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Ex-Post Evaluation of Dynamic Portfolio Strategies

(or How to Tell Whether a Million Dollars Has Been Thrown Away)

1. Introduction

It has been demonstrated, in a paper by Dybvig [1988a] with a related title to this, that a
number of portfolio (asset mix) strategies followed by practitioners are significantly
inefficient. The inefficiencies arise not because of imperfect diversification across stocks, but
because of poor diversification over time. Dybvig showed how the costs of following such
strategies may be calculated, provided we know the parameters of the market return
generating process and full details of the strategies concerned. The costs of following policies
such as stop-loss, lock-in, random market timing or repeated portfolio insurance were shown
to be substantial. However, in terms of applying this approach to practical problems of
measuring the performance of investment portfolios, there remains the difficulty that usually
we can only observe a single time series of what the fund manager actually did, and we are
unlikely to know what policy would have been pursued along other possible unrealised paths
of the probability tree. The purpose of this paper is to develop a powerful and robust
technique which will enable Dybvig’s payoff distribution pricing approach to be applied for

performance measurement purposes with realistically limited amounts of observational data.

The advent of active approaches to asset allocation, of Futures and Options Funds, and of
institutions carrying substantial portfolios of derivative instruments, has posed important
unsolved problems for those involved with performance measurement. The LIFFE/LTOM

[1990] Consultative Document reflects these concerns. The main difficulties are, first, to



obtain accurate and relevant information about both value and risk exposure and, second, to
find meaningful ways to interpret what has been achieved, taking due account of the risks that
have been run. This paper is concerned with some aspects of the latter problem. It is
motivated specifically by the question: "What is an appropriate yardstick to use when
evaluating the performance of a portfolio in which the asset mix is actively varied through
time?" We should not under-estimate either the academic or the practical difficulties of this
question. The literature on performance measurement is both extensive and sophisticated, yet
fails to provide any real guidance on this issue'. It should therefore be no surprise that the
LIFFE/LTOM document states "We would welcome suggestions on practical ways in which
risk adjusted performance figures for futures and options might be constructed". In contrast,
the more conservative National Association of Pension Funds [1990] "Report Into Investment
Performance Measurement” is altogether more suspicious of even the principle of risk
adjustment but "does not close the door upon the search for generally accepted ’risk’

measurements in the future."

The early works on risk adjusted performance measures (such as Treynor [1965], Sharpe
[1966], and Jensen [1969]) focus on risk adjustment in an essentially static context in which
the Capital Asset Pricing Model (CAPM) is assumed to hold. There is a now a considerable
literature on the problems associated with such CAPM based measures including Dybvig and
Ross [1985a, 1985b], and Grinblatt and Titman [1989]. Fama’s [1972] approach at
decomposing performance into components attributable to different sources provides further
valuable insights, and includes a way of looking at market timing. Market timing and its
evaluation has been specifically addressed in a number of papers including Sharpe [1975],
Merton [1981], Hendrickson and Merton [1981], and more recently Jagannathan and
Korajczyk [1986]. Maﬁy of the advances here are of an econometric nature. A number of
other papers, such as Bookstaber and Clarke [1984, 1985], have discussed the effects of
options in complicating the measurement of portfolio performance. Although this literature
recognises the distributional problems arising from an actively managed asset mix, to date no
previous work on performance measurement seems to have taken advantage of the

opportunities provided by Dybvig’s [1988a, 1988b] work on payoff distribution pricing.

