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ENERGY HEDGING

AVERAGE-RATE OPTIONS

“It's complicated to make settlement of
swaps coincide with futures. Swaps are
settled on a monthly, quarterly or six-
monthly average while futures are settled
on the basis of a daily price.”

Ultimately the project will depend on
the size and liquidity of the oil swaps
market, neither of which have yet been
quantified. The locals who contribute
liquidity in the near contracts would be
unlikely to trade long-term crude futures
at anything less than 30 cent spreads
and would be subject to speculative posi-
tion limits anyway, notes Marinchek.
“Would you want to pay 30 basis points
every time you did 1,000 lots?” he asks.

Marinchek admits to cautious optimism
for a “wonderful idea” and sees potential
arbitrage opportunities. “If 1 entered a
three-year swap I could sell a two-year
strip to Nymex and play with one year
in the over-the-counter market,” he notes.

Hampton, too, insists: “It will work. It
is a way of adding a counterparty to
your range. And it could be especially
effective if, by having a visible price out
there, it brings in new people.” But he
warns that the swaps market does not
depend on the futures. “The swaps market
already exists and already works. Long
futures are just another way of laying
off the risk.”

Meanwhile, the International Petroleum
Exchange (IPE) in London, whose crude
futures go out only six months at the
moment, is not commenting directly on
the idea. Chief executive Peter Wildblood
will only invoke the IPE’s “good record
of responding to change in the industry”.
So now it's up to Nymex to bring about
the change.m

FLEXIBLE CONVOLUTION

Continuing the debate on the valuation of average-rate options,

convolution method

The convolution method is an efficient
and flexible means of valuing average-
rate (Asian) options. It allows us to answer
the questions of how often the underlying
should be read in taking the average
and how the price is affected if underlying
returns are not normal.

We will discuss two types of Asian
option — floating-strike and fixed strike
— but concentrate on the latter. As the
name implies, the floating-strike option
pays the difference - if positive — between
the average value of the underlying on
which it is written and the spot value
of the underlying when it is exercised.
The fixed-strike option pays the difference
between the average and a previously
agreed strike price. The floating-strike is
easier to deal with, but less widely used.
We will take all our Asian options to be
European-style, and the average to be
over the entire life of the option.

Our principal references will be
Ingersoll’, Kemna and Vorst’ and the
RISK articles by Krzyzak® and Ruttiens®.
Of course, the elixir for the Asian option
would be an explicit, exact formula for
its value that is also flexible in the sense
described above. None of these articles
quite gives such a formula: Ingersoll
claims that one can be constructed, but
tantalises his reader by declining to do
so, on the grounds that his option does
not (yet!) exist in the market. (He is
dealing with floating-strike options.) On
the other hand, Kemna and Vorst (and
Ruttiens) give an approximate formula,
and claim that an exact one seems impossi-
ble in principle. (They are dealing with
fixed-strike options.)

Note that Ingersoll and Kemna/Vorst
could both be correct, because the
floating-strike option is technically easier.
We do not know of anyone who claims
to have an exact formula for the Asian
option. '
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A $/£ fixed-strike option

To fix our ideas, we will concentrate on
the following situation: I am a corporate
treasurer, and expect to earn $k over the
coming year from my US activities. I

-expect these dollars to come in a con-

tinuous uniform stream, and my policy

Of course, the elixir for the Asian
option would be an explicit, exact
formula for its value that is also
flexible

will be to change them to sterling at
regular intervals, say on n occasions
during the year. I am budgeting for a
£/$ exchange rate of Y but am worried
that the actual rate will be less than this.

My solution is to buy a fixed-strike
option, which will pay the difference (if
positive):

kY—[(k/n)xl+(“/r,)X2+....+("/,,)Xn =KY—A)

where X, .., X, are the spot rates at which
I change my dollars, and A is the average
of these. To value this option it is also
necessary to know the UK and US interest
rates (which we will call r and s), the
current spot £/$ exchange rate (which
we will call X;), and the £/$ volatility
(which we will call o).

Valuation by the convolution method

Our starting point is the “expectation
formula” for the value of the option. An
expectation formula can be written down
for any European option, but may not
be easily tractable. The Monte Carlo and
path  enumeration (exploded tree)
methods of valuing Asian options are
also based on the expectation formula.
To obtain the formula we first make a
risk-neutral adjustment to the drift of
the underlying process; the option value
is the expected pay-off under this adjust-
ment, discounted back to the present.
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s AVERAGE-RATE OPTIONS

For our £/$ option the risk-neutral
adjustment is simply to make the drift
of the £/$ exchange rate equal to the
difference between interest rates, r — s.
(Note that we have not said, because it
does not matter, what the drift actually
is! Also note that the option pays off in
sterling and the final discounting back
to the present will be at the sterling
interest rate r.)

