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Finite Difference Techniques for One and Two Dimension

Option Valuation Problems

ABSTRACT

Finite difference methods represent an important numerical technique in the
valuation of options for which analytical solutions cannot be obtained.

In this paper we review the finite difference methods which have appeared in
the finance literature and we compare their advantages and disadvantages in terms
of stability, convergence and efficiency.

The motivation for this paper is to present a logical development from the sim-
plest one-dimensional method through to more complex one and two-dimensional
methods. We deal with the problems of stability and convergence as they arise
naturally within the logical development. We also attempt to show the theoret-
ical relationship between the various methods and their relationship to discrete

stochastic processes and iterative methods.



1 Notation and Transformations
We will use the following notation throughout the paper,
e U, W,u = option value
e S = stock price

e ¢ = annualised standard deviation of the stock returns

r = continuously compounded riskless rate of interest

t = real-time

e 7 = time to maturity

U will represent the theoretical option value, W will represent the value of
the option under some transformation and u will represent the finite difference
approximation to U.

The standard Black-Scholes partial differential equation (PDE) in real-time

ou oU 1 o%U

o = — ZZ Q227 7
5 rU rSaS 2.5'0 552 (1)

will be written in the standard partial differential short-hand

Ut =rU — TSUS = %SzdzUss (2)

where the subscripts mean the partial derivative with respect to that variable.

Equation (2) can be written in terms of the time to maturity

U, = %5202[]53 +rSUs —rU (3)



The Black-Scholes partial differential equation in this form can be simplified
by applying transforms to the option value and the stock price. These reduce the
number of terms and remove the stock price from the coefficients of the partial
differentials.

The first transform, introduced by Courtadon (1982), removes the rU term.
Let

W =¢"U (4)

Therefore the partial differentials of W are

W,=¢e"U,+Ue"r (5)
Ws = CTTUS (6)
Wss = CTTUSS (7)

Substituting these into equation (3) gives

1
W, = 55202Wss +rSWyg (8)

The second transform, introduced by Brennan and Schwartz (1978), removes
the stock price from the coeflicients, resulting in constant coefficients and so greater
stability when finite difference methods are employed.

Let

z =1In(S5) (9)

The partial differentials are



1

WS == Wx's,' (10)
—1 1 1
Substituting these into equation (8) gives
1 o L o
W, = o Wee + (r — P YW, (12)

Geske and Shastri (1985) noted that the Black-Scholes PDE can be reduced to

the following form

1

T ak
by using transformations introduced by Black and Scholes (1973) and Merton
(1973).

U; Uy (13)

We will define z, the natural logarithm of the stock price on the interval [0, zj]
subdivided into I intervals such that Ih = zj, th = z;, and we will define 7,
the time to maturity, on the interval [0, 7] subdivided into M intervals such that
Mk = 1p, mk = 1,,. We will also define a second space variable when we consider
two-dimensional problems on the interval [0, ] subdivided into J intervals such
that Jh = b, jh = y;. We can then approximate W(S,7) = W(e®,7) by u™ (or

u™ in the two-dimensional case). We will call the space spanned by these discrete

intervals the lattice.



2 Finite Difference Approximations to Deriva-

tives

We will now briefly review the theoretical basis for the finite difference approach.
If u(z) and its derivatives are single-valued, finite and continuous functions of

then by Taylors Theorem (Smith (1975)) we can expand u(z + h)

u(z + h) = u(z) + hu'(z) + %hzu”(x) + %hSu’"(x) + ... (14)
and u(z — h)
u(z — ) = u(@) - hv'(a) + 5h"(z) - %hSU"'(m) +.. (15)

Adding equations (14) and (15) we obtain

u(z + h) + u(z — k) = 2u(z) + A*u"(z) + O(h*) (16)

Where O(h*) denotes terms containing fourth and higher powers of k so that
the size of these terms will be of order h*. Rearranging this we obtain an expression

for u”(z) in terms of the value of u at z — h, z and z + h

u(z + h) — 2u(z) + u(z — h)
B2

Subtracting equations (14) and (15) and rearranging we obtain

ull(a:) —

+ O(R?) (17)

: u(z+h) —u(z —h) 2
wi{z) = 5h + O(h*) (18)

These are called the central difference approximations because the range over

which we are approximating u(z) is centred on z.