The key result that we exploit in this paper is the insight that a portfolio management strategy
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is efficient (ie. not dominated by other strategies) if and only if it leads to wealth at the
investment horizon being monotonic non-increasing in the state-price density. In a Black-
Scholes type of world (in which there is a positive risk premium) this means that final wealth
must be a monotonic non-decreasing function of the value of the risky asset at the horizon
date. An appropriate way to measure the efficiency of a portfolio’s observed sample path is
therefore to estimate how closely the observed sequence of decisions may be approximated
by a strategy which generates wealth that is suitably monotonic. A suitable basis from which
to approximate the space of efficient portfolio strategies is formed by the strategies which
replicate option spreads. We can estimate the approximating efficient strategy as a non-
negative linear combination of the basis strategies. The estimates we need can be obtained
in a straightforward way using least squares subject to non-negativity constraints. Efficient
policies have a characteristic of being in some sense rather smooth, and this gives our
estimates considerable robustness. The approximating strategy provides an important
benchmark for performance comparisons, and does so even under much weaker conditions
than those initially assumed. The extent to which the actual strategy departs from the
approximating strategy enables us to obtain a measure of the opportunity cost of the strategy
followed. The absolute magnitude of this cost depends on the level of the market risk
premium. The technique is illustrated by means of a number of simulated examples, and

issues concerning its application and extension are discussed.

The structure of the remainder of the paper is as follows. Section 2 provides the notation and
formal results that are used from Dybvig’s theory of payoff distribution pricing. Section 3
develops the methodology already outlined for measuring the characteristics and performance ‘
of dynamically managed portfolios. For this section and section 4 we assume a world in
which Black-Scholes option pricing is valid. Section 4 gives the results of some simulations
of measuring the efficiency of single sampled time series drawn from a variety of strategies.
These include both efficient and inefficient strategies, including some of those previously
described by Dybvig [1988a]. These simulations indicate that the technique has considerable
power and they confirm the important role of the investment horizon of the fund. In section
5, we discuss the validity of the technique under more general assumptions. The concluding
section, summarizes the results which have been obtained, and suggests areas in which the

approach may be extended further.



2. The Payoff Distribution Pricing Model

Apparently little known but important work by Cox and Leland [1982] showed that when the
riskless rate is constant and the risky asset follows either Geometric Brownian Motion or a
geometric binomial process, portfolio strategies which fail to be path independent are
stochastically dominated by other strategies and are thus unambiguously inefficient. In other
words, within this framework, if the outcome from a particular strategy depends not just on
where the value of the risky asset ends up, but also on what path it took to get there, then the
strategy is inefficient. This immediately implies that a number of commonly used strategies
such as lock-in strategies, stop loss strategies, and strategies involving rolling over portfolio
insurance are inefficient, but does not tell us the magnitude of the inefficiency. However,
subsequent work by Dybvig [1988a, 1988b] has succeeded in measuring the inefficiency costs
of such strategies, and has concluded that they are substantial.

We begin by recalling some key results from Dybvig’s analysis. Consider first a complete
market which is frictionless and has a finite number of equally probable states s=1,..,S. for
which the Arrow-Debreu pure securities have prices p,, and probabilities 7. An agent with
utility function u(c) will choose state contingent consumption c; so as to solve the following

problem:

Maximise Y, T u(c,) subject to

z4s ps cs = WO'

We assume the usual differentiability conditions for u(.), and obtain the usual first order

conditions that
uw'(c) =Ap,/

for some A and for all s. In other words the agent’s marginal utility of wealth in state s is

proportional to the terminal state-price density & = p, / T,. This optimization characterizes
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the probability distribution of the agent’s terminal consumption c,. We are accustomed to
think of a risk averse agent for whom marginal utility is clearly a non-increasing function of
consumption. Slightly less obviously, any investor who maximises expected utility and
prefers more to less will choose the ¢, to be a non-increasing function of the state-price
density. Any other allocation could be improved on to give the same distribution for c, at a
lower cost, and so would not be optimal. Dybvig defines his payoff distribution pricing
model (PDPM) by a pricing function PD(F) for distributions F of terminal consumption, such
that PD(F) repesents the cheapest cost by which terminal consumption can be obtained that
will have distribution F. To calculate this minimum cost we would need to sort ¢, on the
state-price density and allocate consumption to states on that basis. These ideas provide

Dybvig’s main theorem as stated in [1988a] (the formal proof is in Dybvig [1988b]):

Theorem 1. Payoff Distribution Pricing

The following are equivalent:

| The consumption pattern ¢ is chosen by some agent who has strictly increasing von
Neumann-Morgenstern preferences over terminal wealth.

2. The consumption pattern has an asset price equal to the distributional price of its
distribution function, that is,
PD(F) = 3 p.c, where F is the distribution of c,.

