσamb

∗ σAMB + βσp ∗ σP

)
β
∗

∆P + Vt−1 +
∑T

p=t+1 γp + ϵ

(4.2)

∆V = c +
(
αpbel ∗∆PBEL+ αamb ∗∆AMB

)
∆α

+
(
β∆σamb

∗∆σAMB + β∆σp ∗

∆σP

)
∆β

∗ ∆P +
(
βP + βσamb

∗ σAMB + βσp∗∆2
P
∗ σP

)
β
∗ ∆2

P + ∆Vt−1 +∑T
p=t+1 γp + ϵ

(4.3)

In (1), I begin by regressing intraday trading volume on price changes to obtain daily time series

of αV and βV . Following the theoretical model, I then conduct regressions of the daily αV time

series on the difference in beliefs and ambiguity proxy series. These ambiguity series act as proxies

for the mean ambiguity term µA
δ within the model. I also regress the βV coefficient on the SPY

price volatility and the ambiguity volatility series. I use the SPY price volatility series as a proxy

for the prior beliefs precisions ρIBX and ρAX , and the ambiguity volatility series as a proxy for the

ambiguity volatility σ2A
δ within ρAE . The daily time series of αV and βV were obtained using the

15-minutes SPY TAQ data. The monthly time series of αV and βV were obtained using monthly

SPY trading volume and prices from Bloomberg.

In the second regression (2), I directly regress the trading volume measure on the explanatory

series that make up the αV and βV coefficients of the model. I do not perform a previous regression
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step to obtain time series of αV and βV .

The last regression (3) is a differenced version of regression (2), where I regress changes in

trading volume on the changes of the explanatory variables that, according to the model, explain

the volume.

In all regressions, I include a lagged series of the dependent variable as an explanatory variable

to account for trading volume persistence and also use yearly time controls. Additionally, all series

were detrended beforehand.

These regressions are conducted using all combinations of the difference in beliefs and ambigu-

ity series described in Section-3. For daily frequency, I have 4 different measures of differences in

beliefs obtained from the Cookson and Niessner (2020) data and one measure of ambiguity (EPU)

(Baker et al., 2016, 2021). Both sources of information are extracted from text rather than market

prices or trading volumes. This results in four distinct explanatory daily datasets for each regres-

sion. For the monthly regressions, I have five different series of differences in beliefs and two series

of ambiguity, resulting in a total of 10 distinct explanatory datasets for each regression. Among

the differences in beliefs series, four are obtained by converting the daily measures from Cookson

and Niessner (2020) into monthly frequency through averaging, and a fifth one is extracted from

the IBES database. The two ambiguity series are the monthly version of the EPU index (Baker

et al., 2016) and the monthly market-based measure from Izhakian (2020).

Results

The regression results demonstrate that the ambiguity series (regression coefficient αamb, µ
A
δ in

the model) is statistically significant in explaining the αV component of the volume-price relation

across all regression types, data sets combinations and frequencies (daily, monthly). However, no

clear supporting evidence of the relevance of ambiguity volatility was found. Overall, these results

provide positive validation for the hypotheses (H1) that ambiguity influences trading volume

activity, even after controlling for price changes, and (H2) that higher levels of ambiguity are

associated with larger trading volumes. Moreover, these findings suggest that, in the context

of the model, the expectations channel of ambiguity plays a more significant role in explaining

trading volume compared to ambiguity volatility.

In concrete, effects of the ambiguity series that proxy for mean ambiguity (regression coefficient

αamb, µ
A
δ in the model), the daily frequency regressions (1) and (2) for the period 2013-2018 yielded
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the most statistically significant results. Table-?? below shows that the EPU ambiguity measure

exhibited t-stats ranging from 3.6 to 4.10 in regressions (1) and (2). For the regression (3), the

EPU ambiguity measure t-stats were around 3.6 .

Between 2013 and 2018, regression (1) in Table-1 shows that a one-standard-deviation increase

in the EPU daily ambiguity measure is linked to an approximately 11%-standard-deviation in-

crease in the coefficient αV . In regression (2), where the impact of explanatory variables on trading

volume is directly measured, a one-standard-deviation increase in ambiguity is associated with a

+10%-standard-deviation increase in trading volume. Regression (3), which employs variables

in differences, indicates a +12%-standard-deviation increase in the delta of trading volume per

one-standard-deviation increase in the delta of EPU daily ambiguity.

The monthly regressions in Table-2 indicate that a one-standard-deviation increase in the EPU

monthly ambiguity measure is associated with approximately a +23%-standard-deviation increase

in the monthly coefficient αV . Regression (2), directly measuring the effect of ambiguity on trading

volume, demonstrates an approximately +20%-standard-deviation increase in trading volume per

one-standard-deviation increase in monthly EPU ambiguity. The first differences regression (3)

suggests an effect of around +23%-standard-deviation increase in the delta of trading volume per

one-standard-deviation increase in the delta of EPU ambiguity. The effect using the Izhakian

(2020) and the IBES measures is also statistically significant. Across regressions (1), (2), and

(3), the results suggest that a one-standard-deviation increase in these measures leads to an effect

ranging between a +25%-standard-deviation increase to a +58%-standard-deviation increase in

trading volume. To maintain consistency in the economic interpretation, I previously inverted the

sign of the Izhakian (2020) series due to its negative correlation with the EPU and IBES measures.

In relation to the proxy measures of differences in prior beliefs (regression coefficient αpbel,

(µA
e −µB

e ) and (µB
X −µA

X) in the model), I obtain for the daily frequency regressions between 2013

to 2018 that both measures sourced from Stocktwits (Cookson & Niessner, 2020) are statistically

significant, with t-stats above 3. Here I obtain that on average a one-standard-deviation increase

in any of these measures leads to a change between a -15%-standard-deviation to +13%-standard-

deviation in trading volume. For almost all versions of these series, the direction of the impact

on trading volume is positive with the exception of the ETF based measure obtained from users

with different investment approaches (PBELAC,ETF ), here the direction of the effect is negative.

In the monthly frequency regressions, the results for the difference in prior beliefs coefficient
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are not as clear as in the daily frequency regressions in terms of sign and statistical significance

(Appendix-F). For regressions (1) and (2), the Cookson and Niessner (2020) measures looses its

statistical significance and switches sign to negative in most cases, while in regression (3), the

sign is mostly positive across the different datasets. The IBES measure demonstrates strong

statistical significance with t-stats above 3 in all regressions (1) and (2), albeit with a negative

sign. Specifically, a one-standard-deviation increase in the IBES measure leads to a -4%-standard-

deviation to -14%-standard-deviation decrease in trading volume. In the monthly first differenced

regression (3), the IBES measure does not show statistical significance but maintains the negative

sign.

Regarding the influence of ambiguity volatility on the βV component of the volume-price

relation (regression coefficients βσamb
and β∆σamb

), I did not find clear supporting evidence. In the

daily frequency regression (1) (Table-1 below), the results show statistical significance in support

of the daily EPU ambiguity volatility interaction with the change in price ∆P . However, for

the daily regressions (2) and (3), the coefficient did not exhibit clear statistical significance. In

the monthly Table-3 below, the regression (3) provides strong statistical evidence in favor of the

Izhakian (2020) ambiguity volatility series when combined with the (Cookson & Niessner, 2020)

difference in prior beliefs measures. However, for the same regression (3) using the monthly

IBES difference in beliefs measure, I only found support in favor of the EPU monthly ambiguity

volatility serie. As for the monthly regressions (1) and (2), I did not find clear statistical evidence

supporting any of the ambiguity volatility series. For detailed regression results refer to Appendix-

F.
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Table 1. Daily Alpha and Beta Regressions.

This table summarizes the statistical significance of the Ambiguity mean term AMB (αamb)
belonging to αV (Panel A) and the ambiguity volatility term σamb (βσamb

) belonging to βV (Panel
B) across the different regression setups (1), (2) and (3). The first column on the left indicates the
dataset. PBELWI, IND, PBELAC, IND, PBELWI, ETF and PBELAC, ETF are the Cookson and Niessner
(2020) difference in previous beliefs measures extracted from Stocktwits. AMBEPUD refers to the
daily EPU ambiguity measure extracted from Twitter. The regressions were performed for the
period 2013 to 2018. T-values in round brackets are Newey-West autocorrelation robust values.
γp represent time fixed effects. Full regression results in Appendix-D.

αV =1 c+ αamb ∗ AMB + αpbel ∗ PBEL+ αt−1 +
∑T

p=t+1 γp + ϵ

V =2
(
c+αpbel∗PBEL+αamb∗AMB

)
α
+
(
βp+βσamb

∗σamb+βσp∗σP

)
β
∗∆P +Vt−1+

∑T
p=t+1 γp+ϵ

∆V =3 c +
(
αpbel ∗∆PBEL+ αamb ∗∆AMB

)
∆α

+
(
β∆σamb

∗∆σamb + β∆σp ∗∆σP

)
∆β

∗∆P +(
βP + βσamb

∗ σamb + βσp∗∆2
P
∗ σP

)
β
∗∆2

P +∆Vt−1 +
∑T

p=t+1 γp + ϵ

Dataset R(1) R(2) R(3)

Panel A αamb αamb αamb

PBELWI, IND & AMBEPUD 0.11*** 0.10*** 0.12***

(3.62) (3.78) (3.59)

PBELAC, IND & AMBEPUD 0.11*** 0.10*** 0.12***

(3.80) (3.94) (3.62)

PBELWI, ETF & AMBEPUD 0.11*** 0.10*** 0.12***

(3.71) (3.92) (3.53)

PBELAC, ETF & AMBEPUD 0.11*** 0.10*** 0.12***

(3.84) (4.10) (3.62)

Panel B βσamb
βσamb

β△σamb
βσamb

PBELWI, IND & AMBEPUD -0.09* -0.05 -0.02 -0.05

(-1.74) (-1.30) (-0.26) (-1.17)

PBELAC, IND & AMBEPUD -0.09* -0.05 -0.02 -0.05

(-1.74) (-1.37) (-0.25) (-1.21)

PBELWI, ETF & AMBEPUD -0.09* -0.05 -0.02 -0.05

(-1.74) (-1.40) (-0.26) (-1.24)

PBELAC, ETF & AMBEPUD -0.09* -0.05 -0.02 -0.05

(-1.74) (-1.44) (-0.26) (-1.24)
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Table 2. Monthly Alpha Regression.

This table summarizes the statistical significance of the Ambiguity mean term AMB (αamb)
belonging to αV across the different regression setups (1), (2) and (3). The first column on the
left indicates the dataset. PBELWI, IND, PBELAC, IND, PBELWI, ETF and PBELAC, ETF are the
Cookson and Niessner (2020) difference in previous beliefs measures extracted from Stocktwits
and PBELIBES is the difference in previous beliefs measure extracted from IBES. Regarding the
Ambiguity measures, AMBEPUM refers to the monthly EPU ambiguity measure extracted from
newspapers and AMBIZHM refers to the monthly Ambiguity market based measure of Izhakian
(2020). The regressions involving the IBES measure cover the period 2000 to 2020 and the rest of
the regressions cover the period 2013 to 2018. γp represent time fixed effects. T-values in round
brackets are Newey-West autocorrelation robust values. Full regression results in Appendix-F.

αV =1 c+ αamb ∗ AMB + αpbel ∗ PBEL+ αt−1 +
∑T

p=t+1 γp + ϵ

V =2
(
c+αpbel∗PBEL+α̈amb∗AMB

)
α
+
(
βp+βσamb

∗σamb+βσp∗σP

)
β
∗∆P +Vt−1+

∑T
p=t+1 γp+ϵ

∆V =3 c +
(
αpbel ∗∆PBEL+ α̈amb ∗∆AMB

)
∆α

+
(
β∆σamb

∗∆σamb + β∆σp ∗∆σP

)
∆β

∗∆P +(
βP + βσamb

∗ σamb + βσp∗∆2
P
∗ σP

)
β
∗∆2

P +∆Vt−1 +
∑T

p=t+1 γp + ϵ

Dataset R(1) R(2) R(3)

αamb αamb αamb

PBELWI, IND & AMBEPUM 0.23* 0.22*** 0.24***

(1.99) (3.87) (4.08)

PBELAC, IND & AMBEPUM 0.23** 0.21*** 0.25***

(2.07) (3.75) (4.03)

PBELWI, ETF & AMBEPUM 0.20* 0.19*** 0.19***

(1.99) (5.48) (4.17)

PBELAC, ETF & AMBEPUM 0.23* 0.20*** 0.23***

(1.95) (3.14) (3.43)

PBELWI, IND & AMBIZHM 0.46*** 0.35*** 0.38***

(4.61) (3.18) (4.05)

PBELAC, IND & AMBIZHM 0.46*** 0.36*** 0.38***

(4.68) (3.27) (4.03)

PBELWI, ETF & AMBIZHM 0.47*** 0.36*** 0.33***

(4.98) (3.65) (4.58)

PBELAC, ETF & AMBIZHM 0.46*** 0.36*** 0.38***

(4.75) (3.09) (3.94)

PBELIBES & AMBEPUM 0.37*** 0.36*** 0.25***

(3.03) (3.26) (2.80)

PBELIBES & AMBIZHM 0.58*** 0.48*** 0.53***

(5.19) (4.15) (5.30)
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Table 3. Monthly Betas Regression.

This table summarizes the statistical significance of the Ambiguity volatility term σamb (βσamb
)

belonging to βV across the different regression setups (1), (2) and (3). The first column on the
left indicates the dataset. PBELWI, IND, PBELAC, IND, PBELWI, ETF and PBELAC, ETF are the
Cookson and Niessner (2020) difference in previous beliefs measures extracted from Stocktwits
and PBELIBES is the difference in previous beliefs measure extracted from IBES. Regarding the
Ambiguity measures, AMBEPUM refers to the monthly EPU ambiguity measure extracted from
newspapers and AMBIZHM refers to the monthly Ambiguity market based measure of Izhakian
(2020). The regressions involving the IBES measure cover the period 2000 to 2020 and the rest of
the regressions cover the period 2013 to 2018. γp represent time fixed effects. T-values in round
brackets are Newey-West autocorrelation robust values. Full regression results in Appendix-F.

βV =1 c+ βσamb
∗ σamb + βσp ∗ σP + βt−1 +

∑T
p=t+1 γp + ϵ

V =2
(
c+αpbel∗PBEL+αamb∗AMB

)
α
+
(
βp+βσamb

∗σamb+βσp∗σP

)
β
∗∆P + Vt−1 +

∑T
p=t+1 γp + ϵ

∆V =3 c +
(
αpbel ∗∆PBEL+ αamb ∗∆AMB

)
∆α

+
(
β∆σamb

∗∆σamb + β∆σp ∗∆σP

)
∆β

∗∆P +(
βP + βσamb

∗ σamb + βσp∗∆2
P
∗ σP

)
β
∗∆2

P + ∆Vt−1 +
∑T

p=t+1 γp + ϵ

Dataset R(1) R(2) R(3)

βσamb
βσamb

β△σamb
βσamb

PBELWI, IND & AMBEPUM -0.15 0.05 -0.51 0.31

(-0.43) (0.39) (-1.13) (1.01)

PBELAC, IND & AMBEPUM -0.15 0.07 -0.45 0.27

(-0.43) (0.53) (-1.00) (0.92)

PBELWI, ETF & AMBEPUM -0.15 0.05 -0.43 0.29

(-0.43) (0.38) (-1.15) (1.32)

PBELAC, ETF & AMBEPUM -0.15 0.12 -0.42 0.28

(-0.43) (1.00) (-0.99) (1.20)

PBELWI, IND & AMBIZHM 0.17 -0.03 0.12*** -0.09*

(0.93) (-0.63) (4.08) (-1.83)

PBELAC, IND & AMBIZHM 0.17 -0.04 0.12*** -0.09*

(0.93) (-0.66) (4.13) (-1.90)

PBELWI, ETF & AMBIZHM 0.17 -0.03 0.15*** -0.10**

(0.93) (-0.61) (5.99) (-2.05)

PBELAC, ETF & AMBIZHM 0.17 -0.05 0.12*** -0.10**

(0.93) (-0.88) (5.55) (-2.09)

PBELIBES & AMBEPUM 0.20 -0.10 -0.35*** 0.19**

(0.99) (-1.39) (-7.09) (2.54)

PBELIBES & AMBIZHM 0.31 0.03 -0.09 0.02

(1.54) (0.39) (-1.14) (0.35)
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5 Empirical Evidence: Trading Volume and Price Volatil-

ity Elasticity

In this section, I empirically test the trading volume elasticity model presented in section 2.7 using

SPY data at daily frequency.

To validate the hypothesis that Ambiguity affects the elasticity relation between trading vol-

ume and price volatility, I test whether the series proxying for mean Ambiguity and Ambiguity

volatility are statistically significant in explaining this elasticity. Additionally, I expect high levels

of Ambiguity to weaken the trading volume to price volatility elasticity, as it reflects that trading

volume responds not only to price changes but also to Ambiguity.

Methodology

I test the theoretical elasticity model presented in section 2.7 through a daily frequency regression,

where I regress the changes in log SPY trading volume against changes in log delta price-volatility

σ∆p multiplied by the elasticity ξ. To validate the hypothesis regarding the impact of Ambiguity

on this elasticity, I check the statistical significance of the coefficients ξamb, ξamb2 associated with

mean Ambiguity, as well as the coefficients ξσamb
, ξσamb2

associated with Ambiguity volatility in the

regression. Additionally, I expect that mean Ambiguity (ξamb) will negatively impact the overall

elasticity, thereby weakening the link between price volatility and trading volume.

To conduct the linear regression, I use an expression that accounts for the non-linear normal

density and cumulative distribution function (CDF) inside the elasticity model. This expression

involves linear and quadratic terms of the elasticity factors: mean delta price change (µ∆p, ξµ),

mean Ambiguity (µA
δ , ξamb), difference in previous beliefs ((µA

e − µB
e ) and (µB

X − µA
X), ξpbel), and

ambiguity volatility (σ2A
δ , ξσamb

).

∆log(V ) = ξ ∗∆log(σ∆p) (5.1)

ξ = F (µ∆p , µA
δ , σA

δ , µA
e − µB

e , µB
X − µA

X , µ2
∆p , µ2A

δ , σ2A
δ , (µA

e − µB
e )

2 , (µB
X − µA

X)
2 )

I employ the regression below,
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∆log(V ) = c +
(
ξ1 + ξµ ∗µ∆p + ξpbel ∗PBEL + ξamb ∗AMB + ξµ2 ∗µ2

∆p + ξpbel2 ∗

PBEL2 + ξamb2 ∗AMB2 + ξσamb
∗σamb + ξσamb2

∗σ2
amb

)
ξ
∗ ∆log(σ∆p)+

∆log(V )t−1 +
∑T

p=t+1 γp

(5.2)

that also include a constant, a lagged series of the dependent variable to control for persistence

and yearly time controls.

I perform the regressions using daily data. The proxy series for differences in previous beliefs

(PBEL) are based on the daily measures from Cookson and Niessner (2020). The Ambiguity

measure used (AMB) is the daily version of the EPU index extracted from Twitter messages

(Baker et al., 2021). For the mean price change (µ∆p), I use a lagged rolling moving average

based on the last 200 days of information. To address potential collinearity issues between the

explanatory variables and their squared terms, I orthogonalize them by regressing each term on

its squared counterpart and retain the residuals as the explanatory variable. I implement a similar

procedure for the mean price change (µ∆p), as well as for the interactions of (σ∆p) and the single

regressor (σ∆p). The regression is performed using daily data for the period 2013 to 2018.

Results

The regression results in Table-4 below highlight the statistical significance of the Ambiguity mea-

sure (AMBEPUD), represented by the coefficient ξamb, across all four daily dataset combinations.

This coefficient shows an average value of -0.09, t-values exceeding 2.90 and p-values close to 1%.

According to these results, I obtain that a one-standard-deviation rise in the interaction be-

tween the daily Ambiguity measure and the delta of log price volatility corresponds to an approx-

imate -9% standard-deviation reduction in the log trading volume delta from 2013 to 2018. This

validates the hypothesis that (H1) Ambiguity distorts the conventional volume-to-price volatility

relationship and (H2) weakens the trading volume’s responsiveness to price volatility.

Across all datasets, other relevant explanatory variables are the delta in log price volatility

(coefficient ξ1) and the squared mean price change (coefficient ξµ2). The log price volatility series

(coefficient ξ1), displaying t-values comfortably above 3 and a mean coefficient of +0.23, represents

the well known principal channel between price volatility and trading volume. Based on these

results, a one-standard-deviation rise in the log price volatility delta corresponds to an approximate
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+23% standard-deviation increase in the log trading volume delta. The squared mean price change

(coefficient ξµ2), featuring t-values above 2 and an average coefficient around -0.10, is linked to

the normal distribution assumption of price changes.

Regarding the difference in prior beliefs measures (PBEL), none of the measures demonstrate

statistical significance. However, the coefficients (ξpbel, ξpbel2) linked to the ETF measure across

various investor styles (PBELAC,ETF ) exhibit comparatively greater significance than the others.

I also find that these elasticity results reveal a difference in the impact direction of the measure

associated with the same investment approach (PBELWI,ETF ) versus the one associated to in-

vestors with varied investment approaches (PBELAC,ETF ). Similar as for the trading volume

relationship discussed in Section 4.

Overall, the results obtained here from different datasets are consistent with the prior empirical

findings presented by Bollerslev et al. (2018) concerning the role and impact of Ambiguity (EPU)

on the elasticity between trading volume and price volatility. Moreover, these findings underscore

the significance of the Ambiguity expectations channel in the volume-price volatility relationship.