From equation (14) neglecting second and higher powers of &4 we obtain the

forward difference approximation with O(h) error

4 =
u'(z) = A (19)
From (15) neglecting second and higher powers of h we obtain the backward

difference approximation with O(h) error

u(z) —u(z — h)

u'(z) = >

(20)

3 One-Dimensional Methods

3.1 The Explicit Finite Difference Approximation

The explicit finite difference approximation replaces the space differentials by their
central difference approximations but the time differential by the forward difference
approximation (Smith (1975)). If we perform this operation on equation (12) we

obtain the following finite difference equation

(ul*! — o) _ lo_2(u:'7-1i-1 —2ul" +ul)) (r — la2)(uﬂ1 —uly)
k 2 h?

o (21)

Equation (21) can be re-written as follows

utt = pTul, + pu” + ptull, (22)

p~ = k(o?/2h2 — (r — %az)/zh) (23)



p=1—ko?/h? (24)

b = k(02K + (r = 50%)/2h) (25)

We therefore have an expression for the value of u; at the next time step

explicitly in terms of the values of u;_;, u; and u;4; at the current time step.

Figure 1 shows this diagramatically. The coefficients p~, p and p* being constant
across the lattice.

In order to obtain the value of the option at some time to maturity 7 we proceed

backwards in time from maturity, at which we know the value of the option for all

S, (ud, ..., ud). Firstly we compute (u**,...,u7H!) using equation (22), note that

m+41
)

we cannot compute (ug't!, uT"*!) since we require values either side at time m for

equation (22). We must compute (uJ*!, uT*!) using the boundary conditions, for

example for a call

Us=1,8 > o0 (26)
Us=0,5—-0 (27)

Which, in terms of our finite difference approximation, are

uPt! — uTH = (exp(z1) — exp(z1-1)) exp(r7) (28)

Pt =gl = (29)
We can then repeat this process until we reach the time to maturity we require.

The accuracy of this method, determined by the accuracy of the finite difference
approximations, is O(h? + k).
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Figure 1: The Explicit Finite Difference Method
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It is stable and convergent only for a mesh ratio of R = k/h? < ;. We will

return to this point in more detail in section 5.

3.2 The Implicit Finite Difference Approximation

This method was introduced to the literature by Schwartz (1975,1977). The im-
plicit finite difference approximation replaces the space differentials by their central
difference approximations at the next time step rather than the current time step
as in the explicit method. The time differential is again replaced by the forward
difference approximation. If we perform this operation on equation (12) we obtain

the following finite difference equation

Coakl W OIC L' I YN 72 S
This can be re-written in the following form

prul{ +pult + ptulilt = ul (31)

p~ = —k(o?/2h? — (r — %az /2h)) (32)

p=1+ ko®/h? (33)

pt = —k(c2/2R2 + (r — %a2 /2h)) (34)

Equation (31) is an implicit expression for the values of u at time step m+1 in
terms of the values at time step m. Figure 2 shows this diagramatically. In order to

obtain the values of u at m+1 we must solve a set of I +1 simultaneous equations,

10



I — 1 of the form of equation (31) together with 2 boundary conditions. We will
see in section 3.3 that these simultaneous equations form a tridiagonal matrix

equation which can be solved without full inversion of the coefficients matrix.

The accuracy of this method is the same as for the explicit method, O(h%+k).
However the implicit method is unconditionally stable and convergent, therefore
we do not have to worry about the mesh ratio, we can simply consider the trade-off

between the step sizes and the accuracy we require.