. 3 Consumption is non-increasing® in the terminal state-price density, &_.

We may note that in the kinds of binomial tree commonly used for option evaluation, the risk
neutral probabilies which are used for weighting the various outcomes represent
(undiscounted) state prices. For option valuation the objective probabilities usually serve no
role at all. However this is certainly not the case for portfolio selection, where both are
relevant. Banz and Miller [1978] and Breeden and Litzenberger [1978] were the first to

demonstrate how such state prices might be recovered from the prices of traded options.

Our treatment of these ideas has so far been in the context of an economy with a finite

number of states. They apply equally to continuous time formulations involving a continuum
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of states, provided that the assumptions of completeness and no arbitrage opportunities are
satisfied® (plus some other essentially technical conditions for things to be well behaved).
Thus the theorem applies to a Black-Scholes kind of world in which the risk free rate is
deterministic and the value of the market portfolio follows a Geometric Brownian Motion.
In such a Black-Scholes type of world with a positive risk premium the state-price density
is a decreasing function of the value of the risky asset. In this framework efficient portfolios
must provide payoffs which are monotonic non-decreasing in the value of the risky asset at
the horizon date. This squares quite well with intuitive notions concerning risk sharing within

an economy.

Dybvig [1988a] goes on to describe and measure the inefficiency of a number of path
dependent portfolio strategies. Under plausible assumptions for the market risk premium, he
finds that a stop-loss strategy employed over a year may incur an efficiency loss of 80 or
even 90 basis points. These figures were calculated on the assumption that the market index
provides an expected risk premium of 8 percent. Since such a strategy may be expected to
be in the market only about 50% of the time, the strategy is only earning a risk premium of
about 4%. The efficiency loss can thus be of the order of 20 percent of the risk premium
earned from being exposed to the market. We shall describe this kind of strategy as being
80 percent efficent. Lock-in strategies may incur an efficiency loss of up to 80 basis points
a year, while a random timing strategy employed over a year (eg. by a would be market timer
with no ability to forecast the market) can be inefficient by almost two hundred basis points
a year. Finally, it is shown that although one year portfolio insurance is efficient for a one-
year horizon, if such insurance is rolled over for several years it is soon inefficient to the

extent of 50 basis points a year.

3. Measurement of the Inefficiency of Observed Portfolios

The purpose of this section is to show how we may extend Dybvig’s results so as to make
it possible to measure portfolio efficiency without needing to know the full details of the
portfolio manager’s strategy. In practice we are unlikely to know what the portfolio manager

would have done along paths of the tree which did not occur. We consider what can be
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inferred if we simply observe the dollar funds invested in the risky asset at a limited number
of discrete points in time. We assume that we observe a single implemented strategy y, as
revealed by the dollars y,, y,,...,yr invested in the economy’s risky asset at the discrete time
points 0,1,...,T. We further assume that the fund is intended to have an investment horizon
of at least H, with H > T. For the purposes of this section and the next we shall assume that
the economy provides a deterministic riskless interest rate, and that the price of the single
risky asset, S, follows a Geometric Brownian Motion with a constant risk premium.
(Alternatively you may legitimately visualise a geometric binomial process). These
assumptions are very much stronger than we really require but assist with parts of the

exposition. We shall consider what is involved in relaxing them in section 5.

We will use the symbol &; to denote the set of all portfolio strategies which are efficient in
the sense that they maximise expected utility for some non-decreseasing utility function
defined at the horizon date H. This is the same notion of efficiency as employed by
Dybvig.* What we want to learn is whether an observed strategy y belongs to &, and if not
we would like to measure the magnitude of the opportunity cost involved. We will define
a norm |.|| so that we can use [x-y| to measure how far one strategy x lies from another
one y. What we have in mind is that x will be an efficient strategy, y will be the observed
strategy, and we would like to choose our norm so that |x-y| provides a measure of the
opportunity cost of departing from an efficient strategy. To measure efficiency all we need
to do is to find the member x" € &; which lies closest to y, and |ly-x"| will then tell us the
extent to which the revealed policy y is inefficient. We therefore solve the optimization

problem:

Migimize

X e & Ix -yl

It remains to show how we can conveniently identify which strategies belong to our set &;
of efficient strategies, how we may define a reasu..ubly appropriate norm |.|, and how we
can complete the calculations in a practical manner. We will deal with these technical aspects

next.