However, there are distinctions: (1) the results here differentiate between the prior belief channel

and the Ambiguity expectations channel, and (2) they reveal divergent behavior of the prior belief

measures depending on whether they originate from investors with similar or distinct investment

approaches. Building upon the differences in construction and nuances between these two beliefs

measures (Cookson & Niessner, 2020), the observed divergence in outcomes indicates diverse

elasticity effects, contingent on whether differing beliefs stem from distinct information sets or

distinct methods of interpreting information. Detailed regression results in Appendix-D Table-15.
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Table 4. Daily Elasticity Regression.

This table summarizes the main results of the trading-volume to price volatility elasticity regression
(5.2). The regressions were performed for the period 2013 to 2018. The row on top indicates
the dataset. The dataset D(1): PBELWI, IND & AMBEPUD, D(2): PBELAC, IND & AMBEPUD,
D(3): PBELWI, ETF & AMBEPUD and D(4): PBELAC, ETF & AMBEPUD. Where PBELWI, IND,
PBELAC, IND, PBELWI, ETF and PBELAC, ETF are the Cookson and Niessner (2020) previous beliefs
measures extracted from Stocktwits and AMBEPUD refers to the daily EPU ambiguity measure
extracted from Twitter. T-values in round brackets are Newey-West autocorrelation robust values.
Full regression results in Appendix-D.

∆log(V ) = c +
(
ξ1+ξµ∗µ∆p+ξpbel∗PBEL+ξamb∗AMB+ξµ2 ∗µ2

∆p+ξpbel2 ∗PBEL2+ξamb2 ∗
AMB2 + ξσamb

∗ σamb + ξσamb2
∗ σ2

amb

)
ξ
∗ ∆log(σ∆p) + ∆log(V )t−1 +

∑T
p=t+1 γp

D(1) D(2) D(3) D(4)

c -0.02 -0.02 -0.02 -0.02

(-0.48) (-0.52) (-0.46) (-0.61)

ξ1 0.23*** 0.23*** 0.23*** 0.23***

(9.08) (8.87) (8.59) (9.14)

ξµ -0.01 -0.01 -0.02 -0.00

(-0.30) (-0.37) (-0.61) (-0.00)

ξpbel -0.01 -0.02 -0.04 0.04

(-0.30) (-0.78) (-1.45) (0.98)

ξamb -0.09*** -0.09*** -0.09*** -0.08***

(-3.34) (-2.98) (-3.41) (-2.95)

ξp1 -0.02 -0.01 -0.01 -0.00

(-0.53) (-0.35) (-0.12) (-0.06)

ξµ2 -0.10*** -0.10*** -0.11*** -0.08**

(-3.22) (-2.63) (-3.74) (-2.18)

ξpbel2 0.02 -0.01 0.03 0.05

(0.45) (-0.15) (0.80) (1.43)

ξamb2 0.01 0.01 0.01 0.01

(0.39) (0.37) (0.37) (0.58)

ξp21
0.02 0.02 0.02 0.00

(0.87) (0.75) (1.10) (0.18)

ξσamb -0.04 -0.04 -0.03 -0.04

(-1.55) (-1.36) (-1.01) (-1.51)

ξσ2
amb

-0.02 -0.02 -0.01 -0.03

(-0.56) (-0.52) (-0.25) (-0.70)

ξ∆log(V )t−1
-0.38*** -0.38*** -0.38*** -0.38***

(-18.71) (-18.58) (-18.62) (-18.46)

N 1510 1510 1510 1510

R2
a 0.204 0.204 0.206 0.206
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6 Application: Turnover Sorted Portfolios

In this section, I employ the model outlined in section-2.6 to identify the primary drivers of

returns in Turnover sorted portfolios, which are commonly associated to Liquidity in the literature.

Furthermore, based on the trading volume components of the trading volume model of section-2.6,

I introduce an improved method for constructing Turnover sorted portfolios with better risk/return

profiles. I begin by introducing the current state of the literature on Turnover sorted portfolios

and liquidity. Subsequently, I present my key findings, followed by a detailed explanation of the

methodology and numerical outcomes.

Several empirical studies have shown that stocks with low turnover tend to exhibit higher

future returns (Amihud, 2002, 2018; Chou et al., 2013; Datar et al., 1998; Haugen & Baker, 1996;

Lee & Swaminathan, 2000). The asset pricing literature typically regards Turnover as a gauge of

liquidity and liquidity risk. According to this perspective, theoretically, a greater exposure to low

turnover, implying heightened liquidity risk, should be associated to higher returns (Acharya &

Pedersen, 2005; Pástor & Stambaugh, 2003). However, second-moment volume-based measures

of liquidity risk point in the opposite direction (Chordia et al., 2001). This contradiction poses

a puzzle within the established asset pricing literature. So, what do Turnover sorted portfolios

truly measure?.

Utilizing the model outlined in section 2.6, I provide empirical evidence showing that a sig-

nificant portion of the returns from a standard Turnover sorted portfolio can be attributed to

Ambiguity. Summary in figure-6 below. In detail, the results indicate that around 70% of the

positive returns within a US long-short Turnover sorted portfolio, starting in 1990, can be linked

to trading volume driven by Ambiguity. These findings align with the Microstructure perspective

(Harris & Raviv, 1993), which views turnover not only as an indicator of liquidity risk but also as

a manifestation of Ambiguity and divergence in beliefs.
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Figure 6. LMH Turnover Portfolio Returns Attribution. Attribution of the monthly
returns of the LMH Turnover sorted portfolio described in section Data and Portfolio Construction
below between 1990 to 2020. The returns attribution is obtained in regression (4.2) below by
regressing the returns on a constant and the LMH portfolios obtained from sorting on the Turnover
components {αVpbel

, αVamb
, βV∆P21

, ϵ}. The sorting variables of these last portfolios are: Turnover
driven by difference in prior beliefs (αVpbel

), Turnover driven by Ambiguity (αVamb
), Turnover

driven by price fluctuations (βV∆P21
) and an unexplained Turnover portion or error term (ϵ).

Furthermore, I empirically demonstrate that constructing a bisorted portfolio utilizing turnover

driven by both Ambiguity and price changes results in a 2x to 3x higher Sharpe Ratio compared

to a counterfactual portfolio using solely the Turnover measure. Refer to figure-7 below.

Figure 7. Bisorted Portfolios Returns and Sharpe-Ratios. Yearly returns and Sharpe-
Ratios of bisorted portfolios between 1990 to 2020. PMKT is the Fama-French market factor.
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Methodology

I apply the theoretical framework presented in section 2.6 to empirically deconstruct the Turnover

measure of each stock analyzed in this chapter. This process results in four distinct Turnover

components per stock, which in turn serve as the basis for constructing four low-minus-high

(LMH) portfolios. Subsequently, I project the initial Turnover LMH portfolio onto these four

distinct LMH portfolios, with the goal of identifying the individual contribution of each Turnover

component to the overall returns of the original Turnover portfolio.

Regarding these four components of Turnover, according to the model in section 2.6 they

are: Ambiguity related Turnover, Turnover stemming from variations in prior beliefs, Turnover

associated to price fluctuations, and an unexplained residual or error term. Sorting LMH on these

measures originates the aforementioned four portfolios.

Turnover = αVpbel
+ αVamb

+ βV∆P21
+ ϵ (6.1)

LMH Portfolios = {PTurn, Pamb, Ppbel, P∆P21 , Pϵ}

In a subsequent analysis, taking into account the higher Sharpe ratios of portfolios Pamb and

P∆P21 from the prior step, I utilize the respective Turnover components associated with Ambiguity

and changes in price {αVamb
, βV∆P21

} to form bisorted LMH portfolios. I then compare these

portfolios against a similar counterfactual bisorted portfolio based solely on the original Turnover

metric.

To characterize and compare the above mentioned portfolios, I calculate their average annual

excess returns, standard deviations, and Sharpe ratios. Additionally, I conduct regressions (1),

(2), and (3) on the monthly returns of the LMH PTurn portfolio resulting from sorting on Turnover

in order to analyze and attribute its returns.

RPTurn
= c+ ϵ (6.2)

RPTurn
= c+Rfree + βMKTRF ∗RMKTRF + βHML ∗RHML + βSMB ∗RSMB + ϵ (6.3)

RPTurn
= c+ βPamb

∗RPamb
+ βPpbel

∗RPpbel
+ βP∆P21

∗RP∆P21
+ βPϵ ∗RPϵ + ϵ (6.4)

In regression (4.1), I analyze the monthly portfolio returns by regressing them against a constant
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term to determine the average monthly returns and their statistical significance. Regression (4.2)

examines the returns using the Fama-French three-factor model {MKT − RFree, HML, SMB}

to gauge the extent to which conventional factors account for the LMH Turnover portfolio’s

behavior. In regression (4.3), I regress the initial LMH Turnover portfolio against the LMH

portfolios obtained from sorting on {αVpbel
, αVamb

, βV∆P21
, ϵ}, aiming to identify the main Turnover

components that explains the original Turnover portfolio returns. The results of regressions (2),

(3) and (4) are displayed in tables (5) and (6) below. Utilizing the betas obtained from regression

(3) alongside the mean average returns of each explanatory portfolio, I build the LMH Turnover

portfolio PTurn returns attribution displayed in figure-6 above. In Table 21 within Appendix G, I

validate the regression outcomes from (3) by introducing alternative liquidity measures.

Data and Portfolio Construction

I create the portfolios analyzed here by using all CRSP stocks traded on the NYSE and NASDAQ.

The monthly portfolio returns span from 1990 to 2020. To capture Ambiguity, I utilize the monthly

series of the Economic Policy Uncertainty Index (Baker et al., 2016). To account for differing prior

beliefs, I employ an analysts’ forecast dispersion measure retrieved from the IBES database. The

Fama-French factors for the regression analysis are sourced from the Kenneth French Online Data

Library.

I create unisorted portfolios by averaging the Turnover measure and its four components:

{αVamb
, αVpbel

, βV∆P21
, ϵ} over a 3-month rolling window for each stock. These five averages represent

Turnover itself, Turnover explained by Ambiguity (αVamb
), Turnover explained by divergence in

prior beliefs (αVpbel
), and the unexplained portion of Turnover (ϵ). On a 3-month basis, using

1-month lagged averages, I segment the stock universe into 10 quantiles (10x), generating ten

equally weighted portfolios corresponding to each quantile. This monthly process relies solely on

past data. The final unisorted portfolios {PTurn, Pamb, Ppbel, P∆P21 , Pϵ} representing one of the five

series above, emerge as the difference between the lowest and highest quantile portfolios (LMH).

For the second analysis, I construct bisorted portfolios based on {αVamb
, βV∆P21

} following

the same methodology. Using a lagged 3-month rolling window average of the initially selected

measure, I segment the stock universe into 5 quantiles on a 3-month basis. Within these five

quantiles, utilizing the lagged 3-month rolling average of the second selected measure, I further

segment them into two smaller quantiles. This process solely relies on past data, resulting in a
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set of 5x2 portfolios. The final portfolio emerges by taking a long position in the portfolio with

the lowest αVamb
and highest βV∆P21

, while shorting the portfolio with the highest αVamb
and lowest

βV∆P21
. I create two versions of this bisorted portfolio, one version employs αVamb

as the first sorting

dimension (5x) and the other one uses βV∆P21
. I refer to these portfolios as {Pamb−△P21 , P△P21−amb}.

For comparison and benchmarking purposes I also construct a counterfactal Turnover-Turnover

bisorted portfolio PTurn−Turn following the same methodology. This portfolio employs on both

dimensions (5x2) the Turnover measure.

Results

The regression results (4.1) presented in Table-5 below reveal that the LMH Turnover portfolio

PTurn yielded a positive and statistically significant average monthly return of +0.60% during the

1990-2020 period. A similar outcome emerged from the LMH portfolio Pamb exclusively driven

by the Turnover component αVamb
associated to Ambiguity. During this same period, arranging

the portfolio from low to high (LMH according to the Turnover component associated with price

changes (△P21) would have led to statistically significant average negative returns of -0.50% per

month in portfolio P△P21 . These two portfolios { Pamb, P△P21} linked to the Turnover components

αVamb
and △P21 respectively exhibit the highest Sharpe ratios, albeit in inverse LMH and HML

directions.

The results of regressions (4.2) presented in Table-6 highlight that the traditional Fama-French

three-factor model fails to account for the positive returns of the LMH Turnover portfolio PTurn.

The constant term captures an average monthly return of +1.9% (22% annually) with a robust

t-statistic exceeding 4 that can not be explained by the Fama-French factors.

Regression (4.3) results in Table-3, utilizing LMH Portfolios {PTurn, Pamb, Ppbel, P∆P21 , Pϵ} as

explanatory variables, reveal that a significant proportion of the LMH Turnover portfolio PTurn

positive returns can be attributed to these explanatory portfolios. In this regression, the constant

term captures a residual -0.1% monthly return (-1.2% annually) that is not statistically signifi-

cant. The findings from this Table-6 and the average monthly returns detailed in Table-5 above,

indicate that the explanatory portfolio Pamb with a beta of 0.942 contributes with an approxi-

mate monthly return of +0.57% to the Pturn portfolio. In the second, third, and fourth positions,

the explanatory portfolios {Pϵ, Ppbel, P∆P21} contribute with average monthly returns of {+0.12%,

+0.09%, +0.02%} respectively to the Pturn portfolio. The robustness tests in Table-21 within
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Appendix-G show that the regression coefficients, t-stats, and p-values of regression (4.3) remain

largely unaffected after the incorporation of alternative liquidity measures.

In relation to the construction of portfolios with better statistical properties using the informa-

tion contained in the Turnover measure, in Table-7 below I show that a bisorted portfolio utilizing

solely the components {αVamb
, βV∆P21

} of Turnover for sorting purposes achieves a superior risk-

return profile. The bisorted portfolio of dimensions 5x2 that first sorts LMH on αVamb
and then

HML on βV∆P21
achieves a sharpe ratio of +0.48. This outperforms the Sharpe ratio of +0.16

achieved by a comparable counterfactual Turnover-Turnover bisorted portfolio. Similarly, the 5x2

bisorted portfolio that first sorts HML on βV∆P21
and then LMH on αVamb

achieves a sharpe ratio

of +0.50 that exceeds the counterfactual Turnover-Turnover bisorted portfolio sharp ratio and

comes close to Fama-French Market factor sharpe ratio.

These findings highlight the important role that Ambiguity plays in the dynamics of Turnover

sorted portfolios. Furthermore, they contribute to the longstanding debate on whether Turnover

primarily captures liquidity or something else. Additionally, these results offer an alternative

explanation on the puzzling relationship between volume-based measures of liquidity risk and

returns (Chordia et al., 2001).

Table 5. Portfolios Monthly Returns and Sharpe Ratios.

This table summarizes in Panel A the monthly returns of the Market Factor Portfolio, the LMH
Turnover Portfolio (PTurn), the LMH Uncertainty driven Turnover Portfolio (Punc), the LMH
Disagreement driven Turnover Portfolio (∆P21), the LMH Price Change driven Turnover Portfolio
(∆P21) and the LMH Non-Explained Turnover driven Portfolio (Pϵ). Panel B shows the yearly
Sharpe-Ratios for the same portfolios.

PMKT PTurn Pamb Ppbel P△P21 Pϵ

Panel A: Monthly Portfolio Returns (1990 - 2020)

c 0.009*** 0.006* 0.006* 0.002 -0.005*** 0.003*

(3.96) (1.68) (1.70) (0.76) (-3.27) (1.75)

N 372 372 372 372 372 372

R2
a 0 0 0 0 0 0

Panel B: Sharpe Ratios (1990 - 2020, yearly)

Excess Return 0.09 0.05 0.05 -0.01 -0.03 0.01

Std. Deviation 0.14 0.25 0.21 0.16 0.15 0.11

Sharpe Ratio 0.56 0.20 0.22 -0.05 -0.22 0.04
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Table 6. Portfolio Monthly Returns Regressions.

This table summarizes the attribution of the LMH Turnover Sorted Portfolio (PTurn) using the
Fama-French Factors as well as the Ambiguity (Punc), Disagreement (Ppbel), Price Change (P∆P21)
and Non-Explained (Pϵ) Turnover components LMH portfolios.

PTurn PTurn PTurn

c 0.006* 0.019*** -0.001

(1.68) (4.81) (-1.27)

βRf -2.380*

(-1.77)

βMKT−Rf -0.953***

(-12.19)

βHML 0.854***

(6.82)

βSMB -0.789***

(-7.96)

βPamb 0.942***

(41.18)

βPpbel 0.450***

(5.93)

βP△P21
-0.034

(-0.52)

βPϵ 0.390***

(7.21)

N 372 372 372

R2
a 0.000 0.728 0.944
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Table 7. Bisorted Portfolios Monthly Returns and Sharpe Ratios.

This tables summarize the statistics of the market portfolio plus three differential bisorted port-
folios portfolios PTurn−Turn, Punc−∆P21 and P∆P21−unc. Each bisorted portfolio is obtained as the
spread between the extreme quantiles of (bisorted) portfolios sorted on two measures. Each port-
folio that compose the long and short leg of the differential portfolio is obtained by double sorting
on a 5x2 grid. Panel A shows the monthly returns of the Market Factor, the bisorted Turnover-
Turnover Portfolio, the bisorted Price Change - Ambiguity driven (Turnover) Portfolio, and the
bisorted Ambiguity - Price Change (Turnover) Portfolio. Panel B shows the yearly Sharpe-Ratios
for the same portfolios.

PMKT PTurn−Turn Pamb−△P21 P△P21−amb

Panel A: Monthly Portfolio Returnds (1990 - 2020)

c 0.009*** 0.006 0.008*** 0.008***

(3.96) (1.39) (2.79) (3.53)

N 372 372 372 372

R2
a 0 0 0 0

Panel B: Sharpe Ratios (1990 - 2020, yearly)

Excess Return 0.09 0.04 0.07 0.07

Std. Deviation 0.14 0.25 0.16 0.13

Sharpe Ratio 0.56 0.16 0.38 0.50
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7 Conclusions

In this work, I explore the influence of Ambiguity, also referred to as Knightian Uncertainty, on

the connection between trading volume and prices within financial markets. I created a model

that sheds light on how the ambiguous interpretation of public information by a subset of market

participants affects trading activity. Through both theoretical analysis and empirical evidence, I

reveal how the expectations channel of Ambiguity can trigger trading activity, even amidst stable

scenarios lacking visible price changes.

The empirical sections of this study validate the theoretical model, demonstrating that, on

average, a one-standard-deviation rise in daily Ambiguity translate in an approximately +11%-

standard-deviation surge in trading volume, even after accounting for price shifts. On a monthly

frequency, I observe that a one-standard-deviation rise in Ambiguity is associated with an approx-

imate +20%-standard-deviation to +58%-standard-deviation surge in trading volume.

By relaxing the assumptions of my initial framework, I derive a trading volume to price volatil-

ity elasticity relation that incorporates the influence of Ambiguity within market agents. This con-

nection illustrates the impact of Ambiguity on the well-established positive correlation between

price volatility and trading volume. My empirical estimates demonstrate that a one-standard-

deviation rise in the product of price volatility and daily Ambiguity leads to a decrease of approx-

imately 9% in trading volume, rather than an increase. This outcome underscores how Ambiguity

weakens the typically positive link between trading activity and price volatility.

In terms of applications, the model’s decomposition of trading volume suggests that roughly

70% of the positive returns of a standard US Turnover sorted portfolio from 1990 to 2020 can be

attributed to Turnover driven by Ambiguity.

The model and empirical findings presented here shed light on how Ambiguity can help to

explain the puzzling large average trading volume observed in markets (Cochrane, 2016), even

in situations marked by minor price shifts and subdued volatility. Furthermore, these results

bolster the notion that Turnover is more a manifestation of Ambiguity and divergent viewpoints

rather than mere liquidity, thereby contributing to the understanding of the puzzling relationship

between volume-based liquidity risk measures and returns (Chordia et al., 2001).
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Appendix A Volume and Price Change Relation for Max

Min Utility

Market Equilibrium at Time 1

The price Pt1 represents the equilibrium price at which the risky asset market clears in period 1

and is determined by the following formula.

Pt1 = µ̄X/ρ̄X

where

µ̄X = π ∗ µA
X ∗ ρAX + (1− π) ∗ µB

X ∗ ρBX

ρ̄X = π ∗ ρAX + (1− π) ∗ ρBX

The resulting equilibrium allocation at period 1 for both ambiguous and non-ambiguous in-

vestors is given by the formulas θAt1 and θBt1 below.

θBt1 =
π ∗ ρAX ∗ ρBX ∗

(
µB
X − µA

X

)
γ ∗ ρ̄X

θAt1 =
(1− π) ∗ ρAX ∗ ρBX ∗

(
µA
X − µB

X

)
γ ∗ ρ̄X

Ambiguity Neutral Investor Type (Type-B) At Time 2

The ambiguity-neutral type-B investor takes the following optimal decision at time (2)

max
θBt2

EB
[
UB
(
θBt2
)∣∣S] = max

θBt2

EB
[
−e−γ ∗ (wB

t2 + θBt2∗ (X̃−Pt1 ))
∣∣∣S]

max
θBt2

EB
[
UB
(
θBt2
)∣∣S] = max

θBt2

−e−γ∗(wB
t2 + θBt2∗ (EB[X̃|S]−Pt2 )) + 1

2
∗γ2∗θ2Bt2 ∗VARB [X̃|S]

Given his prior beliefs and the information received through the signal S, his optimal allocation

at time 2 is the following

θBt2 =
EB[X̃|S]− Pt2

γ ∗ VARB[X̃|S]
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θBt2 =
ρBX ∗ µB

X + ρBE ∗
(
S − µB

ϵ

)
− Pt2 ∗

(
ρBX + ρBE

)
γ

where

ρBX =
1

σ2 B
X

ρBE =
1

σ2 B
E

=
1

σ2 B
ϵ

EB
[
X̃
∣∣∣S] = µB

X +
σ2 B
X

σ2 B
X + σ2 B

e

∗
(
S − µB

X − µB
e

)
EB
[
X̃
∣∣∣S] = ρBX ∗ µB

X + ρBE ∗
(
S − µB

e

)
ρBX + ρBE

VARB
[
X̃
∣∣∣S] = σ2 B

X − σ4 B
X

σ2 B
X + σ2 B

e

VARB
[
X̃
∣∣∣S] = (

ρBX + ρBE
)−1

The parameter ρBX corresponds to the type-B investor prior belief precision about the payoff X

and ρBE corresponds to the type-B investor belief about the precision of the signal S total error Ẽ .