The key to our method is formula (1),
which gives the probability distribution
of the average:

Put:

Y;=logX, Z\*'=Y, =Y, for i=0,1,. ,

so that:
Xi=exp(Yo+Zlot v +Z0_y).
Note that the increments Z‘f’lare all
independent and normal, with mean
(r—s) — Y2 6¥("/,), where T is the time to
maturity of the option.
Then the formula for the average A is:

A=Yy + e + Xg

=1/ lexp (Yo + Zo) + exp (Yo + Z'o + Z2)) + ..

i exp (Yo + Zlo <+ Zzl + Z"n_l)
expZlo(l +expZ? (1 +exp 23,

(1)

(This key factorisation was discovered by
Stewart Hodges.)

Our actual method is to obtain the
density of the distribution of the average
from the densities of its ingredients, as
given by formula (1), these in%redients
being the normal distribution Z'g,..2"—1.
This is done in the inductive procedure:

=1 expYo

l+.(1+expZf-y)..)

An—l = Znn—i

Ao =Ziy+
log(l + expA)fori=n—1,.,1, )
Ao = (Yo — logn) + Ay, 3)

A=expAg.

RisK
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~ How convolution is used
to calculate the density
ofthe average

The convolution process

log (1+exp Z3)

Convolution

log lexp Z3(1+exp Z3)1 = A,

log [1+exp Zi(1+exp Z3))

Convolution

log [exp Zo(1+exp Z3 ;
(1+exp Z3))1=A,

In the inductive step (2), the density
fiog(1 + exp ARy is Obtained from the density f,
by the easily verified transformation:

fulog (expx) —1) @)

el
flog (14exp X) X= (eX’T-X;(p—_Xl

T

The key to step (2) is to obtain the
density for the sum of this and the normal
density Z_,. This is obtained as a convolu-
tion using the fast Fourier transform.

(Mathematically, the density for the sum
of random variable is the convolution of
the individual densities. Also the Fourier
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transform of a convolution of densities is
the product of the Fourier transforms of
the individual densities. The fast Fourier
transform is a technique to do Fourier
transforms computationally in an efficient
way.”).

Having obtained the density of the
average, we can work out the expected
pay-off simply by integrating the pay-off
function against the density.

An intuitive way to understand the idea
of valuation by convolution is as follows.
The underlying process is built up from
normal increments as time evolves, and
the transformation (4) plus convolution, as
represented by equation (2), specifies how
each new normal increment is mixed in
with the previous ones, to give the average
of the underlying. In fact, transformation
(4) can be understood as shifting the
distribution to the right, so that
X > log ((exp x) + 1), and the convolution of
any two densities represents “smudging”
them together. The diagram represents the
calculation of the density of the average, if it
is done as above, taking n=3.

Numerical results

We used the convolution method to value
the Asian foreign exchange option discus-
sed above, which is a put on the dollar. The
value is given in the graphs, in terms of the
number of iterations used by the method.
The parameters for the option valuation
were taken as:

Volatility o = 10%

UK interest rate r = 13%

US interest rate s = 7%

Current £/8 rate = 0.625

Strike rate = 0.625

Time to maturity = 1 year

From the graphs we see that monthly
averaging gives a value for the option
within about 5% of the value with weekly
averaging, and this last averaging is almost
equivalent to continuous averaging. (Note
that for any given number of iterations, the
convolution should give the correct option
value, with no error except round-off

Convergence of Asian put option

Note:The approximate formula of Kemna and Vorst,
quoted by Ruttiens, gives a value of 0.0063
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Convergence of Asian call option

Note:The approximate formula of Kemna and Vorst,
quoted by Ruttiens, gives a value of 0.0225
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AVERAGE-RATE OPTIONS

THE EXPLODED BINOMIAL
TREE METHOD

This method involves approximating the
underlying process by a binomial random walk —
abranching process —which can step up or
down, as time evolves, by discrete increments.

The method is essentially to average the
pay-off of the option over every possible path
that this random walk could take. This is easy to
programme and gives a rough-and-ready
estimation of the option value.