3.3 Solving a Tridiagonal Matrix Equation

A set of simultaneous equations in the form of equation (31) can be written in the

following simplified form

aiti—1 + biu; + ciuiy1 = d; (35)

Qip1 i + big1Uiyy + Ciy1Uipe = digq (36)

The important property to note is that two consecutive equations have two
unknown u’s in common. If we assume ug is known by a boundary condition then

equation (35) at ¢ = 1 becomes

b,-u,- + CiUjy1 = d: (37)

Therefore (36) becomes

b£+1ui+1 + Cit1Uip2 = d:'+1 (38)

11
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Figure 2: The Implicit Finite Difference Method
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Where

ai41C;

bipr = biys — b (39)
and
a; d:

This process is repeated for ¢ from 1 up to I — 1 so we obtain a set of simulta-
neous equations of the form of equation (38) with two unknowns.

Now if uy is known by a boundary condition then we can substitute into (38)
at ¢t +1 =TI —1 for u; and rearrange to obtain u;_;.

This process is repeated for ¢ from I — 1 down to 1 and we have solved for the

complete set of unknowns (uo, ..., ur).

3.4 The Crank-Nicholson Finite Difference Approximation

This method was developed by Crank and Nicholson (1947) and introduced to the
finance literature by Courtadon (1982). Consider equation (12) which we repeat

here

W, = %0’2sz +(r— %JZ)W,, (41)

The Crank-Nicholson method replaces the space differentials by the mean of

their central finite differences at time step m and m + 1

m4i 1
(uae)7F = Sl — 207+ o)+ (g — 2P )] (42)
m+% _ 1 m+1 m+1 m m
(ua:)i = E[(ui+1 — U ) + (ui+1 —ul’,)] (43)

13



The time differential has the same form as for the explicit and implicit methods

but is now a central difference approximation

() = 2 — o] (44)

All the finite differences are therefore centred at the same time point which
leads to improved accuracy over the previous methods. Substituting these finite

differences into equation (41) we obtain the following finite difference equation
P um+1 +pum+1 +p+u:7-1,*_-{1-1 = p (45)

o (r—1i0?)

p = k(5 - To27)) (46)

p=k(-2) 1 (a7)

ot = k(T + U237, (48)
ko? k(r — 3o

2
p= -—u:n _ W(uﬂl = 2’(1::"' + 'anil) T)(uz+1 - uz—l) (49)

Equation (45) is again an implicit expression for the values of u at m + 1 and
therefore requires the solution of a tridiagonal matrix equation. Figure 3 shows
this diagramatically.

The accuracy of this method is O(h% + (k/2)?) which has improved accuracy
with respect to the time step and the method is also unconditionally stable and

convergent.

14
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Figure 3: The Crank-Nicholson Finite Difference Method

t 4
m+1 m+1 m—+1
Ui U; Uit
g & 3
m m m
Ui1 U; Uit1
g A7) ()
k
#’
1=10 1=1 1=2 1=23 1 =4 1=25

15

unknown
values

known
values



The Crank-Nicholson Approximation can be generalised to the Weighted Av-

erage Approximation which is unconditionally stable and convergent for $ <6 <1

m 1 m m m m m m
(uaa)f T = ﬁ;[e(uiﬂ'l —2uft )+ (1 0)(uits —2ui" +uly)]  (50)

4 Iterative Point Methods for Implicit Finite Dif-

ference Approximations

These methods are typically used where the number of unknowns is large but the
relationships between them involve only a few of the unknowns.