Ambiguity Averse Investor (Type-A) At Time 2

The investor type maximizes at time 2 his expected utilitity by selecting the optimal asset mix-

ture in accordance with its Max Min Utility function. In this function, the expectation operator

addresses the traditional risk concept associated with the payoff X̃, while the minimization op-

erator handles the ambiguity surrounding X̃ by selecting the most pessimistic M model. In this

particular setup, each model M represents a specific way of interpreting the public information.

Details below.

Regarding this investor type beliefs about the risky-asset payoff X̃, he initially assumes a

normal distribution with parameters N
(
µA
X , σ2 A

X

)
. Additionally, he believes that the signal S is

subject to a measurement bias or error ϵ̃ that distributes N
(
µA
ϵ , σ2 A

ϵ

)
.

Despite these prior beliefs, this investor type is not completely certain about the appropriate

model for interpreting the signal S. This ambiguity is represented by different models M ∈ Mn,

each characterized by a model-dependent signal component δ̃ following the normal distribution

N
(
µA
δ , σ2 A

δ

)
. The mean and variance of δ̃ are specific to each M -model. The mean of δ̃ across

all models falls within the range
[
µ
δ
, µδ

]
and its variance falls within the range [σ2

δ , σ
2
δ ].

In summary, the investor type-A believes that the signal S consists of three components: the
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risky payoff X̃ information, an ambiguous model-dependent component δ̃, and a measurement

error ϵ̃. The total error term of the signal is denoted as Ẽ .

S = X̃ + δ̃ + ϵ̃ = S + Ẽ

δ̃ ∼ N
(
µA
δ , σ2 A

δ

)
µA
δ ∈

[
µ
δ
, µδ

]
σ2 A
δ ∈

[
σ2
δ , σ

2
A

]
The ambiguity averse type-A investor takes the following optimal decision at time 2.

max
θAt2

min
M

EA

[
−e

−γ ∗
(
wA

t2 + θ
IA
t2 ∗ (X̃ − Pt2 )

) ∣∣∣∣S,M]
max
θAt2

min
M

−e−γ∗(wA
t2 + θAt2∗(EA[X̃|S,M]−Pt2 )) + 1/2∗γ2∗θ2 A

t2 ∗VarA[X̃|S,M]

max
θAt2

−e−γ∗(wA
t2 + θAt2∗(EA[X̃|S,M∗]−Pt2 )) + 1/2∗γ2∗θ2 A

t2 ∗VarA[X̃|S,M∗]

Given his prior beliefs, the information received through signal S, and his personal interpreta-

tion of information (model M) his optimal allocation at time 2 is the following.

θAt2 =
EA
[
X̃
∣∣∣ S,M∗

]
− Pt2

γ ∗ VARA
[
X̃
∣∣∣S,M∗

]
θAt2 =

ρAX ∗ µA
X + ρ

A|M∗

E ∗
(
S − µA

ϵ − µ
A|M∗

δ

)
− Pt2 ∗

(
ρAX + ρ

A|M∗

E

)
γ

where

ρAX =
1

σ2 A
X

ρ
A|M∗

E =
1

σ
2 A|M∗

E

=
1

σ2 A
ϵ + σ

2 A|M∗

δ

Ambiguity Averse Investor (Type-A) At Time 2: Optimal Paremeters

In this section, I elaborate on the optimal model M parameters, which the Ambiguous agents will

employ to interpret the signal S according to their Max Min utility.

To ensure tractability, I adopt a simpler parametrization wherein ambiguity is represented

by a range of models with different means uAM , while sharing a fixed ambiguity volatility σ2 A
AF

.
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Ã ∼ N
(
µA
A ∈

[
µA
A
, µA

A

]
, σ2 A

A ∈
[
σ2 A
AF

])
.

In this parametrization, the Min component of the ambiguous agent’s utility gives rise to a

function with one kink, located at point θAt2 = 0. This results in a piecewise function with three

regions where the agent maximizes its utility (Condie & Ganguli, 2017). In the first region, the

agent selects a model with a mean ambiguity uA
A. Moving to the next region, the agent opts for

a model with a mean ambiguity µ̄A inside the range [uA
A, u

A
A], ensuring that the expected return

EA
[
X̃
∣∣∣S,M] − Pt2 equals 0. Lastly, in the final region, the agent goes for the mean ambiguity

uA. The following equations summarize the piecewise utility of the ambiguous agent across these

different regions.

maxθAt2 E
IA
[
UA
(
θAt2
)∣∣S] =



max
θAt2

EA
[
−e −γ ∗ (wt2+θBt2∗ (X̃ − Pt2 ))

∣∣∣ S,M = {µA

A
, σ2 A

AF
}
]

if θAt2 < 0

max
θAt2

EA
[
−e −γ ∗ (wt2+θBt2∗ (X̃ − Pt2 ))

∣∣∣ S,M = {µ̄A

A
, σ2 A

AF
}
]

if θAt2 = 0

max
θAt2

EA
[
−e −γ ∗ (wt2+θBt2∗ (X̃ − Pt2 ))

∣∣∣ S,M = {µA
A, σ

2 A
AF

}
]

if θAt2 > 0

One interesting aspect of this utility function is the abrupt changes it exhibits when market

conditions and signals shift, causing the utility to transition between different regions. In such

instances, adjustments in the optimal mean ambiguity parameter µA
A leads to alterations in the

utility function’s shape.

Another noteworthy aspect of this utility function is the agent’s portfolio inertia, wherein

θAt2 = 0. Within this particular region, the concrete allocation quantity remains entirely insensitive

to the agent’s current ambiguity.

This piecewise function leads to variations in the optimal allocation θAt2 depending on the

region of operation. In one region, the allocation corresponds to the optimal mean variance

portfolio resulting from a mean ambiguity µA
A. In the next region, the agent withdraws completely

from the market. Finally, in the last region, the allocation represents the optimal mean variance

portfolio resulting from a mean ambiguity µA
A
.
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θA∗
t2 =



EA
[
X̃
∣∣∣S,M = {µA

A, σ
2 A
AF

}
]
− Pt2

γ ∗ VARA
[
X̃
∣∣∣S,M = {µA

A, σ
2 A
AF

}
] if Pt2 < EA

[
X̃
∣∣∣S,M = {µA

A, σ
2 A
AF

}
]

EA
[
X̃
∣∣∣S,M = {µ̄A

A
, σ2 A

AF
}
]
− Pt2

γ ∗ VARA
[
X̃
∣∣∣S,M = {µ̄A

A
, σ2 A

AF
}
] if EA

[
X̃
∣∣∣S,M = {µA

A, σ
2 A
AF

}
]
≤ Pt2

and Pt2 ≤ EA
[
X̃
∣∣∣S,M = {µA

A
, σ2 A

AF
}
]

EA
[
X̃
∣∣∣S,M = {µA

A
, σ2 A

AF
}
]
− Pt2

γ ∗ VARA
[
X̃
∣∣∣S,M = {µA

A
, σ2 A

AF
}
] if Pt2 > EA

[
X̃
∣∣∣S,M = {µA

A
, σ2 A

AF
}
]

Equilibrium At Time 2

In equilibrium at time 2 the following equation has to hold.

(1− π) ∗ θBt2 + π ∗ θAt2 = 0

Replacing the investor types A and B optimal allocations θBt2 and θAt2 in the market clearing

condition.

π ∗ [ρAX ∗ µA
X + ρ

A|M∗

E ∗ (S − µA
ϵ − µ

A|M∗

δ ) − Pt2 ∗ (ρAX + ρ
A|M∗

E ) ] + (1− π) ∗ [ρBX ∗ µB
X + ρBE ∗

(S − µB
ϵ ) − Pt2 ∗ (ρBX + ρBE ) ] = 0.

Grouping together terms associated to the investors previous beliefs about the risky asset

expected payment, the signal S, the signal S error and price Pt2

[π ∗ ρAX ∗ µA
X + (1 − π) ∗ ρBX ∗ µB

X ]µ̄X
+ [π ∗ ρ

A|M∗

E + (1 − π) ∗ ρBE ]ρ̄E ∗ S −[
π ∗ ρA|M∗

E ∗ µA
ϵ + (1− π) ∗ ρBE ∗ µB

ϵ

]
µ̄ϵ

− [π ∗ ρA|M∗

E ∗ µA|M∗

δ ] − Pt2 ∗ [π ∗ ρAX + (1− π) ∗ ρBX ]ρ̄X −

Pt2 ∗ [π ∗ ρA|M∗

E + (1− π) ∗ ρBE ]ρ̄E = 0

Replacing the expression in brackets by the terms µ̄X , ρ̄E , µ̄ϵ and ρ̄X we can rewrite the market

clearing condition as

µ̄X + ρ̄E ∗ S− µ̄ϵ − π ∗ ρA|M∗

E ∗ µA|M∗

δ − Pt2 ∗ (ρ̄X + ρ̄E) = 0.
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Signal S At Time 2

From here we can rewrite the price at time 2.

Pt2 =
µ̄X + ρ̄E ∗ S− µ̄ϵ − π ∗ ρA|M∗

E ∗ µA|M∗

δ

ρ̄X + ρ̄E
.

We can use this last expression for Pt2 to rewrite the signal S as a function of the change in

price ∆P

∆P = Pt2 − Pt1 =
µ̄X + ρ̄E ∗ S − µ̄ϵ − π ∗ ρA|M∗

E ∗ µA|M∗

δ

ρ̄X + ρ̄E
− Pt1

∆P ∗ [ρ̄X + ρ̄E ] =
[
µ̄X + ρ̄E ∗ S − µ̄ϵ − π ∗ ρA|M∗

E ∗ µA|M∗

δ

]
− P1 ∗ [ρ̄X + ρ̄E ]

S =
∆P ∗ [ρ̄X + ρ̄E ] + µ̄ϵ + π ∗ ρA|M∗

E ∗ µA|M∗

δ

ρ̄E
+ Pt1

In this last equation we replaced the price Pt1 by the formula obtained for it as a result of the

market equilibrium at time 1. Pt1 =
µ̄X

ρ̄X
.

Trading Volume from Time 1 to Time 2

We measure the trading volume from time 1 to 2 as the change in the risky-asset allocation of

the ambiguity-neutral investor type (B) multiplied by the quantity of this type of investor. By

symmetry of this market equilibrium, the volume of risky asset this investor type-B buys/sells is

equivalent to the volume the ambiguous investor type-A sells/buys.

V = (1− π) ∗ (θBt2 − θBt1)

where

θBt1 = (µB
X − Pt1) ∗ ρBX/γ

θBt2 =
ρBX ∗ µB

X + ρBE ∗ (S − µB
ϵ )− Pt2 ∗ (ρBX + ρBE )

γ

Replacing the allocations of the ambiguity-neutral investor type-B in the expression (θBt2− θBt1)

we obtain

θBt2 − θBt1 =

[
ρBX ∗ µB

X + ρBE ∗ (S − µB
ϵ )− Pt2 ∗ (ρBX + ρBE )

γ

]
−
[
(µB

X − Pt1) ∗ ρBX
γ

]
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θBt2 − θBt1 =
ρBE ∗

[
S− µB

ϵ

]
γ

− Pt2 ∗ ρBE
γ

−∆P ∗ ρBX
γ

At this stage we can rewrite the signal S expression (S − µB
ϵ ) as a function of the change in

prices between period (1) and (2) using the formula we found in the previous section.

θBt2 − θBt1 = ρBE ∗

[(
∆P∗[ρ̄X+ρ̄E ]+µ̄ϵ+π∗ρA|M∗

E ∗µA|M∗
δ

ρ̄E
+ Pt1

)
S

− µB
ϵ

]
γ

− Pt2 ∗ ρBE
γ

−∆P ∗ ρBX
γ

θBt2 − θBt1 =
∆P
γ

∗
[
ρBE ∗ (ρ̄X+ρ̄E)

ρ̄E
− ρBE − ρBX

]
+

[
ρBE ∗µ̄ϵ

γ∗ρ̄E
− ρBE ∗µB

ϵ

γ
+

π∗ρBE ∗ρA|M∗
E ∗µA|M∗

δ

γ∗ρ̄E

]
θBt2 − θBt1 =

∆P
γ

∗
[
ρBE ∗ ρ̄X

ρ̄E
− ρBX

]
2
+

[
ρBE ∗µ̄ϵ

γ∗ρ̄E
− ρBE ∗µB

ϵ

γ
+

π∗ρBE ∗ρA|M∗
E ∗µA|M∗

δ

γ∗ρ̄E

]
1

We simplify the expressions inside bracket (2)

[
ρBE ∗ ρ̄X

ρ̄E
− ρBX

]
2

=

[
ρBE ∗ π ∗ ρAX − ρBX ∗ π ∗ ρA|M∗

E
B̄

]
[
ρBE ∗ ρ̄X

ρ̄E
− ρBX

]
2

= π ∗

[
ρBE ∗ ρAX − ρBX ∗ ρA|M∗

E
ρ̄E

]

We also rewrite the expression inside bracket (1)

[...]1 =

[(
ρBE ∗π∗ρA|M∗

E ∗µA
ϵ +ρBE ∗(1−π)∗ρBE ∗µB

ϵ

)
−
(
ρBE ∗µB

ϵ ∗π∗ρA|M∗
E +ρBE ∗µB

ϵ ∗(1−π)∗ρBE
)

γ∗ρ̄E
+

π∗ρBE ∗ρA|M∗
E ∗µA|M∗

δ

γ∗ρ̄E

]
[...]1 =

[
ρBE ∗ π ∗ ρA|M∗

E ∗ µA
ϵ − ρBE ∗ µB

ϵ ∗ π ∗ ρA|M∗

E
γ ∗ ρ̄E

+
π ∗ ρBE ∗ ρA|M∗

E ∗ µA|M∗

δ

γ ∗ ρ̄E

]

[...]1 =
π ∗ ρA|M∗

E ∗ ρBE ∗
[
µA
ϵ − µB

ϵ + µ
A|M∗

δ

]
γ ∗ ρ̄E

Then we can rewrite the expression for the trade-volume originated by the ambiguity neutral

investor type-B as

θBt2 − θBt1 =

[
π∗ρA|M∗

E ∗ρBE ∗
[
µA
ϵ −µB

ϵ +µ
A|M∗
δ

]
γ∗ρ̄E

]
1

+ π ∗
[
ρBE ∗ρAX−ρBX∗ρA|M∗

E
ρ̄E

]
2

∗ ∆P21

γ

The total trading volume in the economy is given by the expression below. The ambiguity

about the signal term δ manifests within this expression through the model dependent mean µ
A|M∗

δ
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and the precissions ρ
A|M∗

E and ρ̄E , whose specific values depend on the model M∗ chosen by the

ambiguous investor type-B on the minimization stage of his utility function.

V = |(1− π) ∗ (θBt2 − θBt1)|

V =

∣∣∣∣∣
[
π∗(1−π)∗ρA|M∗

E ∗ρBE ∗
[
µA
ϵ −µB

ϵ +µ
A|M∗
δ

]
γ∗ρ̄E

]
1

+

[
π∗(1−π)∗(ρBE ∗ρAX−ρBX∗ρA|M∗

E )

γ∗ρ̄E

]
2

∗∆P21

∣∣∣∣∣
V21 = |αV + βV ∗∆P21|
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Appendix B Volume and Price Change Relation for

Smooth Ambiguity Utility

Ambiguity Neutral Investor (Type-B) At Time 2

The ambiguity-neutral type-B investor takes the following optimal decision at time 2.

max
θBt2

EB
[
UB
(
θBt2
)∣∣S] = max

θBt2

EB
[
−e−γ ∗ (wB

t2 + θBt2∗ (X̃−Pt1 ))
∣∣∣S]

max
θBt2

EB
[
UB
(
θBt2
)∣∣S] = max

θBt2

−e−γ∗(wB
t2 + θBt2∗ (EB[X̃|S]−Pt2 )) + 1

2
∗γ2∗θ2Bt2 ∗VARB [X̃|S]

Given his prior beliefs and the information received through the signal S, his optimal allocation

at time 2 is the following.

θBt2 =
EB[X̃|S]− Pt2

γ ∗ VARB[X̃|S]

θBt2 =
ρBX ∗ µB

X + ρBE ∗
(
S − µB

ϵ

)
− Pt2 ∗

(
ρBX + ρBE

)
γ

where

ρBX =
1

σ2 B
X

ρBE =
1

σ2 B
e

=
1

σ2 B
E

EB
[
X̃
∣∣∣S] = µB

X +
σ2 B
X

σ2 B
X + σ2 B

ϵ

∗
(
S − µB

X − µB
ϵ

)
EB
[
X̃
∣∣∣S] = ρBX ∗ µB

X + ρBE ∗
(
S − µB

ϵ

)
ρBX + ρBE

VARB
[
X̃
∣∣∣S] = σ2 B

X − σ4 B
X

σ2 B
X + σ2 B

e

VARB
[
X̃
∣∣∣S] = (

ρBX + ρBE
)−1

The parameter ρBX corresponds to the type-B investor prior belief precision about the payoff X

and ρBE corresponds to the agent’s belief about the precision of the signal S total error E .
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Ambiguity Averse/Loving Investor (Type-A) At Time 2

The ambiguous agent-1 takes interprets the signal in an ambiguous way, according to his Smooth

Ambiguity Utility Function (Klibanoff et al., 2005).

The agent’s preferences for risk are given by a CARA utility function U1R(θ
A
t2) = −e−γ∗W (θAt2),

where W (θAt2) represents the final wealth of the agent at time 3. The agents preferences for ambi-

guity are given by the function U1a(E[U1R]) = −(−E[U1R])
γa , where γa represents the ambiguity

attitude of the agent.

The ambiguous agent beliefs that the signal S can be interpreted as SM = X̃ + δ̃ + ϵ̃, where δ̃

represents the agent’s ambiguity about the correct model M under which he should interpret the

signal. The prior belief of the agents is that the ambiguous component δ̃ distributes N(µA
δ , σ

2 A
δ ).

The type-A investor problem maximizes the following expected utility.

max
θAt2

EA
[
−
(
−EA

[
−e −γ ∗ (wA

t2 + θAt2∗ (X̃ − Pt2 ))
∣∣∣S,M] )γa∣∣∣S] =

max
θAt2

EA
[
−
(
e −γ ∗ (wA

t2 + θAt2∗ (EA[X̃|S,M ]−Pt2 )+ 1
2
∗γ2∗θ2At2 ∗VARA[X̃|S,M ])

)γa∣∣∣S] =
max
θAt2

− e −γ∗γa∗ (wA
t2 + θAt2∗ (EA[X̃|S]−Pt2 )) + 1

2
∗γ2∗γa∗θ2At2 ∗EA[ VARA[X̃|S,M ] |S]+ 1

2
∗γ2∗γ2

a∗θ2At2 ∗VARA[ EA[X̃|S,M ] |S]

Considering that the variance VARA[X̃|S,M ] is already known before the last expectation op-

erator conditional on the signal S, and that the variance VARA[ EA[X̃|S,M ] |S] can be rewritten

using the Law of Total Variance as (VARA[X̃|S]−VARA[X̃|S,M ]) (Caskey, 2009), the optimiza-

tion problem reduces to the maximization of the following certainty equivalence.

max
θAt2

wA
t2 + θAt2 ∗

(
EA[X̃|S]− Pt2

)
− 1

2
∗ γ ∗ θ2At2 ∗ VARA[X̃|S] ∗

[
1 + (γa − 1) ∗

(
VARA[X̃|S]−VARA[X̃|S,M ]

VARA[X̃|S]

)]

Given his prior beliefs, the information received through signal S, and his personal interpreta-

tion of information the information contained in S, the optimal allocation of the type-A investor

at time 2 is the following bellow. In our parametrization of the signal S, the signal and the payoff

X̃ have a covariance equal to the variance of the payoff X̃, and we do not consider correlation

between the payoff X̃ and the ambiguity term δ̃.