However, it is extremely inefficient to
implement, and the answer can only be
approximate; for a realistic answer one would
have to represent the underlying process by at
least 20 steps of the random walk, but to take
many more steps would be computationally
intractable. (Twenty steps corresponds to 22° =

- 1 million branches in the tree. Our valuation for
the foreign exchange option in this article with 20
stepsis 0.0479 for the call and 0.00657 for the
put.)

Also, it is not clear that 20 steps is appropriate
for 20 averaging points; the exploded tree
method is really too insensitive to distinguish
between Asian options with different numbers of
averaging points.m

error,
points.)

The parameters for the convolution
method itself were taken as follows. We
represented the density function by their
values at 4,096 (=2'?) equally spaced points
in the interval [—7,7]. Throughout, we
worked with the logarithmic transforma-
tion of the underlying process.

The fast Fourier transform requires that
the function to be transformed is repre-
sented in terms of its values at an equally
spaced grid of points in an interval, the
number of points in this grid being a power
of 2. The technique of the fast Fourier
transform is essentially to reverse the
digits in the binary expression for the grid
point numbers; this reversed expression
represents the decomposition of the func-
tion in terms of cytles. To convolve we take
the fast Fourier transform of the two
functions, multiply the answer, and then
take the inverse transform of this product.
This procedure actually calculates the (dis-
crete) convolution without error except for

for that number of averaging

the computer’s round-off error.

The fast Fourier transform is very effi-
cient; if it uses 2" grid points then the
number of operations involved is of the
order 2"N. This leads to our convolution
method having a speed similar to the
binomial method for ordinary options, if
the number of steps is the same.

The other transformation in our con-
volution method is that given by formula
(4). For this we simply calculate the
left-hand side of (4), taking x to be each of
the positive elements of the grid. This
involves the value of the function on the
right-hand side (for which we already
know the values at the grid points) at the
point log ((exp x)—), which will not be a
grid-point; for this we interpolate linearly
between the values at the neighbouring
grid points. Note that for negative x, the
left-hand side of (4) must be zero.

In each of the inductive steps (2), errors
can arise from the fact that the densities are
represented by their values at a discrete
grid of points, and in the transformation
(4). One expects that these errors are
bounded uniformly by the maximum value
of the derivative of the “elementary”
normal density function for Z"*! multiplied
by the distance between the grid points.
Also, when we finally integrate the pay-off
function against the density (using the
trapezium rule), more errors may arise.

Thus, for a fixed grid, one expects these

.errors to accumulate as the number of

iterations is increased. This is for two
reasons: that the transformations of (2) are
done more often, and that the elementary
density becomes more spiked. However,
this source of error does not seem to be
significant up to 40 iterations, and can
always be dealt with by taking a finer grid.

The error in the final integration can also
be dealt with by taking a fine grid. For calls,
there is another problem with this integra-
tion. This is that the pay-off function might
be colossal in the interval in which we
define our densities. As we said above, we
worked within the interval [—7,7] when
we valued the FX option; this was neces-
sary because the calculated density creeps
along to the right as the iterations proceed,
only to be brought back by the transforma-
tion (3). But the value of the call pay-off will

The convolution method seems
very flexible. It would be
adaptable to dealing with
leptokurtic (fat-tailed) returns; or
to evaluating expectations for
which a Monte Carlo method was
previously necessary
TR ]

be colossal when the underlying is e’.
(Note that we work in logarithmic trans-
formation throughout.) The remedy for
this is simply to cut off the final value in the
integral when the density becomes smaller
than, say, 1/1,000.

Conclusion

The basic ingredient of this article is the
formula for the average value of a geomet-
ric Brownian motion (GBM), the average
being taken over the value of the GBM at a
discrete set of times. The value of the
option involves the expectation of the
pay-off function with respect to the dis-
tribution of this average. The key is that
this formula can be decomposed into
factors, each involving a normal random
variable, which gives the evolution of the
GBM between consecutive time points.

By judiciously taking logarithms, the
average can be expressed in terms of sums
of these normal random variables; and the
trick of the article is to calculate these sums
in terms of convolutions (via the fast
Fourier transform) of the associated nor-
mal density functions.

The convolution method seems very
efficient and flexible. For instance, it would
easily be adaptable to dealing with lepto-
kurtic (fat-tailed) returns; or to evaluating
expectations for which a Monte Carlo
method was previously necessary.m
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