To illustrate their use we will consider a simple example

Up = Ugg (51)

The Crank-Nicholson approximation to this is as follows

(“?H-l - u;r_n+1) 1 m+1 m+1 m+1 m m m
% = o5 [((uifd" = 2ul™ + uT) + (ulfy — 2uf +uly) (52)

Equation (52) can be rewritten by grouping the known values at time m into

a constant b; and dropping time superscripts

Uy = ';‘R(ui—l — 2u; + uiy1) + b; (53)

b = P + S R(ully — 20" +uly) (54)

16



We can consider equation (53) to be an iterative relationship for computing

the value of u;. Denoting the successive approximations to u; as uf ), u(l) e, WE
have
wm) = R(u(")1 2ul™ 4 uf’_,‘_)l) +b; (55)

This converges very slowly however, a better iterative procedure is

n 1 n n n
uf™) = SR, - 2™ 4 ul) + 5, (56)
or
i) R 0 bi
W S e T YR (57

Equation (57) which computes the (n+1)th iterate in terms of the nth iterates
is called a Jacobi iteration. Convergence can usually be improved by using new

values as they are calculated (Gauss- Seidel iteration)

(nt1) _ B (n+1) o) b

Gauss-Seidel iteration typically doubles the rate of convergence of the iteration

(58)

process compared with Jacobi iteration. The rate of convergence can be improved
further by using successive over- relaxation (see Smith (1975) for a good discussion

of these techniques).

5 Stability and Convergence

We will now examine in more detail the analysis of the stability and convergence

of finite difference methods.

17



Let U represent the exact solution of the partial differential equation and let u
represent the exact solution of the finite difference equation. Then u — U is called
the discretisation error and is the error introduced by representing the partial
differentials by finite differences. Typically this can be reduced by taking higher
order terms in the finite difference approximations or by usiﬁg smaller space and /or
time steps.

If we now let N represent the actual computed solution then N — u is called
the round-off error and is the error introduced in the computational process by
representing real numbers to a finite precision.

We say that the finite difference approximation is convergent if the discretisa-
tion error tends to zero as space and time steps tend to zero. The finite difference
approximation is stable if the round-off errors are small and remain bounded for
all time.

Convergence can be analysed by substitution of u]* = U™ + e into the finite
difference equation, expanding the U}, about U™ using Taylor’s Theorem. Typ-
ically the terms in U tend to the PDE as the limit is taken leaving a difference

equation for the errors.

5.1 Stability under round-off errors

To illustrate the analysis of stability we will consider a simple example. Consider
an explicit finite difference approximation to the following simple partial differen-

tial equation

Up = Ugy (59)

The explicit finite difference equation is

18



(! — ) (uft; — 207 + uly)

2 % (60)
Which can be re-written in terms of the mesh ratio R
u*! = Ru”; + (1 — 2R)ul + Rul%, (61)
In matrix form, writing the time superscripts as subscripts, we have
Um+1 = Aum (62)
Simple matrix algebra gives
Uy = Aum_1 = A(.A’u.m_g) = AmUQ (63)
Now let
u; = Up + €9 (64)
From equation (63) we have
em = Upm — Uy, = A™(up — ug) = A™eg (65)

Now Av, = A\,v,, where v, are the eigenvectors and A, are the eigenvalues of

We can write the error vectors as linear combinations of the eigenvectors

I-1

s=1

Where I is the number of space intervals.

Therefore, substituting into equation (65), we obtain

19



em = ATeo = A™ Y 05 = Y, s Amu, (67)

Therefore the method will be stable if |max(A;)| < 1 or the modulus of the
maximum eigenvalue is less than or equal to unity.

Now it can be shown that

A = 1+ R[4 sinZ(%)] (68)

Which leads to the standard result

(69)

N —

6 Finite Difference Schemes and Discrete Stochas-

tic Processes

It has been shown by Brennan and Schwartz (1978) that finite difference schemes
are equivalent to approximating the movements of the stock price by a discrete
stochastic process.