θAt2 =
EA[X̃|S]− Pt2

γ ∗ V arA[X̃|S] ∗ νA
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θAt2 =
ρAX ∗ µA

X + ρAE ∗ (S − µA
ϵ − µA

δ )− Pt2 ∗ (ρAX + ρAE )

γ ∗ νA

where

ρAX =
1

σ2 A
X

ρAE =
1

σ2 A
δ + σ2 A

ϵ

νA =

[
1 + (γa − 1) ∗

(
VARA[X̃|S]− VARA[X̃|S,M ]

VARA[X̃|S]

)]

EA
[
X̃
∣∣∣S] = µA

X +
σ2 A
X

σ2 A
X + σ2 A

δ + σ2 A
ϵ

∗
(
S − µA

X − µA
δ − µA

ϵ

)
=

ρAX ∗ µA
X + ρAE ∗

(
S − µA

δ − µA
ϵ

)
ρAX + ρAE

V arA[X̃|S] =
[
ρAX + ρAE

]−1

EA
[
X̃
∣∣∣S,M] = µA

X +
[
σA
X,S σA

X,δ

]
∗

 σ2 A
S σA

S,δ

σA
S,δ σ2 A

δ

−1

∗

 S − µA
S

δ − µA
δ


= µA

X +
[
σ2 A
X 0

]
∗

 σ2 A
S σ2 A

δ

σ2 A
δ σ2 A

δ

−1

∗

 S − µA
S

δ − µA
δ


= µA

X +
σ2 A
X ∗ (S − δ)− σ2 A

X ∗
(
µA
X + µA

ϵ

)
σ2 A
S − σ2 A

δ

=
ρAX ∗ µA

X + ρAϵ ∗
(
(S − δ)− µA

ϵ

)
ρAX + ρAϵ

V arA[X̃|S,M ] = σ2 A
X −

[
σA
X,S σA

X,δ

]
∗

 σ2 A
S σA

S,δ

σA
S,δ σ2 A

S

−1

∗

 σA
X,S

σA
X,δ


= σ2 A

X −
[
σ2 A
X 0

]
∗

 σ2 A
S σ2 A

δ

σ2 A
δ σ2 A

S

−1

∗

 σ2 A
X

0


= σ2 A

X − σ4 A
X ∗ (σ2 A

X + σ2 A
δ + σ2 A

ϵ )

(σ2 A
X + σ2 A

δ + σ2 A
ϵ )2 − σ4 A

δ

=
1

ρAX
−

ρAS ∗ ρ2 A
δ

ρ2 A
X

ρ2 A
δ − ρ2 A

S

V arA[X̃|S]− V arA[X̃|S,M ]

V arA[X̃|S]
=

ρAX ∗ ρA 3
ϵ

(ρAδ ∗ ρAϵ + 2 ∗ ρAX ∗ ρAϵ + ρAX ∗ ρAδ ) ∗ (ρAX + ρAϵ ) ∗ (ρAϵ + ρAδ )

The term νA weights by the ambiguity aversion coefficient a the ratio of X̃’s volatility caused

by the ambiguity of the agent’s interpretation of the signal. This ratio increases with the ambiguity
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volatility σ2 A
δ , increasing the volatility divisor γ ∗ V arA[X̃|S] ∗ νA that goes inside the type-B

investor’s optimal allocation.

Equilibrium At Time 2

In equilibrium at time 2 the following equation has to hold.

(1− π) ∗ θBt2 + π ∗ θAt2 = 0.

Replacing the individual agents optimal allocations θBt2 and θAt2 in the market clearing condition.

π

νA
∗
[
ρAX ∗ µA

X + ρAE (S − µA
ϵ − µA

δ ) − Pt2 ∗ (ρAX + ρAE )
]
+ (1− π) ∗[

ρBX ∗ µB
X + ρBE ∗ (S − µB

ϵ ) − P2 ∗ (ρBX + ρBE )
]
= 0

Grouping together terms associated to the type-A investor previous beliefs about the risky

asset expected payment, the signal S, the signal S error and price P2[ π

νA
∗ ρAX ∗ µA

X + (1− π) ∗ ρBX ∗ µB
X

]
µ̄X

+
[ π

νA
∗ ρAE + (1− π) ∗ ρBE

]
ρ̄E

∗ S −[ π

νA
∗ ρAE ∗ µA

ϵ + (1− π) ∗ ρBE ∗ µB
ϵ

]
µ̄ϵ

−
[ π

νA
∗ ρAE ∗ µA

δ

]
− Pt2 ∗

[ π

νA
∗ ρAX + (1− π) ∗ ρBX

]
ρ̄X

−

Pt2 ∗
[ π

νA
∗ ρAE + (1− π) ∗ ρBE

]
ρ̄E

= 0

Replacing the expression in brackets by the terms µ̄X , ρ̄E , µ̄ϵ and ρ̄X we can rewrite the market

clearing condition as the expression below.

µ̄X + ρ̄E ∗ S− µ̄ϵ −
π

νA
∗ ρAE ∗ µA

δ − Pt2 ∗ (ρ̄X + ρ̄E) = 0

From here we can rewrite the price at time 2.

Pt2 =
µ̄X + ρ̄E ∗ S− µ̄ϵ −

π

νA
∗ ρAE ∗ µA

δ

ρ̄X + ρ̄E
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Signal S At Time 2

We can use this last expression for Pt2 to rewrite the signal S as a function of the change in price

∆P .

∆P = Pt2 − Pt1 =
µ̄X + ρ̄E ∗ S− µ̄ϵ −

π

νA
∗ ρAE ∗ µA

δ

ρ̄X + ρ̄E
− Pt1

∆P ∗
[
ρ̄X + ρ̄E

]
=
[
µ̄X + ρ̄E ∗ S − µ̄ϵ −

π

νA
∗ ρAE ∗ µA

δ

]
− P1 ∗

[
ρ̄X + ρ̄E

]
S =

∆P ∗ [ρ̄X + ρ̄E ] + µ̄ϵ +
π

νA
∗ ρAE ∗ µA

δ − [µ̄X − Pt1 ∗ ρ̄X ]

ρ̄E
+ Pt1

In comparison to the Max Min Utility, in this last expression we have the additional term

[µ̄X − Pt1 ∗ ρ̄X ] that is different from 0. In the next lines we show that this term is proportional

to the investor type-A versus type-B difference in prior beliefs about the mean of the payoff X.

From the optimization at time 1 we know the following.

Pt1 =
µ̄X

t1

ρ̄X
t1

where

µ̄X
t1
= π ∗ ρAX ∗ µA

X + (1− π) ∗ ρBX ∗ µB
X

ρ̄X
t1
= π ∗ ρAX + (1− π) ∗ ρBX

These last terms from time (1) are related to the average terms µ̄X and ρ̄X that appear at

time 2 through the following equations.

µ̄X = µ̄X
t1
+
(
µ̄X − µ̄X

t1

)
= µ̄X

t1
+ π ∗

(
1

νA
− 1

)
∗ µA

X ∗ ρAX

ρ̄X = ρ̄X
t1
+
(
ρ̄X − ρ̄X

t1

)
= ρ̄X

t1
+ π ∗

(
1

νA
− 1

)
∗ ρAX

Using these last relation, we can rewrite the term −[µ̄X − Pt1 ∗ ρ̄X ] that appears above in the

equation for S.

−µ̄X + Pt1 ∗ ρ̄X = −
[
µ̄X

t1
+ π ∗

(
1

νA
− 1

)
∗ µA

X ∗ ρAX
]
+

[
Pt1 ∗ ρ̄X

t1
+ Pt1 ∗ π ∗

(
1

νA
− 1

)
∗ ρAX

]
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−µ̄X + Pt1 ∗ ρ̄X = −
[
µ̄X

t1
+ π ∗

(
1

νA
− 1

)
∗ µA

X ∗ ρAX
]
+

[
µ̄X

t1
+ Pt1 ∗ π ∗

(
1

νA
− 1

)
∗ ρAX

]
−µ̄X + Pt1 ∗ ρ̄X = π ∗

(
1

νA
− 1

)
∗ ρAX ∗

(
Pt1 − µA

X

)
−µ̄X + Pt1 ∗ ρ̄X = π ∗

(
1

νA
− 1

)
∗ ρAX ∗

(
π ∗ ρAX ∗ µA

X + (1− π) ∗ ρBX ∗ µB
X

π ∗ ρAX + (1− π) ∗ ρBX
− µA

X

)
−µ̄X + Pt1 ∗ ρ̄X = π ∗

(
1

νA
− 1

)
∗ ρAX ∗

(
(1− π) ∗ ρBX ∗ (µB

X − µA
X)

ρ̄X
t1

)

−µ̄X + Pt1 ∗ ρ̄X = π ∗ (1− π) ∗
(

1

νA
− 1

)
∗

(
ρAX ∗ ρBX

ρ̄X
t1

)
∗
(
µB
X − µA

X

)
−µ̄X + Pt1 ∗ ρ̄X = η ∗

(
µB
X − µA

X

)
Replacing the term [µ̄X − Pt1 ∗ ρ̄X ] by this last expression in the equation for signal S, we

obtain the following term.

S =
∆P ∗ [ρ̄X + ρ̄E ] + µ̄ϵ +

π

νA
∗ ρAE ∗ µA

δ + η ∗
(
µB
X − µA

X

)
ρ̄E

+ Pt1

Trading Volume At Time 2

We measure the trading volume from time 1 to 2 as the change in the risky-asset allocation of

the type-B agent multiplied by the proportion of this agent type in the economy. By symmetry

of this market equilibrium, the volume of risky asset this type-B investors buys/sells is equivalent

to the volume the type-A investors sells/buys.

V = (1− π) ∗ (θBt2 − θBt1)

where

θBt1 =
(µB

X − Pt1) ∗ ρBX
γ

θBt2 =
ρBX ∗ µB

X + ρBE ∗ (S − µB
ϵ )− Pt2 ∗ (ρBX + ρBE )

γ

Replacing the allocations of the ambiguity-neutral type-B investor in the expression (θBt2− θBt1)

we obtain the following expression.

θBt2 − θBt1 =

[
ρBX ∗ µB

X + ρBE ∗ (S − µB
ϵ )− Pt2 ∗ (ρBX + ρBE )

γ

]
−
[
(µB

X − Pt1) ∗ ρBX
γ

]
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θBt2 − θBt1 =
ρBE ∗

[
S− µB

ϵ

]
γ

− Pt2 ∗ ρBE
γ

−∆P ∗ ρBX
γ

At this stage we rewrite the signal S expression (S − U2) as a function of the change in prices

between period (1) and (2) using the relation of the previous section.

θBt2 − θBt1 = ρBE ∗

[(
∆P∗[ρ̄X+ρ̄E ]+µ̄ϵ+

π

νA
∗ρAE ∗µA

δ +η∗(µB
X−µA

X)
ρ̄E

+ Pt1

)
S

− µB
ϵ

]
γ

− Pt2 ∗ ρBE
γ

−∆P ∗ ρBX
γ

θBt2 − θBt1 =
∆P
γ

∗
[
ρBE ∗ (ρ̄X+ρ̄E)

ρ̄E
− ρBE − ρBX

]
+
[

ρBE
ρ̄E∗γ

∗ η ∗
(
µB
X − µA

X

)]
+

[
ρBE ∗µ̄ϵ

γ∗ρ̄E
− ρBE ∗µB

ϵ

γ
+

π

νA
∗ρBE ∗ρAE ∗µA

δ

γ∗ρ̄E

]
θBt2 − θBt1 =

∆P
γ

∗
[
ρBE ∗ ρ̄X

ρ̄E
− ρBX

]
2
+

[
ρBE ∗µ̄ϵ

γ∗ρ̄E
− ρBE ∗µB

ϵ

γ
+

π

νA
∗ρBE ∗ρAE ∗µA

δ

γ∗ρ̄E

]
1

+
[

ρBE
ρ̄E∗γ

∗ η ∗
(
µB
X − µA

X

)]
0

We simplify the expressions inside bracket (2)

[
ρBE ∗ ρ̄X

ρ̄E
− ρBX

]
2

=

ρBE ∗ π

νA
∗ ρAX − ρBX ∗ π

νA
∗ ρAE

B̄


[
ρBE ∗ ρ̄X

ρ̄E
− ρBX

]
2

=
π

νA
∗
[
ρBE ∗ ρAX − ρBX ∗ ρAE

ρ̄E

]

We simplify the expression inside bracket (1).

[...]1 =

[
(ρBE ∗ π

νA
∗ρAE ∗µA

ϵ +ρBE ∗(1−π)∗ρBE ∗µB
ϵ )−(ρBE ∗µB

ϵ ∗ π

νA
∗ρAE +ρBE ∗µB

ϵ ∗(1−π)∗ρBE )
γ∗ρ̄E

+
π

νA
∗ρBE ∗ρAE ∗µA

δ

γ∗ρ̄E

]
[...]1 =

[
ρBE ∗ π

νA
∗ ρAE ∗ µA

ϵ − ρBE ∗ µB
ϵ ∗ π

νA
∗ ρAE

γ ∗ ρ̄E
+

π
νA

∗ ρBE ∗ ρAE ∗ µA
δ

γ ∗ ρ̄E

]
[...]1 =

π
νA

∗ ρAE ∗ ρBE ∗
[
µA
ϵ − µB

ϵ + µA
δ

]
γ ∗ ρ̄E

Then we can rewrite the expression for the trading volume associated to the type-B investor.

θBt2 − θBt1 =

[
ρBE

ρ̄E ∗ γ
∗ η ∗

(
µB
X − µA

X

)]
0

+

 π

νA
∗ρAE ∗ρBE ∗(µA

ϵ −µB
ϵ +µA

δ )

γ∗ρ̄E


1

+

[
ρBE ∗ ρ̄X

ρ̄E
− ρBX

]
2

∗ ∆P

γ

θBt2 − θBt1 =

[
π ∗ (1− π) ∗

(
1

νA
− 1

)
∗
(

ρBE
ρ̄E ∗ γ

)
∗

(
ρAX ∗ ρBX

ρ̄X
t1

)
∗
(
µB
X − µA

X

)]
0

+

[
π
νA

∗ ρAE ∗ ρBE ∗
(
µA
ϵ − µB

ϵ + µA
δ

)
γ ∗ ρ̄E

]
1

+

[
π
νA

∗
(
ρBE ∗ ρAX − ρBX ∗ ρAE

)
ρ̄E

]
2

∗ ∆P

γ
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The total trading-volume in the economy is given by the expression below. Here, αV ac-

counts for the difference in prior beliefs (µB
X − µA

X) between investor types A-B and the

expectations channel of ambiguity represented by µA
δ . The coefficient βV is a the term that

amplifies or smooths the traditiona trading volume channel associated to changes in prices.

V =

∣∣∣∣(1− π) ∗ (θBt2 − θBt1)

∣∣∣∣

V =

∣∣∣∣∣
{ [

π ∗ (1− π)2 ∗
(

1

νA
− 1

)
∗
(

ρBE
ρ̄E ∗ γ

)
∗

(
ρAX ∗ ρBX

ρ̄X
t1

)]
∗
(
µB
X − µA

X

)
+

[
(1− π) ∗ π

νA
∗ ρAE ∗ ρBE

γ ∗ ρ̄E

]
∗
(
µA
ϵ − µB

ϵ + µA
δ

) }
α

+

{ [
π
νA

∗
(
ρBE ∗ ρAX − ρBX ∗ ρAE

)
ρ̄E

] }
β

∗ ∆P

γ

∣∣∣∣∣
V = |αV + βV ∗∆P21|
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Appendix C Volume and Price Volatility Elasticity

This section derives the expected market’s trading volume one period ahead, as well as the trading

volume to price volatility elasticity. These formulas expand the work of Bollerslev et al. (2018) by

introducing (1) Ambiguity (Knightian Uncertainty) and (2) a non standard normal distribution.

C.1 Expected Trading Volume

This part shows the derivation of the market’s expected trading volume one period ahead, E[V21]

in the presence of an Ambiguous Agent. The formula uses the theoretical expression for trading

volume V21 presented in Section 2.7 and Appendix B. We calculate a closed form expression for

E[V21] using the volume formula V21 = |αV + βV ∗ ∆P21| and assuming a normal distribution

∆P21 ∼ N(µ∆P , σ∆P ).

Using the standard normal distribution Z = P21−µ∆P

σ∆P
we rewrite the expression for trading

volume as V21 = |αV + βV ∗ σ∆P ∗ Z| The expected volume calculation can be split in two parts

conditional of the sign that the expression inside the absolute value takes

E[V21] =
E[V21 | αV + βV ∗ σ∆P ∗ Z > 0] ∗ P (αV + βV ∗ σ∆P ∗ Z > 0)

+ E[V21 | αV + βV ∗ σ∆P ∗ Z < 0] ∗ P (αV + βV ∗ σ∆P ∗ Z < 0)

Taking into account the conditional density fz|condition of the standard normal distribution

fz|αV +βV ∗σ∆P ∗Z>0 =
fz ∗ I[[αV + βV ∗ σ∆P ∗ Z > 0]

P (αV + βV ∗ σ∆P ∗ Z > 0)

fz|αV +βV ∗σ∆P ∗Z<0 =
fZ ∗ I[[αV + βV ∗ σ∆P ∗ Z < 0]

P (αV + βV ∗ σ∆P ∗ Z < 0)
.

the expected volume formula simplifies to

E[V21] =

∫
αV +βV ∗σ∆P ∗Z>0

(αV + βV ∗ σ∆P ∗ Z) ∗ fzdZ +

∫
αV +βV ∗σ∆P ∗Z<0

−(αV + βV ∗ σ∆P ∗ Z) ∗ fzdZ

Integral of βV Section

First we calculate the integrals of the expressions (βV ∗ σ∆P ∗ Z) and (−βV ∗ σ∆P ∗ Z). For both

integrals, there are two sub-cases depending on the sign of the constant βV , because the inequality
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that defines the integrals’ regions flips direction.

For βV ≥ 0:

∫
αV +βV ∗σ∆P ∗Z>0

(βV ∗ σ∆P ∗ Z) ∗ 1√
2 ∗ π

e
−Z2

2 dZ =

[
−βV ∗ σ∆P√

2 ∗ π
∗ e

−Z2

2

]+∞

− αV
β∗σ
V

∆P∫
αV +βV ∗σ∆P ∗Z>0

(βV ∗ σ∆P ∗ Z) ∗ fzdZ =
βV ∗ σ∆P√

2 ∗ π
∗ e

−α2
V

2∗β2
V

∗σ2
∆P =

|βV | ∗ σ∆P√
2 ∗ π

∗ e
−α2

V
2∗β2

V
∗σ2

∆P

∫
αV +βV ∗σ∆P ∗Z<0

−(βV ∗ σ∆P ∗ Z) ∗ 1√
2 ∗ π

e
−Z2

2 dZ =

[
βV ∗ σ∆P√

2 ∗ π
∗ e

−Z2

2

]− αV
βV ∗σ∆P

−∞∫
αV +βV ∗σ∆P ∗Z<0

−(βV ∗ σ∆P ∗ Z) ∗ fzdZ =
βV ∗ σ∆P√

2 ∗ π
∗ e

−α2
V

2∗β2
V

∗σ2
∆P =

|βV | ∗ σ∆P√
2 ∗ π

∗ e
−α2

V
2∗β2

V
∗σ2

∆P

For βV < 0:

∫
αV +βV ∗σ∆P ∗Z>0

(βV ∗ σ∆P ∗ Z) ∗ 1√
2 ∗ π

e
−Z2

2 dZ =

[
βV ∗ σ∆P√

2 ∗ π
∗ e

−Z2

2

]− αV
βV ∗σ∆P

−∞∫
αV +βV ∗σ∆P ∗Z>0

(βV ∗ σ∆P ∗ Z) ∗ fzdZ = −βV ∗ σ∆P√
2 ∗ π

∗ e
−α2

V
2∗β2

V
∗σ2

∆P =
|βV | ∗ σ∆P√

2 ∗ π
∗ e

−α2
V

2∗β2
V

∗σ2
∆P

∫
αV +βV ∗σ∆P ∗Z<0

−(βV ∗ σ∆P ∗ Z) ∗ 1√
2 ∗ π

e
−Z2

2 dZ =

[
βV ∗ σ∆P√

2 ∗ π
∗ e

−Z2

2

]+∞

− αV
βV ∗σ∆P∫

αV +βV ∗σ∆P ∗Z<0

−(βV ∗ σ∆P ∗ Z) ∗ fzdZ = −βV ∗ σ∆P√
2 ∗ π∗

e
−α2

V
2∗β2

V
∗σ2

∆P =
|βV | ∗ σ∆P√

2 ∗ π
∗ e

−α2
V

2∗β2
V

∗σ2
∆P

We get that independent of the sign of phi1, the sum of both integrals of the expressions

(βV ∗ σ∆P ∗ Z) and (−βV ∗ σ∆P ∗ Z) is equal to

|βV | ∗ σ∆P ∗
√
2√
π
∗ e

−α2
V

2∗β2
V

∗σ2
∆P .

Integral of αV Section

Second, we calculate the integrals of the expressions (αV ) and (−αV ). For both integrals, there

are four sub-cases depending on the sign of the constants {αV , βV }, because the inequality that

defines the integrals’ regions flips direction with βV and the sign of both constants affect the
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standard normal density function.