Efficient Portfolio Strategies

The assumptions of our economy mean that our world is consistent with using the Black-
Scholes model for evaluating options. Indeed any contingent claim based on the horizon
value of the risky asset can be priced quite easily. In this economy efficient portfolio
strategies are those which will result in horizon payoffs that are monotonic non-decreasing
in the horizon value of the risky asset. For any such payoff function f(S) we can use option
pricing theory to determine what position it is necessary to have in the market risky asset for
every (S,t) combination (with t<H). Thus we have a simple method for defining efficient
strategies in terms of the payoffs they result in, and for calculating the holdings that they
imply should be held in the risky asset through time.

Norms and Opportunity Costs

Without loss of generality we may assume that the risk-free rate is not simply deterministic
but is actually zero. This is because we can always work with discounted values without
affecting any aspects of the structure involved. We shall let p denote the expected rate of
return on the risky asset, and ¢ its standard deviation. We shall consider the risks and
rewards associated with a strategy that consists of an efficient strategy plus an orthogonal

disturbance. Consider a strategy which invests dollar amounts in the risky asset:
=% + &

where x, is drawn from an efficient strategy and ¢, is a noise term with zero mean over t,
variance[g]] = v?, and g, is uncorrelated with x,, We know, by assumption, that the strategy
X, provides outcomes which are suitably monotonic in the state-price density. However, the
presence of the noise term € creates a scattering of outcomes which destroys that
monotonicity. Instant by instant we can apply the Payoff Distribution Pricing Theorem to
find the cost imposed by €. At any time t, the expected rate of return and variance rate of

return obtained from the strategy y (conditional on &) are:



Elreturn(y |€,)]

B + &)

Var[return(y|€e,)]

o (x, + &)
When we take account of expectations over possible realizations of €, these become:
E[return(y)] = Bx

Var[return(y)]

E[0” (x, + &)"]

o’ E[x2 + 2x. €&+ &%

o (x2 + V).

Note that, there has been no increase in the expected return compared to the efficient strategy
X, but that the variance of return has increased by o v>. For this level of risk the strategy

should be earning an expected return of
pvxZ+0?
instead of p x, We may interpret
pWx2+v® - x)
as the instantaneous inefficiency loss associated with y,. The average loss over time is

L= 3 pWx2+v* - x) AYT.

The average risk premium gained is

G = X px AYT,



and we may calculate the percentage efficiency loss as

Percentage Efficiency Loss

L/G %.

This approximates to

Percentage Efficiency Loss

15 V/(E[X])? %.

One major advantage of this form is that it does not involve the risk premium p. We may
also note that if we fit an efficient strategy x, econometrically to y, it is no great problem for
us that the residual €, are likely to display considerable autocorrelation. Since E[x,] = E[y,],
we conclude that we can fit x, to y, using a least-squares criterion, and then obtain from the
residual variuance v” a good approximation to the opportunity cost implied by the departures

from an efficient strategy.

The Estimation Procedure

In order to measure efficiency, we form a very natural linear approximation to efficient
strategies, and thus use a linear estimation technique to estimate the nearest efficient strategy
to the one observed. The whole process is illustrated graphically in Figure 1. First, define
a grid consisting of different values P; < P, <....< P, , that Sy might attain’ at the horizon H.

Define the following k contingent claims based on S:

¢,(Sy) = Sy - P, for Sy < P,
= 0 for Sy =2 P,
= Su - P,y for Sy € [P;.1,P)]
= P_i - Pj-l for SH - Pj
forj = 2,...k-1.
(S = 0 for Sy <P,
- Sy - Py for Sy =2 P, ;.
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These are easily recognised as the payoffs from conventional options positions: c, is a short
position in a put at P, (ie. with exercise price P;). The claims c, to ¢, are bull spreads (eg.
C, is long a call at P, and short a call at P,), and c,, is a long position in a call at P, ;. Their
payoffs as a function of Sy are depicted on the right hand side of Figure 1.