Consider the logarithmically transformed Black-Scholes equation

%0’2sz +(r — %az)Ux +U;—rU =0 (70)

From which we obtain the explicit finite difference approximation, evolving

backwards in real-time

u(1+rk) = p~ultt + pult 4+ ptuit? (71)

20



Pm = kg oh (72)
ko?
p=1- NT3 (73)
o2 (r—1o?)
Pt=kgmt+——) (74)

The value of the option at time m may be regarded as its expected value at
time m + 1 discounted at the riskless rate, .
The expected value can be considered to be obtained by assuming the logarithm

of the stock price follows the discrete stochastic process

pt +h
p- —h

With expectation and drift given by

B = Bldz] = p(+h) +p7(=h) = (r — 507k (76)
Varlds] = p*(h — E)* + p(—E)* + p(~h — E)’ (77)
Var[dz] = ko? — (r — %az)2k2 (78)

In the diffusion limit of ¥ — 0 we have
1,
de = (r — 5@ )dt + adz (79)

21



Where dz is a Wiener process, E[dz] = 0, E[dz?] = dt.
Implying the diffusion limit of dS is
ds

¥ rdt + odz (80)

Therefore the explicit finite difference approximation is equivalent to approxi-
mating the diffusion process (80) by the discrete stochastic process (75).

Note that the variance of the discrete stochastic process is a downward biased
estimate of the diffusion process the upper bound of the bias being o*.

Brennan and Schwartz (1978) go on to show that the implicit finite difference
approximation is equivalent to a generalised discrete stochastic process in which
the stock price may jump to a infinity of possible future values and the variance
of which is upward biased.

Courtadon (1982) shows that the Crank-Nicholson approximation is equivalent
to a generalised discrete stochastic process but with an unbiased variance the
bias in the variances is related to the miscentering of the explicit and implicit
methods. Recently Hull and White (1989) have shown that this relationship can
be used to adjust the explicit finite difference coefficients such that the method is
unconditionally stable.

7 Two-Dimensional Methods

7.1 The Alternating Direction Implicit Method

For two-dimensional problems the explicit approach is impractical since the stabil-
ity condition requires the step sizes to be very small. A Crank-Nicholson approach,

although unconditionally stable and convergent, yields a large set of simultane-

22



ous equations which cannot be solved by a simple recursive technique as in the
one-dimensional case.

The alternating direction implicit (ADI) method, first developed by Peaceman
and Rachford (1955), overcomes these problems. To illustrate its advantage over

the Crank-Nicholson approach consider the simple partial differential equation

U = Ugg + Uyy (81)

Where 0 <z2<a,0<y<b, ITh=aand Jh=b.

A Crank-Nicholson approximation gives

k 2

This can be visualised more easily with the computational molecule at m + 1

[(uzz + uyy):’,zj + (Uez + uyy)zljﬂ] (82)

Ui-1,j41 Ui j+1 Uit1,5+1
ui_l,j uirj ui+11.7.
Ui_1,5-1 Ui ;-1 Uit1,5—-1

Where the solid lines indicate cells on which the above method depends, this
requires the solution of (I —1)(J —1) simultaneous equations given that the bound-

ary values are known.

23



The ADI method replaces each of the second order derivatives by their implicit

approximations in two stages

m+3 m+3 m+3 m+3 -
(55 * = us) (uz+1,2g 2u;; * U n (vl — 2u]; +u ul_q) 83
k/2 h? h2 (83)
Which gives a tridiagonal matrix equation for um+%, then
m+1 177.+l m+i
(ui —uiym + 3) (uz+12] Ut + ui—1,§) (uffy — 2uf + ulihy 84
k/2 h? h2 (84)

Which gives a tridiagonal matrix equation for u™*!. Figures 4 and 5 illustrate

this two-stage process.

Each step alone is unstable but together they are unconditionally stable.

7.2 Hopscotch

This method was introduced by Gourlay (1970) and it has similarities with the
Crank-Nicholson and ADI methods in that it relies on mixing explicit and implicit
techniques together with alternating the rows of the lattice to which the sub-stages
are applied. Two variations exist, the odd-even and line methods. We will consider
line-hopscotch as it is the simpler of the two methods.