For α+
V and β+

V :∫
αV +βV ∗σ∆P ∗Z>0

αV ∗ 1√
2 ∗ π

e
−Z2

2 dZ =

[
αV ∗ √

2 ∗ π
∗ e

−Z2

2

]+∞

− αV
βV ∗σ∆P

= αV ∗
(
1− Φ

(
− αV

βV ∗ σ∆P

))
∫
αV +βV ∗σ∆P∗Z>0

αV ∗ 1√
2 ∗ π

e
−Z2

2 dZ = |αV | ∗
[
1− Φ

(
− |αV |
|βV | ∗ σ∆P

)]
= |αV | ∗ Φ

(
|αV |

|βV | ∗ σ∆P

)

∫
αV +βV ∗σ∆P∗Z<0

−αV ∗ 1√
2 ∗ π

e
−Z2

2 dZ =

[
−αV ∗ √

2 ∗ π
∗ e

−Z2

2

]− αV
βV ∗σ∆P

−∞
= −αV ∗ Φ

(
− αV

βV ∗ σ∆P

)
∫
αV +βV ∗σ∆P ∗Z>0

−αV ∗ 1√
2 ∗ π

e
−Z2

2 dZ = −αV ∗
[
1− Φ

(
αV

βV ∗ σ∆P

)]
= |αV | ∗

[
Φ

(
|αV |

|βV | ∗ σ∆P

)
− 1

]

For α+
V and β−

V :

∫
αV +βV ∗σ∆P∗∗Z>0

αV ∗ 1√
2 ∗ π

e
−Z2

2 dZ =

[
αV ∗ 1√

2 ∗ π
∗ e

−Z2

2

]− αV
βV ∗σ∆P

−∞
= αV ∗ Φ

(
− αV

βV ∗ σ∆P

)
∫
αV +βV ∗σ∆P ∗Z>0

αV ∗ 1√
2 ∗ π

e
−Z2

2 dZ = |αV | ∗ Φ
(

αV

−βV ∗ σ∆P

)
= |αV | ∗ Φ

(
|αV |

|βV | ∗ σ∆P

)

∫
αV +βV ∗σ∆P ∗Z<0

−αV ∗ 1√
2 ∗ π

e
−Z2

2 dZ =

[
−αV ∗ √

2 ∗ π
∗ e

−Z2

2

]+∞

− αV
βV ∗σ∆P

= −αV ∗
[
1− Φ

(
αV

−βV ∗ σ∆P

)]
∫
αV +βV ∗σ∆P ∗Z<0

−αV ∗ 1√
2 ∗ π

e
−Z2

2 dZ = αV ∗
[
Φ

(
αV

−βV ∗ σ∆P

)
− 1

]
= |αV | ∗

[
Φ

(
|αV |

|βV | ∗ σ∆P

)
− 1

]

For α−
V and β+

V :∫
αV +βV ∗σ∆P ∗Z>0

αV ∗ 1√
2 ∗ π

e
−Z2

2 dZ =

[
αV ∗ √

2 ∗ π
∗ e

−Z2

2

]+∞

− αV
βV ∗σ

= αV ∗
(
1− Φ

(
− αV

βV ∗ σ∆P

))
∫
αV +βV ∗σ∆P ∗Z>0

αV ∗ 1√
2 ∗ π

e
−Z2

2 dZ = (−αV ) ∗
[
Φ

(
−αV

βV ∗ σ∆P

)
− 1

]
= |αV | ∗

[
Φ

(
|αV |

|βV | ∗ σ∆P

)
− 1

]
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∫
αV +βV ∗σ∆P ∗Z<0

−αV ∗ 1√
2 ∗ π

e
−Z2

2 dZ =

[
−αV ∗ √

2 ∗ π
∗ e

−Z2

2

]− αV
β∗σ
V

∆P

−∞
= −αV ∗ Φ

(
αV

−βV ∗ σ∆P

)
∫
αV +βV ∗σ∆P ∗Z<0

−αV ∗ 1√
2 ∗ π

e
−Z2

2 dZ = |αV | ∗ Φ
(

|αV |
|βV | ∗ σ∆P

)

For α−
V and β−

V :

∫
αV +βV ∗σ∆P ∗Z>0

αV ∗ 1√
2 ∗ π

e
−Z2

2 dZ =

[
αV ∗ √

2 ∗ π
∗ e

−Z2

2

]− αV
βV ∗σ∆P

−∞
= αV ∗ Φ

(
− αV

βV ∗ σ∆P

)
∫
αV +βV ∗σ∆P ∗Z>0

αV ∗ 1√
2 ∗ π

e
−Z2

2 dZ = αV ∗
[
1− Φ

(
αV

βV ∗ σ∆P

)]
= (−αV ) ∗

[
Φ

(
αV

βV ∗ σ∆P

)
− 1

]
∫
αV +βV ∗σ∆P ∗Z>0

αV ∗ 1√
2 ∗ π

e
−Z2

2 dZ = αV ∗
[
1− Φ

(
αV

βV ∗ σ∆P

)]
= |αV | ∗

[
Φ

(
|αV |

|βV | ∗ σ∆P

)
− 1

]

∫
αV +βV ∗σ∆P ∗Z<0

−αV ∗ 1√
2 ∗ π

e
−Z2

2 dZ =

[
−αV ∗ √

2 ∗ π
∗ e

−Z2

2

]+∞

− αV
βV ∗σ∆P

= −αV ∗
[
1− Φ

(
−αV

βV ∗ σ∆P

)]
∫
αV +βV ∗σ∆P ∗Z<0

−αV ∗ 1√
2 ∗ π

e
−Z2

2 dZ = −αV ∗ Φ
(

αV

βV ∗ σ∆P

)
= |αV | ∗ Φ

(
|αV |

|βV | ∗ σ∆P

)

We get that independent of the constants {αV , βV } signs, the sum the sum of both integrals

of the expressions (αV ) and (−αV ) is equal to

|αV | ∗
[
2 ∗ Φ

(
|αV |

|βV | ∗ σ∆P

)
− 1

]

Final Result

Finally, we get that independent of the constants {αV , βV } signs, the expression for the one period

ahead expected trading volume is

E[V21] =

∫
αV +βV ∗σ∆P ∗Z>0

(αV + βV ∗ σ∆P ∗ Z) ∗ fzdZ +

∫
αV +βV ∗σ∆P ∗Z<0

−(αV + βV ∗ σ∆P ∗ Z) ∗ fzdZ

E[V21] = |αV | ∗
[
2 ∗ Φ

(
|αV |

|βV | ∗ σ∆P

)
− 1

]
+ |βV | ∗

[
σ∆P ∗

√
2√
π
∗ e

−α2
V

2∗β2
V

∗σ2
∆P

]
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C.2 Trading Volume to Price Volatility Elasticity

This part makes use of the expected trading volume derived above, to calculate the expected

trading volume to price volatility elasticity ξ = ∂E[V21]/E[V21]
∂σ∆P /σ∆P

presented in Section-2.7.

The derivation starts by calculating the derivative of the expected trading volume

ξ =
∂E[V21]/E[V21]

∂σ∆P/σ∆P

=
∂E[V21]

∂σ∆P

∗ σ∆P

E[V21]

We can divide the expected trading volume in two parts

E[V21] = P1 + P2 = |αV | ∗
[
2 ∗ Φ

(
|αV |

|βV | ∗ σ∆P

)
− 1

]
+ |βV | ∗

[
σ∆P ∗

√
2√
π
∗ e

−α2
V

2∗β2
V

∗σ2
∆P

]
.

Then, we proceed to derive the first part of the expected volume P1 in relation to price volatility

σ∆P

∂P1

∂σ∆P

=
∂
{
|αV | ∗

[
2 ∗ Φ

(
|αV |

|βV |∗σ∆P

)
− 1
]}

∂σ∆P

= |αV | ∗ 2 ∗
∂

{∫ |αV |
|βV |∗σ∆P
−∞

1√
2∗πe

−Z2

2 dZ

}
∂σ∆P

∂P1

∂σ∆P

= |αV |∗2∗
−|αV |

|βV | ∗ σ2
∆P

∗ 1√
2 ∗ π

e
−α2

V
2∗β2

V
∗σ2

∆P =

√
2√
π
∗ −|αV |2

|βV | ∗ σ2
∆P

∗ e
−α2

V
2∗β2

V
∗σ2

∆P .

Now, we continue by deriving the second part P2 of the expected trading volume in relation

to price volatility σ∆P

∂P2

∂σ∆P

=

∂

{
|βV | ∗

[
σ∆P ∗

√
2√
π
∗ e

−αV
2

2∗β2
V

∗σ2
∆P

]}
∂σ∆P

= |βV |∗
√
2√
π
∗ e

−α2
V

2∗β2
V

∗σ2
∆P +

√
2√
π
∗ |αV |2

|βV | ∗ σ2
∆P

∗ e
−αV

2

2∗β2
V

∗σ2
∆P

∂E[V21]

∂σ∆P

=
∂(P1 + P2)

∂σ∆P

=

√
2√
π
∗ e

−α2
V

2∗β2
V

∗σ2
∆P

∗
|βV | =

P2

σ∆P

With the previous results, we can proceed to calculate the elasticity ξ

ξ =
∂E[V21]/E[V21]

∂σ∆P/σ∆P

=
∂E[V21]

∂σ∆P

∗ σ∆P

E[V21]
=

(
∂E[V21]

∂σ∆P

∗ σ∆P

)
∗ 1

E[V21]
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ξ = P2 ∗
1

P1 + P2

=
1

1 + P1/P2

.

Replacing for the terms P1 and P2 we get the final expected trading volume to price volatility

elasticity formula ξ used in section Section-2.7. In the formula below ϕ refers to the standard

normal density function and Φ refers to the standard normal CDF.

ξ =
1

1 +
|αV |∗

[
2∗Φ

(
|αV |

|βV |∗σ∆P

)
−1

]

|βV |∗

σ∆P ∗
√

2√
π
∗e

−α2
V

2∗β2
V

∗σ2
∆P



=
1

1 +
|αV |/(|βV |∗σ∆P )∗

[
Φ

(
|αV |

|βV |∗σ∆P

)
−1/2

]
1√
2∗π

∗e

−α2
V

2∗β2
V

∗σ2
∆P

ξ =
1

1 +
|αV |∗

[
2∗Φ

(
|αV |

|βV |∗σ∆P

)
−1

]

|βV |∗

σ∆P ∗
√

2√
π
∗e

−α2
V

2∗β2
V

∗σ2
∆P



=
1

1 +
|αV |/(|βV |∗σ∆P )∗

[
Φ

(
|αV |

|βV |∗σ∆P

)
−1/2

]
ϕ

(
|αV |

|βV |∗σ∆P

)

ξ =
1

1 +
|αV |∗

[
2∗Φ

(
|αV |

|βV |∗σ∆P

)
−1

]

|βV |∗

σ∆P ∗
√

2√
π
∗e

−α2
V

2∗β2
V

∗σ2
∆P



=
1

1 +
|αV |/(|βV |∗σ∆P )∗

[
Φ

(
|αV |

|βV |∗σ∆P

)
−1/2

]
ϕ

(
|αV |

|βV |∗σ∆P

)
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Appendix D Model Daily Regressions Results

In this appendix, I present the daily frequency regressions for the trading volume model outlined

in Section-2.6, along with the elasticity model detailed in Section-2.7.

Tables 8, 13, and 14 below present the regressions (1), (2), and (3) results of the trading volume

model as discussed in Section-4.

V = αV + βV ∗∆P + ϵ (4.1)

αV = 1 + αpbel ∗ PBEL+ αamb ∗ AMB + ϵ

βV = 1 + βσamb
∗ σamb + βp ∗ σP + ϵ

V =
(
c+ αpbel ∗ PBEL+ αamb ∗AMB

)
α

+
(
βp + βσamb

∗ σamb + βσp ∗ σP

)
β
∗

∆P + Vt−1 +
∑T

p=t+1 γp + ϵ

(4.2)

∆V = c +
(
αpbel ∗∆PBEL+ αamb ∗∆AMB

)
∆α

+
(
β∆σamb

∗∆σamb + β∆σp ∗

∆σP

)
∆β

∗ ∆P +
(
βP + βσamb

∗ σamb + βσp∗∆2
P
∗ σP

)
β
∗ ∆2

P + ∆Vt−1 +∑T
p=t+1 γp + ϵ

(4.3)

The outcomes of regression (1) in Section-4 for the elasticity model are illustrated in table-15

below.

∆log(V ) = c +
(
ξ1 + ξµ ∗ µ∆p + ξpbel ∗ PBEL + ξamb ∗ AMB + ξp1 ∗ P1 + ξµ2 ∗

µ2
∆p + ξpbel2 ∗PBEL2 + ξamb2 ∗AMB2 + ξp12 ∗P 2

1 + ξσamb
∗σamb + ξσamb2

∗

σ2
amb

)
ξ
∗ ∆log(σ∆p) + ∆log(V )t−1 +

∑T
p=t+1 γp

(5.2)

The regressions cover the daily period from 2013 to 2018 for the SPY and were conducted on

four distinct datasets: D(1), D(2), D(3) and D(4). Each dataset employs the daily EPU measure

extracted from Twitter as a proxy for Ambiguity, alongside a distinct proxy for differences in prior

beliefs from Stocktwits (Cookson & Niessner, 2020).

Daily Datasets Description
D(1) Prior beliefs differences proxied by PBELWI, IND and Ambiguity proxied by AMBEPUD

D(2) Prior beliefs differences proxied by PBELAC, IND and Ambiguity proxied by AMBEPUD

D(3) Prior beliefs differences proxied by PBELWI, ETF and Ambiguity proxied by AMBEPUD

D(4) Prior beliefs differences proxied by PBELAC, ETF and Ambiguity proxied by AMBEPUD
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Table 8. Daily Regressions αV and βV

This table summarizes the daily regression results for the coefficients αV and βV of the trading
volume formula, as detailed in regression (1) of Section-4. The regressions were performed for
the SPY ETF from 2013 to 2018 using four different daily data sets {D(1), D(2), D(3), D(4)}.
T-values and P-values from the left side to the right are standard OLS, clustered robust and
Newey-West autocorrelation robust values.

αV = c+ αamb ∗ AMB + αpbel ∗ PBEL+ αVt−1 +
∑T

p=t+1 γp + ϵ

βV = c+ βσamb
∗ σAMB + βσp ∗ σP + βVt−1 +

∑T
p=t+1 γp + ϵ

D(1) D(2) D(3) D(4)

Panel A: Regression on αV

c 0.15 0.16 0.19 0.16

(3.31) (3.32) (2.80) (3.46) (3.47) (3.32) (4.06) (4.07) (4.34) (3.40) (3.41) (3.43)

[0.00] [0.00] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

αpbel 0.12 0.08 0.10 -0.12

(6.64) (6.66) (5.39) (4.21) (4.22) (3.46) (5.16) (5.18) (6.03) (-6.62) (-6.64) (-7.24)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

αamb 0.11 0.11 0.11 0.11

(5.10) (5.11) (3.62) (5.30) (5.31) (3.80) (5.13) (5.14) (3.71) (5.37) (5.38) (3.84)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

αV
t-1

0.58 0.58 0.58 0.57

(28.32) (28.41) (17.50) (28.32) (28.41) (17.50) (28.30) (28.38) (16.89) (27.93) (28.01) (16.75)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

N 1509 1509 1509 1509

R2
a 0.489 0.481 0.484 0.489

Panel B: Regression on βV (same for 1, 2, 3, 4)

c 0.02 0.02 0.02 0.02

(0.24) (0.24) (0.17) (0.24) (0.24) (0.17) (0.24) (0.24) (0.17) (0.24) (0.24) (0.17)

[0.81] [0.81] [0.86] [0.81] [0.81] [0.86] [0.81] [0.81] [0.86] [0.81] [0.81] [0.86]

σamb -0.09 -0.09 -0.09 -0.09

(-1.75) (-1.75) (-1.74) (-1.75) (-1.75) (-1.74) (-1.75) (-1.75) (-1.74) (-1.75) (-1.75) (-1.74)

[0.08] [0.08] [0.08] [0.08] [0.08] [0.08] [0.08] [0.08] [0.08] [0.08] [0.08] [0.08]

△σp -0.06 -0.06 -0.06 -0.06

(-1.44) (-1.44) (-1.77) (-1.44) (-1.44) (-1.77) (-1.44) (-1.44) (-1.77) (-1.44) (-1.44) (-1.77)

[0.15] [0.15] [0.08] [0.15] [0.15] [0.08] [0.15] [0.15] [0.08] [0.15] [0.15] [0.08]

βV
t-1

0.02 0.02 0.02 0.02

(0.70) (0.70) (0.49) (0.70) (0.70) (0.49) (0.70) (0.70) (0.49) (0.70) (0.70) (0.49)

[0.48] [0.48] [0.62] [0.48] [0.48] [0.62] [0.48] [0.48] [0.62] [0.48] [0.48] [0.62]

N 1509 1509 1509 1509

R2
a 0.000 0.000 0.000 0.000
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Table 9. Daily Regressions for Trading Volume

This table summarizes the daily regression results of the trading volume formula, as detailed in
regression (2) of Section-4. The regressions were performed for the SPY ETF from 2013 to 2018
using four different daily data sets {D(1), D(2), D(3), D(4)}. T-values and P-values from the
left side to the right are standard OLS, clustered robust and Newey-West autocorrelation robust
values.

V =
(
c+αpbel∗PBEL+αamb∗AMB

)
α
+
(
βp+βσamb

∗σamb+βσp ∗σP

)
β
∗∆P +Vt−1+

∑T
p=t+1 γp+ϵ

D(1) D(2) D(3) D(4)

c -0.11 -0.09 -0.08 -0.10

(-2.46) (-2.47) (-2.15) (-2.16) (-2.17) (-2.06) (-1.84) (-1.85) (-2.02) (-2.40) (-2.41) (-2.54)

[0.01] [0.01] [0.03] [0.03] [0.03] [0.04] [0.07] [0.07] [0.04] [0.02] [0.02] [0.01]

αpbel 0.11 0.08 0.07 -0.13

(6.21) (6.23) (5.48) (4.13) (4.15) (3.64) (3.50) (3.51) (3.85) (-7.39) (-7.42) (-7.70)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

αamb 0.10 0.10 0.10 0.10

(5.02) (5.04) (3.78) (5.17) (5.19) (3.94) (5.11) (5.13) (3.92) (5.30) (5.32) (4.10)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

βp -0.33 -0.33 -0.33 -0.33

(-14.87) (-14.93) (-8.32) (-15.04) (-15.10) (-8.48) (-14.68) (-14.74) (-8.16) (-15.32) (-15.38) (-8.71)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

βσamb
-0.05 -0.05 -0.05 -0.05

(-1.96) (-1.96) (-1.30) (-2.05) (-2.06) (-1.37) (-2.11) (-2.12) (-1.40) (-2.15) (-2.16) (-1.44)

[0.05] [0.05] [0.20] [0.04] [0.04] [0.17] [0.03] [0.03] [0.16] [0.03] [0.03] [0.15]

βσp 0.10 0.10 0.09 0.10

(4.18) (4.19) (2.37) (4.08) (4.10) (2.29) (3.94) (3.96) (2.18) (4.25) (4.27) (2.41)

[0.00] [0.00] [0.02] [0.00] [0.00] [0.02] [0.00] [0.00] [0.03] [0.00] [0.00] [0.02]

βV
t-1

0.61 0.61 0.61 0.60

(32.09) (32.22) (17.38) (32.01) (32.14) (17.61) (32.00) (32.13) (16.97) (31.68) (31.81) (16.91)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

N 1510 1510 1510 1510

R2
a 0.538 0.532 0.53 0.543
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Table 10. Daily Regressions for ∆Trading Volume

This table summarizes the daily regression results of the first difference trading volume formula,
as detailed in regression (3) of Section-4. The regressions were performed for the SPY ETF from
2013 to 2018 using four different daily data sets {D(1), D(2), D(3), D(4)}. T-values and P-values
from the left side to the right are standard OLS, clustered robust and Newey-West autocorrelation
robust values.

∆V = c +
(
αpbel ∗∆PBEL+ αamb ∗∆AMB

)
∆α

+
(
β∆σamb

∗∆σamb + β∆σp ∗∆σP

)
∆β

∗∆P +(
βP + βσamb

∗ σamb + βσp∗∆2
P
∗ σP

)
β
∗∆2

P +∆Vt−1 +
∑T

p=t+1 γp + ϵ

D(1) D(2) D(3) D(4)

c -0.01 -0.01 -0.01 -0.01

(-0.15) (-0.15) (-0.27) (-0.15) (-0.15) (-0.28) (-0.16) (-0.16) (-0.29) (-0.16) (-0.16) (-0.29)

[0.88] [0.88] [0.78] [0.88] [0.88] [0.78] [0.88] [0.88] [0.77] [0.87] [0.87] [0.77]

αpbel 0.13 0.08 0.08 -0.15

(5.46) (5.49) (4.59) (3.53) (3.55) (2.93) (3.18) (3.20) (3.43) (-6.27) (-6.29) (-6.65)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

αamb 0.12 0.12 0.12 0.12

(5.11) (5.14) (3.59) (5.21) (5.24) (3.62) (5.10) (5.12) (3.53) (5.23) (5.25) (3.62)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

βp -0.23 -0.23 -0.22 -0.23

(-7.70) (-7.74) (-4.89) (-7.56) (-7.59) (-4.81) (-7.28) (-7.32) (-4.64) (-7.78) (-7.81) (-4.95)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

βσamb
-0.05 -0.05 -0.05 -0.05

(-1.52) (-1.53) (-1.17) (-1.59) (-1.60) (-1.21) (-1.65) (-1.65) (-1.24) (-1.65) (-1.65) (-1.24)

[0.13] [0.13] [0.24] [0.11] [0.11] [0.23] [0.10] [0.10] [0.21] [0.10] [0.10] [0.21]

β△σamb
-0.02 -0.02 -0.02 -0.02

(-0.75) (-0.75) (-0.26) (-0.73) (-0.74) (-0.25) (-0.75) (-0.76) (-0.26) (-0.76) (-0.76) (-0.26)

[0.45] [0.45] [0.79] [0.46] [0.46] [0.80] [0.45] [0.45] [0.79] [0.45] [0.45] [0.80]

βσp*△2
p

0.11 0.11 0.11 0.11

(3.68) (3.69) (2.63) (3.49) (3.51) (2.47) (3.40) (3.42) (2.37) (3.55) (3.56) (2.44)

[0.00] [0.00] [0.01] [0.00] [0.00] [0.01] [0.00] [0.00] [0.02] [0.00] [0.00] [0.01]

β△σp -0.04 -0.04 -0.03 -0.04

(-1.57) (-1.58) (-0.48) (-1.47) (-1.48) (-0.45) (-1.40) (-1.40) (-0.42) (-1.43) (-1.44) (-0.42)

[0.12] [0.12] [0.63] [0.14] [0.14] [0.65] [0.16] [0.16] [0.67] [0.15] [0.15] [0.67]

βV
t-1

-0.29 -0.30 -0.30 -0.30

(-11.84) (-11.90) (-8.61) (-12.13) (-12.19) (-8.93) (-12.07) (-12.12) (-9.17) (-12.10) (-12.15) (-9.06)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

N 1509 1509 1509 1509

R2
a 0.176 0.167 0.166 0.181
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Table 11. Daily Regressions for Trading Volume Elasticity ξ

This table summarizes the daily regression of the elasticity model, as detailed in regression (1)
of Section-5. The regressions were performed for the SPY ETF from 2013 to 2018 using four
different daily data sets {D(1), D(2), D(3), D(4)}.