By choosing a suitably fine grid it is possible to ensure that functions of the form
c(Sy) = z] oy (S

with o; = 0 can approximate arbitrarily closely® to any continuous monotonic non-decreasing
function f(Sy) which might characterize an efficient portfolio strategy in &;. This summation
is illustrated at the bottom of the right hand side of Figure 1. Let x,(S,) denote the number
of dollars to be invested in the risky asset at date t (t=0,1,...,T) in order to achieve the claim
C;, where S, is the price of the asset at date t. These sequences through time of the holdings
(conditional on S,) required to synthesize each of the option spreads are illustrated on the left
hand side of Figure 1. The investment required in the risky asset at date t in order to achieve

the payoffs f(S) at the horizon date is therefore:

xS) = % x4(S) o
This is the time sequence of the total holding required to synthesize the total payoff c(Sy),
and it is illustrated at the bottom left hand side of Figure 1. Thus the estimation is completed
by solving the following conventional linear least squares estimation for the o subject to non-
negativity constraints:

Minimize Y, €2, where

A = % x(S) oy + g (t=0,1,..,T),
and 020, (=1,..k).
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Writing this in matrix notation as
y = Xo +E¢,
the first order conditions are

XXa -z =Xy

o'z = 0, a,z20.

These equations’ are readily solved using a computer package (or otherwise). Note that,
particularly for large k, the columns of X will exhibit multicollinearity. The non-negativity
constraints on o nevertheless make the optimization well behaved, though it is possible that

o may not be uniquely determined.?

Once the o have been estimated, Xa, provides a T+1 vector of the market exposure for the
nearest efficient strategy to the observed yg, ¥y,..., yp- Note that this can also be extended
to give fitted values for dates t at which y, was not observed. We also get from a/c(Sy) an
objective function for the fund defined as wealth contingent on the value of the index at the
horizon date H. The interpretaton of this function is that it gives the objective contingent on
Sy of that investor with horizon H, for for whom the observed sequence y, y;,..., Y1 gives the
minimum inefficiency. We can think of this informally as the objective of the investor who
(with hindsight) would have been most likely to wish to invest in the observed portfolio

strategy.
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4. Examples of Implementing the Technique

We now show the results of some simulations of the technique just described. In each case

we have used the following parameter values, which are the same as in Dybvig [1988a]:

risk free rate, r = 0.08
rate of drift of risky asset, p = 0.16

annualised standard deviation = 0.20

The simulations have been performed to look at a single sample path over a period of two
years with monthly observations, ie, just 24 observations in all. The approximation is made
with k = 7 (with more observations a larger value would have been chosen). These low
numbers have been deliberately chosen to demonstrate the power and robustness of the
technique - prettier pictures might have been obtained for larger parameter values. In this
regard we may also note that if we were in Dybvig’s position of knowing in advance the
nature of the management strategy we could apply our method to multiple simulations, N

(say), so that X becomes (T+1)N x k etc.

Figure 2 shows a time series for the simulated market index, observed monthly over two
years. It starts at a base of 100.0. The simulated portfolio starts with initial capital of
$1,000,000. The remaining figures and tables refer to estimations performed for a number

of portfolio strategies. The strategies reported are as follows:

Strategy 1 Invest in bonds plus 10,000 two year calls at 130. This is a simple static
portfolio insurance policy with a two year horizon. When we evaluate this
strategy with a two year horizon it is efficient. When we evaluate it using a
five year horizon it is clearly not. The estimated ex-post inefficiency under the
five year horizon is actually rather modest at 0.9%. For other realizations of
the sample path of the market it might have been higher (or lower) and there
is no reason to expect the ex-post inefficiency revealed by a single sample path
to bear any relationship to the ex-ante inefficiency (eg. of Dybvig) calculated

over all sample paths. Figure 3 shows the estimated objective under the five
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year horizon, and Figure 4 plots the actual (dotted line) and fitted efficient

(solid line) strategies against time.