Consider the partial differential equation

Uy = QUgg + 2DUgy + CUyy + du, + eu, (85)
Explicitly we have

(um+1 ur za(uﬁ“ 2ul + ul 13)+
k h2

24



Figure 4: Alternating Direction Implicit Method: Step one
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Figure 5: Alternating Direction Implicit Method: Step two
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m m m m
2b(ui+1,j+1 — U141 — Uiy 1 T ui—l,j—l) n

86
4h? (86)
m m
c(ui,j+1 2ul +ul 1) n d(uz+1,.7 ui"il,j) Le Uij+1 — u:’:}'—l)
h2 2h 2h
Implicitly we have
m+1 m+1 m+1 m+1
(u 4 Wi ,J) (uz+1 g 2u o+ U -1,5 +
k h2
m+1 m+1 m+1 m+1
2b( 1,541 T Yis1 41 — Uig1 o1 + Uiy + (87)
4h2
m+1 m+1 m+1 m+1 +1 m+1 +1
(uz RS 2“ + U, (U’1+1,_7 - :nl,] (u i+l umg 1

h2 2h 2h

The computational molecule at m + 1 is

=S A TrEm e e e S Ton e (e mm e l
| | | |
| I | |
I Wi-1,5+1 1 Uig+1l 1 Uit 541 |
[ 1 | |
| | [ |
ui_]-’j u’y] ui+11j
| | | |
| | | |
1 Uj—1,5-1 | Ui -1 I Uid1,5-1 |
| I | |
| | | |
U U L m — am A 4

Now if we apply the explicit method for m + j even the dashed cells will be
known. We may then apply the implicit method at m + j odd giving a tridiagonal
matrix equation to solve. At the next time step the previously implicitly solved
rows are solved explicitly and vice-versa. We therefore have only half the number

of tridiagonal matrix equations to solve compared with the ADI method.

27



Line-hopscotch is unconditionally stable if there are no first order terms (i.e
d = e = 0 ). Empirical investigations have shown that if first order terms are
present quite severe instabilities can occur. It is therefore necessary to transform
a general PDE with first order terms (for example one obtained for an option
under stochastic volatility) to remove the first order terms. This will typically
considerably alter the variables from their fundamental nature and complicate the
boundary conditions. Consequently making it difficult to maintain an intuitive
understanding of the behaviour of the solution and its results. We therefore be-
lieve that the Hopscotch technique is not in general suitable for contingent claim
valuation problems. However, more established finite difference techniques, such
as the ADI method, do not suffer this problem.

Empirical investigations also show that line-hopscotch is,
(1) Sensitive to a non-uniform space grid.

(2) Sensitive to variable coefficients. Note that variable coefficients lead to vari-
able rates of convergence across the space grid for all finite difference tech-

niques.

(3) Sensitive to poorly constructed derivative boundary conditions.

8 Conclusions

We have presented a development of finite difference techniques for one and two-
dimensional problems dealing with the critical issues of stability and convergence
as they arise. We described transformations of the PDE which simplify it and facil-
itate the application of finite difference techniques. The one-dimensional methods

of explicit, implicit and Crank-Nicholson were then presented and their stability
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and convergence properties noted. Iterative methods which allow successive re-
finement of the solution were then described. We then gave an introduction to the
analysis of stability and convergence. The relationship of finite difference schemes
to discrete stochastic processes was described. The two-dimensional techniques of
alternating direction implicit and hopscotch were described and we presented some
theoretical and empirical analysis of their stability and convergence properties.

One remaining question is that of which is the most efficient method. This is a
difficult question as it depends on the trade-off between accuracy and speed which
is required. The accuracy criterion is complicated because the different methods
will produce the same accuracy of values for different lattice resolutions. Geske
and Shastri (1985) make a detailed empirical study of the comparative efficiency
of the finite difference and binomial methods.

We conclude by noting that care must be exercised in applying finite difference
techniques to option valuation problems especially in the two-dimensional case. It

may often prove fruitful to investigate other solution techniques.
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