∆log(V ) = c+
(
ξ1+ξµ∗µ∆p+ξpbel∗PBEL+ξamb∗AMB+ξp1∗P1+ξµ2∗µ2

∆p+ξpbel2∗PBEL2+ξAMB2∗
AMB2+ξp12∗P 2

1 +ξσamb
∗σamb+ξσAMB2 ∗σ2

amb

)
ξ
∗ ∆log(σ∆p)+ ∆log(V )t−1+

∑T
p=t+1 γp

D(1) D(2) D(3) D(4)

c -0.01 -0.01 -0.01 -0.01

(-0.37) (-0.37) (-0.62) (-0.39) (-0.39) (-0.64) (-0.37) (-0.38) (-0.62) (-0.44) (-0.44) (-0.73)

[0.71] [0.71] [0.54] [0.70] [0.70] [0.52] [0.71] [0.71] [0.53] [0.66] [0.66] [0.46]

ξ1 13.59 13.86 13.49 14.27

(9.89) (9.95) (8.13) (9.93) (9.99) (8.09) (9.96) (10.02) (8.22) (10.12) (10.18) (8.78)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

ξµ -0.01 -0.01 -0.01 -0.00

(-0.37) (-0.37) (-0.30) (-0.46) (-0.46) (-0.36) (-0.76) (-0.77) (-0.61) (-0.00) (-0.00) (-0.00)

[0.71] [0.71] [0.76] [0.65] [0.64] [0.72] [0.44] [0.44] [0.54] [1.00] [1.00] [1.00]

ξpbel -0.02 -0.04 -0.38 0.05

(-0.36) (-0.36) (-0.31) (-0.87) (-0.87) (-0.78) (-1.73) (-1.74) (-1.45) (1.37) (1.38) (0.99)

[0.72] [0.72] [0.76] [0.39] [0.38] [0.43] [0.08] [0.08] [0.15] [0.17] [0.17] [0.32]

ξamb -0.08 -0.08 -0.08 -0.07

(-3.34) (-3.36) (-3.34) (-3.23) (-3.25) (-2.98) (-3.32) (-3.34) (-3.41) (-2.88) (-2.90) (-2.95)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

ξp1 0.02 0.03 0.04 0.02

(1.24) (1.25) (0.96) (1.34) (1.34) (0.95) (1.79) (1.80) (1.30) (1.28) (1.29) (0.86)

[0.21] [0.21] [0.34] [0.18] [0.18] [0.34] [0.07] [0.07] [0.19] [0.20] [0.20] [0.39]

ξµ2 -0.04 -0.03 -0.04 -0.03

(-3.02) (-3.04) (-2.68) (-2.97) (-2.99) (-2.24) (-3.34) (-3.36) (-2.97) (-2.29) (-2.31) (-1.94)

[0.00] [0.00] [0.01] [0.00] [0.00] [0.03] [0.00] [0.00] [0.00] [0.02] [0.02] [0.05]

ξpbel2 0.03 0.04 0.38 -0.04

(0.46) (0.46) (0.42) (0.80) (0.81) (0.76) (1.76) (1.77) (1.47) (-0.99) (-0.99) (-0.75)

[0.65] [0.64] [0.67] [0.42] [0.42] [0.45] [0.08] [0.08] [0.14] [0.32] [0.32] [0.45]

ξamb2 0.07 0.07 0.07 0.06

(3.46) (3.48) (3.67) (3.39) (3.41) (3.30) (3.44) (3.47) (3.79) (3.07) (3.09) (3.23)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

ξp21
0.04 0.04 0.04 0.03

(1.92) (1.93) (1.65) (1.86) (1.87) (1.59) (2.31) (2.32) (2.14) (1.70) (1.71) (1.49)

[0.06] [0.05] [0.10] [0.06] [0.06] [0.11] [0.02] [0.02] [0.03] [0.09] [0.09] [0.14]

ξσamb -0.11 -0.10 -0.08 -0.11

(-1.75) (-1.76) (-1.56) (-1.54) (-1.55) (-1.37) (-1.22) (-1.22) (-1.02) (-1.77) (-1.78) (-1.52)

[0.08] [0.08] [0.12] [0.12] [0.12] [0.17] [0.22] [0.22] [0.31] [0.08] [0.08] [0.13]

ξσ2
amb

0.11 0.09 0.08 0.10

(1.65) (1.66) (1.53) (1.43) (1.44) (1.34) (1.16) (1.17) (1.04) (1.61) (1.62) (1.48)

[0.10] [0.10] [0.13] [0.15] [0.15] [0.18] [0.25] [0.24] [0.30] [0.11] [0.10] [0.14]

N 1510 1510 1510 1510

R2
a 0.204 0.204 0.206 0.206
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Appendix E Model Daily Regressions Results with

Volatility Controls

In this appendix, I present the daily frequency regressions for the trading volume model outlined

in Section-2.6, along with the elasticity model detailed in Section-2.7.

Tables 8, 13, and 14 below present the regressions (1), (2), and (3) results of the trading volume

model as discussed in Section-4.

V = αV + βV ∗∆P + ϵ (1)

αV = c+ αpbel ∗ PBEL+ αamb ∗ AMB + αambσ ∗ AMB ∗ σamb + αt−1 +
T∑

p=t+1

γp + ϵ

βV = c+ βσamb
∗ σamb + βhσamb

∗ σamb ∗ Ihσamb
+ βσp ∗ σP + βt−1 +

T∑
p=t+1

γp + ϵ

V =
(
c+ αpbel ∗ PBEL+ αamb ∗ AMB + αambσ ∗ AMB ∗ σamb

)
α

+(
βp+βσamb

∗σamb+βhσamb
∗σamb ∗ Ihσamb

+βσp ∗σP

)
β
∗∆P + ςt−1 ∗Vt−1+∑T

p=t+1 γp + ϵ

(4.2)

∆V = c +
(
αpbel ∗∆PBEL+ αamb ∗∆AMB + αambσ ∗∆AMB ∗ σamb

)
∆α

+
(
β∆σamb

∗∆σamb + βh∆σamb
∗∆σamb ∗ Ihσamb

+ β∆σp ∗∆σP

)
∆β

∗∆P +(
βP + βσamb

∗ σamb + βhσamb
∗ σamb ∗ Ihσamb

+ βσp∆2
P
∗ σP

)
β
∗∆2

P + ςt−1 ∗

∆Vt−1 +
∑T

p=t+1 γp + ϵ

(4.3)

The outcomes of regression (1) in Section-4 for the elasticity model are illustrated in table-15

below.

∆log(V ) = c +
(
ξ1 + ξµ ∗µ∆p + ξpbel ∗PBEL + ξamb ∗AMB + ξµ2 ∗µ2

∆p + ξpbel2 ∗

PBEL2 + ξamb2 ∗AMB2 + ξσamb
∗σamb + ξhσamb

∗σamb ∗ Ihσamb
+ ξσ2

amb
∗

σ2
amb + ξhσ2

amb
∗σ2

amb∗Ihσamb

)
ξ
∗ ∆log(σ∆p)+ ςt−1∗∆log(V )t−1+

∑T
p=t+1 γp

(5.2)

The regressions cover the daily period from 2013 to 2018 for the SPY and were conducted on

four distinct datasets: D(1), D(2), D(3) and D(4) used in the previous appendix. The dummy

Ihσamb
marks days with high levels of ambiguity above the 50% quantile of the sample.
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Table 12. Daily Regressions αV and βV

This table summarizes the daily regression results for the coefficients αV and βV of the trading
volume formula, as detailed in regression (1) of Section-4. The regressions were performed for
the SPY ETF from 2013 to 2018 using four different daily data sets {D(1), D(2), D(3), D(4)}.
T-values and P-values from the left side to the right are standard OLS, clustered robust and
Newey-West autocorrelation robust values.

αV = c+ αpbel ∗ PBEL+ αamb ∗ AMB + αambσ ∗ AMB ∗ σamb + αt−1 +
∑T

p=t+1 γp + ϵ

βV = c+ βσamb
∗ σAMB + βhσamb

∗ σamb ∗ Ihσamb
+ βσp ∗ σP + βt−1 +

∑T
p=t+1 γp + ϵ

D(1) D(2) D(3) D(4)

Panel A: Regression on αV

c 0.13 0.14 0.17 0.13

(2.79) (2.79) (2.56) (2.97) (2.98) (3.07) (3.53) (3.54) (4.00) (2.91) (2.92) (3.09)

[0.01] [0.01] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

αpbel 0.13 0.08 0.10 -0.12

(6.80) (6.82) (5.55) (4.36) (4.37) (3.63) (4.96) (4.97) (5.73) (-6.31) (-6.33) (-6.94)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

αamb 0.16 0.16 0.15 0.15

(6.77) (6.79) (4.12) (6.90) (6.93) (4.21) (6.58) (6.60) (4.03) (6.69) (6.72) (4.08)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

αambσ -0.10 -0.10 -0.09 -0.09

(-4.81) (-4.83) (-3.83) (-4.72) (-4.73) (-3.80) (-4.35) (-4.36) (-3.53) (-4.13) (-4.14) (-3.44)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

αt− 1 0.56 0.56 0.56 0.56

(27.18) (27.27) (17.60) (27.18) (27.27) (17.49) (27.26) (27.35) (16.75) (26.97) (27.06) (16.68)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

N 1509 1509 1509 1509

R2
a 0.497 0.488 0.49 0.495

Panel B: Regression on βV (same for 1, 2, 3, 4)

c 0.05 0.05 0.05 0.05

(0.54) (0.55) (0.41) (0.54) (0.55) (0.41) (0.54) (0.55) (0.41) (0.54) (0.55) (0.41)

[0.59] [0.59] [0.68] [0.59] [0.59] [0.68] [0.59] [0.59] [0.68] [0.59] [0.59] [0.68]

βσamb -0.02 -0.02 -0.02 -0.02

(-0.16) (-0.16) (-0.18) (-0.16) (-0.16) (-0.18) (-0.16) (-0.16) (-0.18) (-0.16) (-0.16) (-0.18)

[0.87] [0.87] [0.86] [0.87] [0.87] [0.86] [0.87] [0.87] [0.86] [0.87] [0.87] [0.86]

βhσamb
-0.10 -0.10 -0.10 -0.10

(-0.75) (-0.75) (-0.75) (-0.75) (-0.75) (-0.75) (-0.75) (-0.75) (-0.75) (-0.75) (-0.75) (-0.75)

[0.46] [0.45] [0.45] [0.46] [0.45] [0.45] [0.46] [0.45] [0.45] [0.46] [0.45] [0.45]

βσp -0.06 -0.06 -0.06 -0.06

(-1.44) (-1.44) (-1.78) (-1.44) (-1.44) (-1.78) (-1.44) (-1.44) (-1.78) (-1.44) (-1.44) (-1.78)

[0.15] [0.15] [0.08] [0.15] [0.15] [0.08] [0.15] [0.15] [0.08] [0.15] [0.15] [0.08]

βt-1 0.02 0.02 0.02 0.02

(0.70) (0.70) (0.49) (0.70) (0.70) (0.49) (0.70) (0.70) (0.49) (0.70) (0.70) (0.49)

[0.49] [0.48] [0.62] [0.49] [0.48] [0.62] [0.49] [0.48] [0.62] [0.49] [0.48] [0.62]

N 1509 1509 1509 1509

R2
a 0.000 0.000 0.000 0.000
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Table 13. Daily Regressions for Trading Volume

This table summarizes the daily regression results of the trading volume formula, as detailed in
regression (2) of Section-4. The regressions were performed for the SPY ETF from 2013 to 2018
using four different daily data sets {D(1), D(2), D(3), D(4)}. T-values and P-values from the
left side to the right are standard OLS, clustered robust and Newey-West autocorrelation robust
values.

V =
(
c+ αpbel ∗ PBEL+ αamb ∗ AMB + αambσ ∗ AMB ∗ σamb

)
α

+(
βp + βσamb

∗ σamb + βhσamb
∗ σamb ∗ Ihσamb

+ βσp ∗ σP

)
β
∗∆P + ςt−1 ∗ Vt−1 +

∑T
p=t+1 γp + ϵ

D(1) D(2) D(3) D(4)

c -0.13 -0.12 -0.10 -0.12

(-2.96) (-2.97) (-2.77) (-2.64) (-2.65) (-2.65) (-2.31) (-2.32) (-2.62) (-2.78) (-2.79) (-3.06)

[0.00] [0.00] [0.01] [0.01] [0.01] [0.01] [0.02] [0.02] [0.01] [0.01] [0.01] [0.00]

αpbel 0.11 0.08 0.06 -0.13

(6.29) (6.32) (5.58) (4.22) (4.24) (3.78) (3.33) (3.34) (3.69) (-7.13) (-7.17) (-7.54)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

αamb 0.13 0.14 0.13 0.13

(6.03) (6.06) (4.23) (6.14) (6.17) (4.31) (5.95) (5.98) (4.15) (5.92) (5.95) (4.18)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

αambσ -0.07 -0.07 -0.06 -0.06

(-3.45) (-3.47) (-2.68) (-3.40) (-3.41) (-2.65) (-3.11) (-3.12) (-2.44) (-2.70) (-2.71) (-2.20)

[0.00] [0.00] [0.01] [0.00] [0.00] [0.01] [0.00] [0.00] [0.01] [0.01] [0.01] [0.03]

βp -0.34 -0.35 -0.34 -0.35

(-10.42) (-10.47) (-5.95) (-10.56) (-10.61) (-6.07) (-10.32) (-10.37) (-5.78) (-10.70) (-10.75) (-6.12)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

βσamb
-0.07 -0.07 -0.08 -0.07

(-1.91) (-1.92) (-1.34) (-2.00) (-2.01) (-1.41) (-2.01) (-2.02) (-1.38) (-1.99) (-2.00) (-1.40)

[0.06] [0.05] [0.18] [0.05] [0.04] [0.16] [0.04] [0.04] [0.17] [0.05] [0.05] [0.16]

βhσamb
0.07 0.07 0.07 0.06

(0.92) (0.92) (0.55) (0.95) (0.95) (0.58) (0.91) (0.92) (0.54) (0.85) (0.85) (0.52)

[0.36] [0.36] [0.58] [0.34] [0.34] [0.56] [0.36] [0.36] [0.59] [0.40] [0.40] [0.61]

βσp 0.10 0.10 0.09 0.10

(4.16) (4.18) (2.43) (4.06) (4.08) (2.34) (3.92) (3.94) (2.22) (4.20) (4.22) (2.45)

[0.00] [0.00] [0.02] [0.00] [0.00] [0.02] [0.00] [0.00] [0.03] [0.00] [0.00] [0.01]

ςt− 1 0.60 0.60 0.60 0.59

(31.13) (31.27) (17.41) (31.05) (31.20) (17.58) (31.12) (31.27) (16.86) (30.91) (31.05) (16.83)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

N 1510 1510 1510 1510

R2
a 0.542 0.535 0.533 0.545
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Table 14. Daily Regressions for ∆Trading Volume

This table summarizes the daily regression results of the first difference trading volume formula,
as detailed in regression (3) of Section-4. The regressions were performed for the SPY ETF from
2013 to 2018 using four different daily data sets {D(1), D(2), D(3), D(4)}. T-values and P-values
from the left side to the right are standard OLS, clustered robust and Newey-West autocorrelation
robust values.

∆V = c +
(
αpbel ∗∆PBEL+ αamb ∗∆AMB + αambσ ∗∆AMB ∗ σamb

)
∆α

+
(
β∆σamb

∗∆σamb+βh∆σamb
∗∆σamb ∗ Ihσamb

+β∆σp ∗∆σP

)
∆β

∗∆P +
(
βP +βσamb

∗σamb+

βhσamb
∗ σamb ∗ Ihσamb

+ βσp∆2
P
∗ σP

)
β
∗∆2

P + ςt−1 ∗∆Vt−1 +
∑T

p=t+1 γp + ϵ

D(1) D(2) D(3) D(4)

c 0.01 0.01 0.01 0.01

(0.09) (0.09) (0.17) (0.10) (0.10) (0.18) (0.09) (0.09) (0.16) (0.09) (0.09) (0.16)

[0.93] [0.92] [0.86] [0.92] [0.92] [0.86] [0.93] [0.93] [0.87] [0.93] [0.93] [0.87]

αpbel 0.12 0.08 0.07 -0.15

(5.28) (5.31) (4.63) (3.37) (3.39) (2.89) (3.06) (3.07) (3.28) (-6.29) (-6.32) (-6.73)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

αamb 0.13 0.13 0.13 0.13

(5.17) (5.20) (3.77) (5.23) (5.26) (3.78) (5.15) (5.18) (3.74) (5.28) (5.31) (3.86)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

αambσ -0.00 -0.00 -0.00 -0.00

(-0.16) (-0.16) (-0.10) (-0.04) (-0.04) (-0.03) (-0.14) (-0.14) (-0.09) (-0.14) (-0.14) (-0.09)

[0.87] [0.87] [0.92] [0.96] [0.96] [0.98] [0.89] [0.89] [0.93] [0.89] [0.89] [0.93]

βp -0.22 -0.23 -0.22 -0.24

(-4.96) (-4.99) (-3.32) (-5.02) (-5.05) (-3.36) (-4.83) (-4.86) (-3.26) (-5.28) (-5.31) (-3.54)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

βσamb
-0.04 -0.05 -0.05 -0.06

(-0.77) (-0.78) (-0.69) (-0.97) (-0.97) (-0.85) (-1.00) (-1.00) (-0.86) (-1.12) (-1.12) (-0.99)

[0.44] [0.44] [0.49] [0.33] [0.33] [0.40] [0.32] [0.32] [0.39] [0.26] [0.26] [0.32]

βhσamb
0.02 0.04 0.04 0.05

(0.20) (0.20) (0.15) (0.41) (0.41) (0.31) (0.40) (0.40) (0.30) (0.56) (0.56) (0.42)

[0.84] [0.84] [0.88] [0.68] [0.68] [0.76] [0.69] [0.69] [0.76] [0.58] [0.57] [0.67]

β△σamb
0.11 0.11 0.11 0.11

(3.25) (3.27) (2.72) (3.29) (3.30) (2.73) (3.30) (3.32) (2.72) (3.36) (3.37) (2.64)

[0.00] [0.00] [0.01] [0.00] [0.00] [0.01] [0.00] [0.00] [0.01] [0.00] [0.00] [0.01]

βh△σamb
-0.27 -0.28 -0.28 -0.28

(-5.69) (-5.73) (-4.24) (-5.74) (-5.77) (-4.28) (-5.78) (-5.81) (-4.21) (-5.86) (-5.89) (-4.19)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

βσp△2
p

0.13 0.12 0.12 0.12

(4.02) (4.04) (2.99) (3.81) (3.84) (2.81) (3.73) (3.76) (2.70) (3.86) (3.89) (2.77)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.00] [0.00] [0.01] [0.00] [0.00] [0.01]

β△σp -0.06 -0.06 -0.06 -0.06

(-2.41) (-2.43) (-0.98) (-2.34) (-2.35) (-0.96) (-2.26) (-2.27) (-0.91) (-2.30) (-2.32) (-0.91)

[0.02] [0.02] [0.33] [0.02] [0.02] [0.34] [0.02] [0.02] [0.36] [0.02] [0.02] [0.36]

ςt− 1 -0.31 -0.31 -0.31 -0.31

(-12.51) (-12.58) (-9.66) (-12.79) (-12.87) (-9.94) (-12.74) (-12.81) (-10.20) (-12.78) (-12.85) (-10.00)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

N 1509 1509 1509 1509

R2
a 0.192 0.184 0.182 0.199
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Table 15. Daily Regressions for Trading Volume Elasticity ξ

This table summarizes the daily regression of the elasticity model, as detailed in regression (1)
of Section-5. The regressions were performed for the SPY ETF from 2013 to 2018 using four
different daily data sets {D(1), D(2), D(3), D(4)}.

∆log(V ) = c +
(
ξ1 + ξµ ∗ µ∆p + ξpbel ∗ PBEL + ξamb ∗AMB + ξµ2 ∗ µ2

∆p + ξpbel2 ∗ PBEL2 +
ξamb2 ∗AMB2 + ξσamb

∗ σamb + ξhσamb
∗ σamb ∗ Ihσamb

+ ξσ2
amb

∗ σ2
amb + ξhσ2

amb
∗ σ2

amb ∗
Ihσamb

)
ξ
∗ ∆log(σ∆p) + ςt−1 ∗∆log(V )t−1 +

∑T
p=t+1 γp

D(1) D(2) D(3) D(4)

c -0.02 -0.02 -0.02 -0.02

(-1.04) (-1.04) (-1.56) (-1.07) (-1.08) (-1.60) (-1.02) (-1.03) (-1.52) (-1.08) (-1.09) (-1.64)

[0.30] [0.30] [0.12] [0.28] [0.28] [0.11] [0.31] [0.30] [0.13] [0.28] [0.28] [0.10]

ξ1 30.65 31.47 30.22 30.50

(5.43) (5.47) (5.26) (5.39) (5.42) (5.27) (5.47) (5.51) (4.60) (5.61) (5.64) (5.29)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

ξµ -0.00 -0.00 -0.00 0.01

(-0.06) (-0.06) (-0.07) (-0.13) (-0.13) (-0.13) (-0.27) (-0.27) (-0.27) (0.73) (0.74) (0.76)

[0.95] [0.95] [0.95] [0.90] [0.89] [0.89] [0.79] [0.79] [0.79] [0.46] [0.46] [0.45]

ξpbel -0.02 -0.02 -0.20 0.06

(-0.37) (-0.37) (-0.36) (-0.50) (-0.50) (-0.49) (-0.95) (-0.95) (-0.73) (1.53) (1.54) (1.38)

[0.71] [0.71] [0.72] [0.62] [0.62] [0.62] [0.34] [0.34] [0.46] [0.13] [0.12] [0.17]

ξamb -0.08 -0.08 -0.08 -0.07

(-3.31) (-3.33) (-3.39) (-3.20) (-3.22) (-3.19) (-3.27) (-3.29) (-3.44) (-2.92) (-2.94) (-2.94)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

ξµ2 -0.02 -0.02 -0.02 -0.01

(-1.73) (-1.74) (-1.84) (-1.84) (-1.85) (-1.62) (-1.89) (-1.91) (-1.78) (-1.14) (-1.15) (-1.12)

[0.08] [0.08] [0.07] [0.07] [0.06] [0.11] [0.06] [0.06] [0.08] [0.25] [0.25] [0.26]

ξpbel2 0.02 0.02 0.20 -0.05

(0.36) (0.37) (0.36) (0.37) (0.37) (0.36) (0.95) (0.96) (0.74) (-1.18) (-1.18) (-1.07)

[0.72] [0.71] [0.72] [0.71] [0.71] [0.72] [0.34] [0.34] [0.46] [0.24] [0.24] [0.29]

ξamb2 0.07 0.07 0.07 0.07

(3.72) (3.75) (3.74) (3.69) (3.71) (3.58) (3.71) (3.73) (3.89) (3.35) (3.37) (3.26)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

ξσamb -0.73 -0.74 -0.71 -0.71

(-3.56) (-3.58) (-3.48) (-3.55) (-3.57) (-3.49) (-3.45) (-3.47) (-2.95) (-3.56) (-3.59) (-3.50)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

ξhσamb -0.24 -0.24 -0.24 -0.23

(-2.12) (-2.14) (-2.12) (-2.16) (-2.17) (-2.22) (-2.12) (-2.13) (-1.97) (-2.10) (-2.12) (-2.22)

[0.03] [0.03] [0.03] [0.03] [0.03] [0.03] [0.03] [0.03] [0.05] [0.04] [0.03] [0.03]

ξσ2
amb

0.74 0.76 0.72 0.72

(3.54) (3.56) (3.44) (3.52) (3.54) (3.45) (3.41) (3.43) (2.91) (3.51) (3.54) (3.37)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

ξhσ2
amb

0.04 0.04 0.05 0.04

(0.55) (0.55) (0.50) (0.55) (0.56) (0.52) (0.58) (0.59) (0.54) (0.55) (0.56) (0.53)

[0.58] [0.58] [0.62] [0.58] [0.58] [0.60] [0.56] [0.56] [0.59] [0.58] [0.58] [0.60]

ςt− 1 -0.38 -0.38 -0.39 -0.38

(-16.73) (-16.83) (-18.74) (-16.71) (-16.82) (-18.76) (-16.77) (-16.87) (-18.74) (-16.62) (-16.72) (-18.51)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

N 1510 1510 1510 1510

R2
a 0.208 0.208 0.208 0.21
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Appendix F Model Monthly Regressions Results

In this appendix, I present the monthly frequency regressions for the trading volume model out-

lined in Section-2.6. These regressions cover the monthly periods 2013-2018 and 2000-2020.

Tables 16, 17, and 18 below present the regressions (1), (2) and (3) results of the trading

volume model as discussed in Section-4.

V = αV + βV ∗∆P + ϵ (4.1)

αV = 1 + αpbel ∗ PBEL+ αamb ∗ AMB + ϵ

βV = 1 + βσamb
∗ σamb + βp ∗ σP + ϵ

V =
(
c+ αpbel ∗ PBEL+ αamb ∗AMB

)
α

+
(
βp + βσamb

∗ σamb + βσp ∗ σP

)
β
∗

∆P + Vt−1 +
∑T

p=t+1 γp + ϵ

(4.2)

∆V = c +
(
αpbel ∗∆PBEL+ αamb ∗∆AMB

)
∆α

+
(
β∆σamb

∗∆σamb + β∆σp ∗

∆σP

)
∆β

∗ ∆P +
(
βP + βσamb

∗ σamb + βσp∗∆2
P
∗ σP

)
β
∗ ∆2

P + ∆Vt−1 +∑T
p=t+1 γp + ϵ

(4.3)

The regressions using datasets D(1) to D(8) cover the monthly period from 2013 to 2018 for

the SPY. The regressions using the datasets D(9) to D(10) cover the monthly period from 2000

to 2020. Datasets (1) ,(2), (3), (4) and (9) employ the monthly EPU measure extracted from

newspapers as a proxy for Ambiguity, alongside a distinct proxy for differences in prior beliefs

extracted from Stocktwits (Cookson & Niessner, 2020) and the IBES database. Datasets (4), (5),

(6), (7) and (10) employ the monthly Ambiguity measure of Izhakian (2020).

Monthly Datasets Description
D(1) Prior beliefs differences proxied by PBELWI, IND and Ambiguity proxied by AMBEPUM

D(2) Prior beliefs differences proxied by PBELAC, IND and Ambiguity proxied by AMBEPUM

D(3) Prior beliefs differences proxied by PBELWI, ETF and Ambiguity proxied by AMBEPUM

D(4) Prior beliefs differences proxied by PBELAC, ETF and Ambiguity proxied by AMBEPUM

D(5) Prior beliefs differences proxied by PBELWI, IND and Ambiguity proxied by AMBIZHM

D(6) Prior beliefs differences proxied by PBELAC, IND and Ambiguity proxied by AMBIZHM

D(7) Prior beliefs differences proxied by PBELWI, ETF and Ambiguity proxied by AMBIZHM

D(8) Prior beliefs differences proxied by PBELAC, ETF and Ambiguity proxied by AMBIZHM

D(9) Prior beliefs differences proxied by PBELIBES and Ambiguity proxied by AMBEPUM

D(10) Prior beliefs differences proxied by PBELIBES and Ambiguity proxied by AMBIZHM
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Table 16. Monthly Regressions αV and βV

This table summarizes the monthly regression results for the coefficients αV and βV of the trading
volume formula, as detailed in regression (1) of Section-4. The regressions were performed for the
SPY ETF using ten different monthly data sets {D(1), D(2), D(3), D(4), D(6), D(7), D(8), D(9),
D(10)}. T-values and P-values from the left side to the right are standard OLS, clustered robust
and Newey-West autocorrelation robust values.

αV = c+ αamb ∗ AMB + αpbel ∗ PBEL+ αVt−1 +
∑T

p=t+1 γp + ϵ

βV = c+ βσamb
∗ σAMB + βσp ∗ σP + βVt−1 +

∑T
p=t+1 γp + ϵ

D(1) D(2) D(3) D(4) D(5)

Panel A: Regression on αV

c -0.33 -0.38 -0.19 -0.34 -0.10

(-2.57) (-2.74) (-5.21) (-2.85) (-3.05) (-5.43) (-1.29) (-1.38) (-1.68) (-2.62) (-2.80) (-6.39) (-1.04) (-1.11) (-1.20)

[0.01] [0.01] [0.00] [0.01] [0.00] [0.00] [0.20] [0.17] [0.10] [0.01] [0.01] [0.00] [0.30] [0.27] [0.24]

αpbel -0.04 -0.08 0.11 -0.04 -0.06

(-0.64) (-0.68) (-0.67) (-1.35) (-1.45) (-1.64) (1.52) (1.63) (1.30) (-0.81) (-0.87) (-0.89) (-1.42) (-1.52) (-1.61)

[0.53] [0.50] [0.50] [0.18] [0.15] [0.11] [0.13] [0.11] [0.20] [0.42] [0.39] [0.38] [0.16] [0.13] [0.11]

αamb 0.23 0.23 0.20 0.23 0.46

(2.40) (2.57) (1.99) (2.38) (2.54) (2.07) (1.99) (2.13) (1.99) (2.37) (2.53) (1.95) (8.82) (9.43) (4.61)

[0.02] [0.01] [0.05] [0.02] [0.01] [0.04] [0.05] [0.04] [0.05] [0.02] [0.01] [0.06] [0.00] [0.00] [0.00]

αV
t-1

0.16 0.17 0.11 0.16 -0.20

(1.25) (1.34) (1.31) (1.31) (1.40) (1.31) (0.84) (0.90) (0.78) (1.25) (1.34) (1.28) (-1.97) (-2.11) (-2.60)

[0.22] [0.19] [0.19] [0.20] [0.17] [0.19] [0.40] [0.37] [0.44] [0.21] [0.18] [0.21] [0.05] [0.04] [0.01]

N 72 72 72 72 72

R2
a 0.255 0.271 0.277 0.258 0.636

Panel B: Regression on βV (same for 1, 2, 3, 4)

c 0.05 0.05 0.05 0.05 0.14

(0.16) (0.17) (0.17) (0.16) (0.17) (0.17) (0.16) (0.17) (0.17) (0.16) (0.17) (0.17) (0.38) (0.40) (0.45)

[0.87] [0.87] [0.86] [0.87] [0.87] [0.86] [0.87] [0.87] [0.86] [0.87] [0.87] [0.86] [0.71] [0.69] [0.65]

σamb -0.15 -0.15 -0.15 -0.15 0.17

(-0.60) (-0.64) (-0.43) (-0.60) (-0.64) (-0.43) (-0.60) (-0.64) (-0.43) (-0.60) (-0.64) (-0.43) (0.65) (0.69) (0.93)

[0.55] [0.53] [0.67] [0.55] [0.53] [0.67] [0.55] [0.53] [0.67] [0.55] [0.53] [0.67] [0.52] [0.49] [0.35]

△σp 0.09 0.09 0.09 0.09 0.17

(0.30) (0.32) (0.42) (0.30) (0.32) (0.42) (0.30) (0.32) (0.42) (0.30) (0.32) (0.42) (0.52) (0.55) (0.90)

[0.77] [0.75] [0.68] [0.77] [0.75] [0.68] [0.77] [0.75] [0.68] [0.77] [0.75] [0.68] [0.61] [0.58] [0.37]

βV
t-1

0.01 0.01 0.01 0.01 0.01

(0.07) (0.08) (0.10) (0.07) (0.08) (0.10) (0.07) (0.08) (0.10) (0.07) (0.08) (0.10) (0.09) (0.10) (0.11)

[0.94] [0.94] [0.92] [0.94] [0.94] [0.92] [0.94] [0.94] [0.92] [0.94] [0.94] [0.92] [0.93] [0.92] [0.91]

N 72 72 72 72 72

R2
a -0.033 -0.033 -0.033 -0.033 -0.032
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Table 16. Monthly Regressions αV and βV (continuation)

This table summarizes the monthly regression results for the coefficients αV and βV of the trading
volume formula, as detailed in regression (1) of Section-4. The regressions were performed for the
SPY ETF using ten different monthly data sets {D(1), D(2), D(3), D(4), D(6), D(7), D(8), D(9),
D(10)}. T-values and P-values from the left side to the right are standard OLS, clustered robust
and Newey-West autocorrelation robust values.

αV = c+ αamb ∗ AMB + αpbel ∗ PBEL+ αVt−1 +
∑T

p=t+1 γp + ϵ

βV = c+ βσamb
∗ σAMB + βσp ∗ σP + βVt−1 +

∑T
p=t+1 γp + ϵ

D(6) D(7) D(8) D(9) D(10)

Panel A: Regression on αV

c -0.13 -0.09 -0.11 -0.10 -1.08

(-1.39) (-1.48) (-1.43) (-0.84) (-0.89) (-0.88) (-1.18) (-1.27) (-1.53) (-0.57) (-0.69) (-0.79) (-6.05) (-7.28) (-6.96)

[0.17] [0.14] [0.16] [0.41] [0.37] [0.38] [0.24] [0.21] [0.13] [0.57] [0.49] [0.43] [0.00] [0.00] [0.00]

αpbel -0.08 -0.03 -0.06 -0.14 -0.10

(-1.91) (-2.04) (-1.99) (-0.54) (-0.58) (-0.42) (-1.63) (-1.74) (-2.10) (-3.38) (-3.30) (-3.34) (-2.54) (-2.43) (-2.32)

[0.06] [0.05] [0.05] [0.59] [0.57] [0.68] [0.11] [0.09] [0.04] [0.00] [0.00] [0.00] [0.01] [0.02] [0.02]

αamb 0.46 0.47 0.46 0.37 0.58

(8.82) (9.43) (4.68) (8.16) (8.72) (4.98) (8.85) (9.46) (4.75) (6.04) (5.64) (3.03) (9.33) (10.15) (5.19)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

αV
t-1

-0.19 -0.21 -0.20 0.39 0.26

(-1.95) (-2.09) (-2.40) (-2.02) (-2.16) (-2.70) (-1.99) (-2.13) (-2.52) (7.19) (5.65) (4.97) (4.93) (3.57) (2.65)

[0.06] [0.04] [0.02] [0.05] [0.03] [0.01] [0.05] [0.04] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01]

N 72 72 72 247 247

R2
a 0.645 0.626 0.639 0.697 0.746

Panel B: Regression on βV (same for 1, 2, 3, 4)

c 0.14 0.14 0.14 0.41 0.68

(0.38) (0.40) (0.45) (0.38) (0.40) (0.45) (0.38) (0.40) (0.45) (1.30) (1.33) (2.54) (1.73) (1.78) (2.61)

[0.71] [0.69] [0.65] [0.71] [0.69] [0.65] [0.71] [0.69] [0.65] [0.20] [0.18] [0.01] [0.09] [0.08] [0.01]

σamb 0.17 0.17 0.17 0.20 0.31

(0.65) (0.69) (0.93) (0.65) (0.69) (0.93) (0.65) (0.69) (0.93) (1.51) (1.57) (0.99) (1.63) (1.71) (1.54)

[0.52] [0.49] [0.35] [0.52] [0.49] [0.35] [0.52] [0.49] [0.35] [0.13] [0.12] [0.32] [0.10] [0.09] [0.12]

△σp 0.17 0.17 0.17 -0.22 -0.16

(0.52) (0.55) (0.90) (0.52) (0.55) (0.90) (0.52) (0.55) (0.90) (-1.49) (-1.59) (-0.56) (-1.14) (-1.22) (-0.46)

[0.61] [0.58] [0.37] [0.61] [0.58] [0.37] [0.61] [0.58] [0.37] [0.14] [0.11] [0.58] [0.26] [0.22] [0.65]

βV
t-1

0.01 0.01 0.01 0.00 0.01

(0.09) (0.10) (0.11) (0.09) (0.10) (0.11) (0.09) (0.10) (0.11) (0.07) (0.07) (0.10) (0.16) (0.16) (0.22)

[0.93] [0.92] [0.91] [0.93] [0.92] [0.91] [0.93] [0.92] [0.91] [0.94] [0.94] [0.92] [0.88] [0.87] [0.83]

N 72 72 72 247 247

R2
a -0.032 -0.032 -0.032 0.111 0.113
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Table 17. Monthly Regressions for Trading Volume

This table summarizes the monthly regression results of the trading volume formula, as detailed in
regression (2) of Section-4. The regressions were performed for the SPY ETF using ten different
data sets {D(1), D(2), D(3), D(4), D(6), D(7), D(8), D(9), D(10)}.

V =
(
c+αpbel∗PBEL+αamb∗AMB

)
α
+
(
βp+βσamb

∗σamb+βσp ∗σP

)
β
∗∆P +Vt−1+

∑T
p=t+1 γp+ϵ

D(1) D(2) D(3) D(4) D(5)

c -0.23 -0.25 -0.16 -0.29 -0.12

(-2.13) (-2.33) (-3.37) (-2.20) (-2.41) (-3.37) (-1.32) (-1.44) (-1.16) (-2.65) (-2.90) (-4.47) (-1.27) (-1.39) (-1.33)

[0.04] [0.02] [0.00] [0.03] [0.02] [0.00] [0.19] [0.15] [0.25] [0.01] [0.01] [0.00] [0.21] [0.17] [0.19]

αpbel 0.02 -0.00 0.08 -0.05 -0.01

(0.51) (0.56) (0.55) (-0.10) (-0.11) (-0.13) (1.27) (1.39) (0.69) (-1.13) (-1.24) (-0.86) (-0.32) (-0.35) (-0.36)

[0.61] [0.58] [0.58] [0.92] [0.92] [0.90] [0.21] [0.17] [0.49] [0.26] [0.22] [0.40] [0.75] [0.73] [0.72]

αamb 0.22 0.21 0.19 0.20 0.35

(2.64) (2.89) (3.87) (2.57) (2.82) (3.75) (2.31) (2.53) (5.48) (2.41) (2.64) (3.14) (5.71) (6.26) (3.18)

[0.01] [0.01] [0.00] [0.01] [0.01] [0.00] [0.02] [0.01] [0.00] [0.02] [0.01] [0.00] [0.00] [0.00] [0.00]

βp -0.27 -0.26 -0.26 -0.25 -0.09

(-4.15) (-4.55) (-6.05) (-3.93) (-4.31) (-5.86) (-4.16) (-4.56) (-6.54) (-3.86) (-4.23) (-6.16) (-1.31) (-1.43) (-1.20)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.20] [0.16] [0.23]

βσamb
0.05 0.07 0.05 0.12 -0.03

(0.24) (0.26) (0.39) (0.31) (0.34) (0.53) (0.23) (0.25) (0.38) (0.58) (0.64) (1.00) (-0.50) (-0.55) (-0.63)

[0.81] [0.79] [0.70] [0.75] [0.73] [0.59] [0.82] [0.80] [0.71] [0.56] [0.53] [0.32] [0.62] [0.59] [0.53]

βσp 0.09 0.08 0.11 0.08 -0.01

(0.62) (0.68) (1.04) (0.60) (0.65) (1.05) (0.78) (0.86) (1.31) (0.57) (0.62) (1.00) (-0.12) (-0.13) (-0.22)

[0.54] [0.50] [0.30] [0.55] [0.52] [0.30] [0.44] [0.40] [0.19] [0.57] [0.54] [0.32] [0.91] [0.90] [0.83]

βV
t-1

0.15 0.16 0.13 0.16 -0.16

(1.43) (1.57) (1.17) (1.49) (1.63) (1.23) (1.23) (1.34) (0.96) (1.55) (1.70) (1.25) (-1.48) (-1.62) (-1.41)

[0.16] [0.12] [0.25] [0.14] [0.11] [0.22] [0.23] [0.18] [0.34] [0.13] [0.09] [0.22] [0.14] [0.11] [0.16]

N 72 72 72 72 72

R2
a 0.493 0.49 0.504 0.501 0.629

D(6) D(7) D(8) D(9) D(10)

c -0.15 -0.12 -0.18 -0.13 -0.97

(-1.50) (-1.64) (-1.42) (-1.18) (-1.29) (-1.05) (-1.88) (-2.06) (-2.03) (-0.87) (-1.02) (-1.06) (-5.53) (-6.55) (-5.56)

[0.14] [0.11] [0.16] [0.24] [0.20] [0.30] [0.07] [0.04] [0.05] [0.39] [0.31] [0.29] [0.00] [0.00] [0.00]

αpbel -0.04 -0.01 -0.07 -0.09 -0.08

(-0.92) (-1.00) (-0.98) (-0.21) (-0.23) (-0.17) (-2.03) (-2.22) (-2.89) (-2.38) (-2.38) (-3.64) (-2.07) (-2.03) (-3.24)

[0.36] [0.32] [0.33] [0.83] [0.82] [0.86] [0.05] [0.03] [0.01] [0.02] [0.02] [0.00] [0.04] [0.04] [0.00]

αamb 0.36 0.36 0.36 0.36 0.48

(5.82) (6.37) (3.27) (5.24) (5.74) (3.65) (6.04) (6.61) (3.09) (6.30) (6.07) (3.26) (7.25) (8.09) (4.15)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

βp -0.08 -0.09 -0.08 -0.30 -0.19

(-1.17) (-1.28) (-1.07) (-1.37) (-1.50) (-1.23) (-1.16) (-1.27) (-0.99) (-5.42) (-5.85) (-4.22) (-3.14) (-3.16) (-2.10)

[0.25] [0.20] [0.29] [0.18] [0.14] [0.22] [0.25] [0.21] [0.33] [0.00] [0.00] [0.00] [0.00] [0.00] [0.04]

βσamb
-0.04 -0.03 -0.05 -0.10 0.03

(-0.53) (-0.58) (-0.66) (-0.45) (-0.49) (-0.61) (-0.71) (-0.78) (-0.88) (-1.69) (-1.63) (-1.39) (0.61) (0.54) (0.39)

[0.60] [0.56] [0.51] [0.66] [0.63] [0.54] [0.48] [0.44] [0.38] [0.09] [0.10] [0.17] [0.54] [0.59] [0.70]

βσp -0.01 -0.02 -0.00 0.10 -0.04

(-0.10) (-0.10) (-0.17) (-0.17) (-0.19) (-0.29) (-0.02) (-0.02) (-0.03) (1.37) (1.50) (0.88) (-0.66) (-0.70) (-0.57)

[0.92] [0.92] [0.86] [0.86] [0.85] [0.77] [0.98] [0.98] [0.97] [0.17] [0.13] [0.38] [0.51] [0.48] [0.57]

βV
t-1

-0.16 -0.16 -0.17 0.38 0.27

(-1.52) (-1.66) (-1.45) (-1.49) (-1.64) (-1.44) (-1.60) (-1.75) (-1.35) (7.52) (6.27) (5.31) (4.90) (3.81) (3.10)

[0.13] [0.10] [0.15] [0.14] [0.11] [0.15] [0.12] [0.09] [0.18] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

N 72 72 72 248 248

R2
a 0.634 0.629 0.653 0.732 0.743
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Table 18. Monthly Regressions for ∆Trading Volume

This table summarizes the monthly regression results of the first difference trading volume formula,
as detailed in regression (3) of Section-4.

∆V = c +
(
αpbel ∗∆PBEL + αamb ∗∆AMB

)
∆α

+
(
β∆σamb

∗∆σamb + β∆σp ∗∆σP

)
∆β

∗∆P +(
βP + βσamb

∗ σamb + βσp∗∆2
P
∗ σP

)
β
∗∆2

P +∆Vt−1 +
∑T

p=t+1 γp + ϵ

D(1) D(2) D(3) D(4) D(5)

c 0.08 0.06 0.05 0.04 0.01

(0.46) (0.51) (0.82) (0.36) (0.41) (0.68) (0.35) (0.39) (0.75) (0.23) (0.26) (0.50) (0.09) (0.10) (0.27)

[0.65] [0.61] [0.42] [0.72] [0.69] [0.50] [0.73] [0.70] [0.46] [0.82] [0.80] [0.62] [0.93] [0.92] [0.79]

αpbel 0.14 0.10 0.25 -0.02 0.03

(2.00) (2.24) (1.61) (1.39) (1.55) (1.09) (3.89) (4.35) (2.23) (-0.30) (-0.34) (-0.25) (0.53) (0.59) (0.53)

[0.05] [0.03] [0.11] [0.17] [0.13] [0.28] [0.00] [0.00] [0.03] [0.76] [0.74] [0.80] [0.60] [0.56] [0.60]

αamb 0.24 0.25 0.19 0.23 0.38

(3.33) (3.72) (4.08) (3.31) (3.70) (4.03) (2.86) (3.20) (4.17) (3.07) (3.43) (3.43) (7.97) (8.90) (4.05)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

βp -0.28 -0.30 -0.26 -0.29 -0.03

(-2.39) (-2.66) (-2.28) (-2.47) (-2.75) (-2.52) (-2.37) (-2.65) (-2.73) (-2.39) (-2.67) (-3.11) (-0.25) (-0.28) (-0.31)

[0.02] [0.01] [0.03] [0.02] [0.01] [0.01] [0.02] [0.01] [0.01] [0.02] [0.01] [0.00] [0.80] [0.78] [0.76]

βσamb
0.31 0.27 0.29 0.28 -0.09

(0.91) (1.01) (1.01) (0.77) (0.85) (0.92) (0.94) (1.04) (1.32) (0.78) (0.88) (1.20) (-0.81) (-0.90) (-1.83)

[0.37] [0.32] [0.32] [0.45] [0.40] [0.36] [0.35] [0.30] [0.19] [0.44] [0.38] [0.23] [0.42] [0.37] [0.07]

β△σamb
-0.51 -0.45 -0.43 -0.42 0.12

(-1.53) (-1.71) (-1.13) (-1.34) (-1.50) (-1.00) (-1.41) (-1.57) (-1.15) (-1.25) (-1.39) (-0.99) (1.67) (1.86) (4.08)

[0.13] [0.09] [0.26] [0.18] [0.14] [0.32] [0.16] [0.12] [0.25] [0.22] [0.17] [0.32] [0.10] [0.07] [0.00]

βσp*△2
p

0.21 0.17 0.32 0.10 -0.04

(0.68) (0.76) (0.83) (0.54) (0.61) (0.64) (1.10) (1.23) (1.83) (0.31) (0.34) (0.36) (-0.14) (-0.15) (-0.19)

[0.50] [0.45] [0.41] [0.59] [0.55] [0.53] [0.28] [0.23] [0.07] [0.76] [0.73] [0.72] [0.89] [0.88] [0.85]

β△σp 0.19 0.20 0.20 0.23 0.10

(0.75) (0.84) (0.77) (0.78) (0.87) (0.76) (0.87) (0.98) (1.04) (0.89) (0.99) (0.81) (0.51) (0.57) (0.77)

[0.45] [0.40] [0.44] [0.44] [0.39] [0.45] [0.39] [0.33] [0.30] [0.38] [0.33] [0.42] [0.61] [0.57] [0.45]

N 71 71 71 71 71

R2
a 0.404 0.383 0.496 0.363 0.641

D(6) D(7) D(8) D(9) D(10)

c 0.01 0.01 0.01 -0.05 -0.05

(0.07) (0.08) (0.21) (0.10) (0.11) (0.33) (0.05) (0.06) (0.17) (-0.22) (-0.28) (-0.93) (-0.20) (-0.26) (-1.72)

[0.94] [0.94] [0.83] [0.92] [0.91] [0.74] [0.96] [0.95] [0.87] [0.83] [0.78] [0.35] [0.84] [0.80] [0.09]

αpbel 0.02 0.17 0.00 -0.07 -0.04

(0.28) (0.32) (0.28) (3.27) (3.65) (3.28) (0.02) (0.02) (0.02) (-1.16) (-1.12) (-2.04) (-0.70) (-0.67) (-0.93)

[0.78] [0.75] [0.78] [0.00] [0.00] [0.00] [0.99] [0.99] [0.98] [0.25] [0.26] [0.04] [0.48] [0.51] [0.35]

αamb 0.38 0.33 0.38 0.25 0.53

(8.08) (9.02) (4.03) (7.36) (8.21) (4.58) (8.12) (9.07) (3.94) (4.42) (4.55) (2.80) (9.33) (11.13) (5.30)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.00] [0.00] [0.00]

βp -0.03 -0.04 -0.02 -0.29 -0.08

(-0.23) (-0.26) (-0.29) (-0.36) (-0.40) (-0.50) (-0.20) (-0.22) (-0.24) (-3.51) (-3.97) (-3.50) (-0.89) (-0.97) (-1.17)

[0.82] [0.80] [0.77] [0.72] [0.69] [0.62] [0.85] [0.83] [0.81] [0.00] [0.00] [0.00] [0.38] [0.33] [0.24]

βσamb
-0.09 -0.10 -0.10 0.19 0.02

(-0.83) (-0.93) (-1.90) (-0.98) (-1.10) (-2.05) (-0.87) (-0.97) (-2.09) (1.93) (1.84) (2.54) (0.26) (0.24) (0.35)

[0.41] [0.36] [0.06] [0.33] [0.28] [0.05] [0.39] [0.34] [0.04] [0.05] [0.07] [0.01] [0.79] [0.81] [0.73]

β△σamb
0.12 0.15 0.12 -0.35 -0.09

(1.70) (1.90) (4.13) (2.26) (2.53) (5.99) (1.62) (1.81) (5.55) (-5.28) (-4.19) (-7.09) (-1.40) (-1.16) (-1.14)

[0.09] [0.06] [0.00] [0.03] [0.01] [0.00] [0.11] [0.08] [0.00] [0.00] [0.00] [0.00] [0.16] [0.25] [0.25]

βσp*△2
p

-0.04 0.12 -0.05 -0.04 -0.01

(-0.16) (-0.18) (-0.23) (0.47) (0.52) (0.62) (-0.18) (-0.20) (-0.25) (-0.32) (-0.37) (-0.34) (-0.11) (-0.13) (-0.12)

[0.87] [0.86] [0.82] [0.64] [0.60] [0.54] [0.86] [0.84] [0.80] [0.75] [0.71] [0.73] [0.91] [0.90] [0.91]

β△σp 0.11 0.14 0.11 0.14 -0.03

(0.57) (0.64) (0.87) (0.81) (0.91) (1.34) (0.61) (0.68) (1.01) (1.87) (2.16) (2.82) (-0.48) (-0.53) (-0.36)

[0.57] [0.52] [0.39] [0.42] [0.37] [0.19] [0.55] [0.50] [0.31] [0.06] [0.03] [0.01] [0.63] [0.60] [0.72]

N 71 71 71 247 247

R2
a 0.639 0.696 0.639 0.317 0.400
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Appendix G Single Sorted Portfolio Returns

This section shows the regression results for the single sorted portfolios described in Section-6.

Table-21 on this page shows the results of regressing the Fama-French market portfolio, the

LMH Turnover Portfolio PTurn, LMH Ambiguity related Turnover sorted portfolio known as Pamb,

the LMH differences in prior beliefs related Turnover sorted portfolio called Ppbel, the LMH price

fluctuations related Turnover sorted portfolio called P∆P21 , and finally, the LMH unexplained

residual related Turnover sorted portfolio named Pϵ, on a constant as described in regression (2)

of Section-6.

RPTurn
= c+ ϵ (2)

RPTurn
= c+Rfree + βMKTRF ∗RMKTRF + βHML ∗RHML + βSMB ∗RSMB + ϵ (3)

RPTurn
= c+ βPamb

∗RPamb
+ βPpbel

∗RPpbel
+ βP∆P21

∗RP∆P21
+ βPϵ ∗RPϵ + ϵ (4)

Table 19. Monthly Single Sorted Portfolio Returns

Single sorted portfolio returns statistics using monthly data between 1990 to 2020.

PMKT PTurn Pamb Ppbel P△P21 Pϵ

Panel A: Monthly Portfolio Returnds (1990 - 2020)

c 0.009 0.006 0.006 0.002 -0.005 0.003

(4.10) (4.10) (3.96) (1.66) (1.67) (1.68) (1.88) (1.88) (1.70) (0.65) (0.65) (0.76) (-2.24) (-2.24) (-3.27) (1.51) (1.52) (1.75)

[0.00] [0.00] [0.00] [0.10] [0.10] [0.09] [0.06] [0.06] [0.09] [0.51] [0.51] [0.45] [0.03] [0.03] [0.00] [0.13] [0.13] [0.08]

N 372 372 372 372 372 372

R2
a 0 0 0 0 0 0

Panel B: Sharpe Ratios (1990 - 2020, yearly)

Excess Return 0.09 0.05 0.05 -0.01 -0.03 0.01

Std. Deviation 0.14 0.25 0.21 0.16 0.15 0.11

Sharpe Ratio 0.56 0.20 0.22 -0.05 -0.22 0.04

Table-20 below shows the results of regressing the LMH Turnover sorted portfolio on a

constant, on the Fama-French 3-Factors (MKT, SMB, HML) and on the LMH portfolios

{Pamb,Ppbel,P∆P21 ,Pϵ} derived from the four Turnover components, as described in regressions

(2), (3) and (4) of Section-6.

Lastly, you find in Table-21 the outcomes of the regression of the LMH Turnover sorted

portfolio PTurn on the LMH portfolios {Pamb,Ppbel,P∆P21 ,Pϵ} based on the four components of

Turnover described in Section 6, plus an explanatory variable controlling for Liquidity. The
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Liquidity proxies are the month-end SPY Bid-Ask, the monthly mean SPY Bid-Ask, the Liquidity

measure proposed by Hu et al. (2013), and the Intermediary Capital Risk Factor and Ratio

introduced by He et al. (2017). These variables are employed both in their level form and as first

differences.

Table 20. Monthly Single Sorted Portfolio Returns Attribution

Single sorted portfolio returns statistics using monthly data between 1990 to 2020.

PTurn PTurn PTurn

c 0.006 0.019 -0.001

(1.66) (1.67) (1.68) (6.08) (6.07) (4.81) (-1.53) (-1.54) (-1.27)

[0.10] [0.10] [0.09] [0.00] [0.00] [0.00] [0.13] [0.12] [0.20]

βRf -2.380

(-2.20) (-2.16) (-1.77)

[0.03] [0.03] [0.08]

βMKT−Rf -0.953

(-19.98) (-17.55)

(-12.19)

[0.00] [0.00] [0.00]

βHML 0.854

(12.61) (11.43) (6.82)

[0.00] [0.00] [0.00]

βSMB -0.789

(-11.68) (-11.83) (-7.96)

[0.00] [0.00] [0.00]

βPamb 0.942

(63.44) (62.43) (41.18)

[0.00] [0.00] [0.00]

βPpbel 0.450

(20.46) (20.70) (5.93)

[0.00] [0.00] [0.00]

βP△P21
-0.034

(-1.26) (-1.27) (-0.52)

[0.21] [0.21] [0.60]

βPϵ 0.390

(11.94) (11.94) (7.21)

[0.00] [0.00] [0.00]

N 372 372 372

R2
a 0.000 0.728 0.944
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Table 21. Monthly Single Sorted Portfolio Returns Attribution with Liquidity Controls

Single sorted portfolio returns statistics using monthly data between 1990 to 2020. Last row
indicates the liquidity control used.

PTurn PTurn PTurn PTurn PTurn

Panel A: LMH Turnover Portfolio Regressions with Liquidity Controls in Levels

c -0.001 -0.001 -0.000 -0.001 -0.002

(-0.69) (-0.70) (-0.63) (-0.60) (-0.60) (-0.61) (-0.16) (-0.16) (-0.17) (-1.48) (-1.49) (-1.25) (-0.81) (-0.80) (-0.69)

[0.49] [0.49] [0.53] [0.55] [0.55] [0.55] [0.87] [0.88] [0.87] [0.14] [0.14] [0.21] [0.42] [0.42] [0.49]

βPamb 0.944 0.941 0.942 0.939 0.942

(61.72) (60.53)

(38.43)

(62.43) (61.13)

(37.79)

(63.43) (62.44)

(41.46)

(57.21) (56.50)

(37.45)

(63.32) (62.41)

(41.11)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

βPpbel 0.457 0.457 0.449 0.451 0.450

(20.31) (20.60) (6.27) (20.30) (20.60) (6.25) (20.31) (20.60) (5.84) (20.44) (20.72) (5.90) (20.44) (20.71) (5.93)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

βP△P21
-0.056 -0.056 -0.036 -0.034 -0.033

(-2.05) (-2.08) (-0.89) (-2.05) (-2.07) (-0.88) (-1.32) (-1.34) (-0.54) (-1.24) (-1.25) (-0.51) (-1.22) (-1.23) (-0.49)

[0.04] [0.04] [0.38] [0.04] [0.04] [0.38] [0.19] [0.18] [0.59] [0.21] [0.21] [0.61] [0.22] [0.22] [0.62]

βPϵ 0.440 0.443 0.392 0.392 0.389

(12.85) (12.88) (8.85) (12.89) (12.93) (8.90) (11.97) (11.97) (7.32) (11.91) (11.93) (7.37) (11.85) (11.86) (7.07)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

βControl 0.001 0.001 -0.000 -0.007 0.013

(1.06) (1.01) (1.17) (0.92) (0.89) (0.85) (-0.92) (-0.85) (-0.86) (-0.46) (-0.45) (-0.40) (0.33) (0.33) (0.25)

[0.29] [0.31] [0.24] [0.36] [0.38] [0.39] [0.36] [0.39] [0.39] [0.65] [0.65] [0.69] [0.74] [0.75] [0.80]

N 324 324 372 372 372

R2
a 0.949 0.949 0.944 0.944 0.944

Panel B: LMH Turnover Portfolio Regressions with Liquidity Controls in Differences

c -0.001 -0.001 -0.001 -0.001 -0.001

(-0.92) (-0.93) (-0.80) (-0.93) (-0.93) (-0.79) (-1.57) (-1.58) (-1.30) (-1.55) (-1.56) (-1.28) (-1.51) (-1.52) (-1.26)

[0.36] [0.35] [0.43] [0.35] [0.35] [0.43] [0.12] [0.12] [0.19] [0.12] [0.12] [0.20] [0.13] [0.13] [0.21]

βPamb 0.942 0.939 0.942 0.946 0.939

(61.98) (60.71)

(37.18)

(62.36) (61.29)

(36.47)

(63.43) (62.37)

(41.23)

(58.99) (58.44)

(38.07)

(58.02) (57.26)

(38.48)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

βPpbel 0.456 0.455 0.450 0.450 0.451

(20.21) (20.51) (6.23) (20.27) (20.55) (6.35) (20.44) (20.73) (5.90) (20.45) (20.72) (5.97) (20.44) (20.72) (5.90)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

βP△P21
-0.055 -0.056 -0.033 -0.033 -0.033

(-2.02) (-2.04) (-0.86) (-2.07) (-2.09) (-0.91) (-1.24) (-1.25) (-0.51) (-1.22) (-1.23) (-0.51) (-1.22) (-1.24) (-0.51)

[0.04] [0.04] [0.39] [0.04] [0.04] [0.37] [0.22] [0.21] [0.61] [0.22] [0.22] [0.61] [0.22] [0.22] [0.61]

βPϵ 0.440 0.447 0.389 0.389 0.391

(12.78) (12.81) (8.77) (13.03) (13.09) (9.55) (11.90) (11.91) (7.20) (11.85) (11.86) (7.26) (11.94) (11.95) (7.29)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

β△Control 0.000 -0.004 -0.000 0.007 -0.097

(0.31) (0.30) (0.44) (-2.02) (-2.02) (-3.25) (-0.98) (-0.94) (-1.18) (0.62) (0.62) (0.68) (-0.47) (-0.48) (-0.51)

[0.75] [0.76] [0.66] [0.04] [0.04] [0.00] [0.33] [0.35] [0.24] [0.54] [0.54] [0.50] [0.64] [0.63] [0.61]

N 323 323 372 372 372

R2
a 0.949 0.950 0.944 0.944 0.944

Control BidAsklast BidAskmean Noise ICapitalfactor ICapitalratio

85



Appendix H Bisorted Portfolio Returns

In this appendix, I provide the monthly frequency return statistics of the bisorted portfolios

outlined in Section 6.

Table-22 below displays the mean monthly returns, standard deviations and Sharpe-Ratios of

the Fama-French Market Factor, the bisorted LMH Turnover-Turnover portfolio called PTurn, the

LMH Turnover related to Ambiguity and Turnover related to price fluctuations bisorted portfolio

called Pamb−∆P21 and the LMH Turnover related to price fluctuations and Turnover related to

Ambiguity bisorted portfolio called P∆P21−amb.

Table 23 below presents the annualized average differential returns of the bisorted portfolios. In

Panel A, the table illustrates the differential returns achieved by going long on the quantile bisorted

portfolio indicated in the top row and simultaneously shorting the quantile bisorted portfolio

described in the leftmost column. The first dimension in Panel A, pertaining to Ambiguity driven

Turnover, is divided into 5 quantiles, while the second dimension, associated to price fluctuations

driven Turnover, is distributed across two quantiles. This arrangement yields a total of 10 bisorted

portfolios {00,01,10,11,20,21,30,31,40,41} . In Panel-B of the same table, you can observe the

annualized differential returns stemming from bisorted portfolios created by employing Turnover

driven by price fluctuations as the first sorting dimension, and Turnover driven by Ambiguity as

the second sorting dimension.

Table 22. Bisorted Portfolios Monthly Returns Statistics

This tables summarize the returns of the HML bisorted portfolios of section 5. Each portfolio is
obtained by double sorting on a 5x2 grid.

PMKT PTurn−Turn Pamb−△P21 P△P21−amb

Panel A: Monthly Portfolio Returns (1990 - 2020)

c 0.009 0.006 0.008 0.008

(4.10) (4.10) (3.96) (1.44) (1.44) (1.39) (2.96) (2.96) (2.79) (3.90) (3.91) (3.53)

[0.00] [0.00] [0.00] [0.15] [0.15] [0.17] [0.00] [0.00] [0.01] [0.00] [0.00] [0.00]

N 372 372 372 372

R2
a 0 0 0 0

Panel B: Sharpe Ratios (1990 - 2020, yearly)

Excess Return 0.09 0.04 0.07 0.07

Std. Deviation 0.14 0.25 0.16 0.13

Sharpe Ratio 0.56 0.16 0.38 0.50
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Table 23. Bisorted Portfolios Monthly Returns

This tables summarize the annualized differential returns of the bisorted portfolios of Section-
6. Each portfolio is obtained by double sorting on a 5x2 grid. The portfolios dimensions are
Ambiguity - Price Change driven Turnover in Panel-A, and Price Change - Ambiguity driven
Turnover in panel-B. Dimensions are in decimal format, 0.09 means 9% pear year.

Panel A: Ambiguity and △P21

00 01 10 11 20 21 30 31 40 41

00 0.00 -0.03 -0.01 -0.04 0.00 -0.03 0.02 -0.01 0.06 0.03

01 0.03 0.00 0.03 -0.00 0.04 0.01 0.05 0.03 0.09 0.07

10 0.01 -0.03 0.00 -0.03 0.01 -0.02 0.03 -0.00 0.07 0.04

11 0.04 0.00 0.03 0.00 0.04 0.01 0.05 0.03 0.10 0.07

20 -0.00 -0.04 -0.01 -0.04 0.00 -0.03 0.01 -0.01 0.06 0.03

21 0.03 -0.01 0.02 -0.01 0.03 0.00 0.05 0.02 0.09 0.06

30 -0.02 -0.05 -0.03 -0.05 -0.01 -0.05 0.00 -0.03 0.04 0.02

31 0.01 -0.03 0.00 -0.03 0.01 -0.02 0.03 0.00 0.07 0.04

40 -0.06 -0.09 -0.07 -0.10 -0.06 -0.09 -0.04 -0.07 0.00 -0.03

41 -0.03 -0.07 -0.04 -0.07 -0.03 -0.06 -0.02 -0.04 0.03 0.00

Panel B: △P21 and Ambiguity

00 01 10 11 20 21 30 31 40 41

00 0.00 0.04 -0.02 0.01 -0.02 0.00 -0.05 0.00 -0.05 0.01

01 -0.04 0.00 -0.06 -0.03 -0.06 -0.04 -0.09 -0.04 -0.09 -0.03

10 0.02 0.06 0.00 0.03 -0.00 0.02 -0.03 0.02 -0.04 0.03

11 -0.01 0.03 -0.03 0.00 -0.03 -0.01 -0.06 -0.01 -0.07 -0.00

20 0.02 0.06 0.00 0.03 0.00 0.02 -0.03 0.02 -0.04 0.03

21 -0.00 0.04 -0.02 0.01 -0.02 0.00 -0.05 -0.00 -0.06 0.01

30 0.05 0.09 0.03 0.06 0.03 0.05 0.00 0.05 -0.01 0.06

31 -0.00 0.04 -0.02 0.01 -0.02 0.00 -0.05 0.00 -0.06 0.01

40 0.05 0.09 0.04 0.07 0.04 0.06 0.01 0.06 0.00 0.07

41 -0.01 0.03 -0.03 0.00 -0.03 -0.01 -0.06 -0.01 -0.07 0.00
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