Strategy 2 Lock-in strategy at $1.2 million. This strategy has an ex-post inefficiency of
5.7% with respect to a three year investment horizon. Figure 5 shows the
corresponding estimated objective, and Figure 6 plots the actual and efficient

strategies, but this time against the market index level instead of time.

Strategy 3 Repeated portfolio insurance. The fund has been simulated as purchasing
nine-month portfolio insurance (ie. bonds plus nine month calls) and this is
renewed without changing the market exposure every six months (ie. when the
calls have three months to run). This seems a fairly mild strategy.
Nevertheless the analysis shows that from the perspective of a three year
horizon it is inefficient to the tune of 2.5%. Figures 7 and 8 again show the

estimated objective, and the actual and fitted strategies.

Some other simulations have also been performed which there is not space here to report in
any detail. In particular constant proportional portfolio insurance of the kind proposed by
Black and Jones [1987], and Black and Perold [1990] has been simulated. Itis a special case
of the stationary policies described by Brennan and Schwartz [1987] as being efficient for any
horizon. The simulations confirm the efficiency of such policies, and also are able to detect
the inefficiency which occurs if the growing floor for the fund F(t) = F e is replaced by a

floor which grows at a rate different from the riskless interest rate.

5. Generalizations and Extensions

The results described above are most encouraging. We might not have expected to be able
to recover so much information about objectives and efficiency from a handful of portfolio
position data along a single realised path of outcomes®. Nevertheless, the assumptions made
so far are uncomfortably strong: an economy with a deterministic interest rate and a single

risky asset following Geometric Brownian Motion with a constant risk premium. For
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practical work we would certainly need to relax these considerably. In this section we shall
see that there are no conceptual hurdles to extending the method to encompass economies

where there are several state variables and also multiple risk premia which vary through time.

We shall discuss first how the model may be employed if the risk premium in our original
simple economy varies through time. Recent empirical studies (for example those of Fama
and French [1988], and Poterba and Summers [1988]) suggest that a constant risk premium
is unlikely, so this kind of generalization becomes very important. We now have the

following process for the risky asset:
dS = pS,t) Sdt + oS dz

First we note that the Black-Scholes option valuation model is still valid as it does not depend |
on u(S,t). We need to assume specifically that p(S,t) is consistent with an equilibrium
characterized by investors who maximize the expected utility of their consumption' at a
horizon date at least as distant as H. This then implies that efficient portfolio strategies can
be spanned as before and we can certainly test whether a particular strategy is efficient. The
main components of our methodology still apply. The only problem is the measurement of
the degree of the efficiency loss. Even here our percentage efficiency loss measure (which

does not involve p) should provide a robust though inexact measure of inefficiency.

We describe next how our technique can be generalized to models of the economy which
contain several state variables and several investment instruments. The motivation for this
is to be able to encompass such realities as stochastic interest rates, inflation and volatility.
We will retain the assumption that the market is complete. Consider two state variables r and
s, so that there exist state prices p, and state probabilities m,. As before, for an efficient
strategy, horizon wealth must be monotonic nonincreasing in the state-price density function,
& =D / . We may construct efficient portfolios as non-negative linear combinations of
bear spreads on the state-price density itself. An appropriate norm must also be found. The
difficulty of this step depends somewhat on the details and complexity of the model. For

many models a least squares approach will still work. It is clear that in principle the number

of state variables is no obstacle.
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We have so far ignored a difficulty which arises depending on how far the portfolio wealth
departs from the value predicted by the fitted strategy. This can occur through the cumulative
effects of not employing an "efficient" strategy. A resulting difficulty is that deviations
between the value of the actual portfolio and that of the fitted one will, if sufficiently large,
justify further departures in the subsequent strategy. The issue has been ignored in this paper

as likely to be a second order problem. However, it seems to lead to an iterative estimation

and deserves further investigation.

In this paper we have also ignored the important issue of forecasting ability. Market timing
behaviour based on forecasts of the future may justifiably lead a fund to depart from the kinds
of strategies we have labeled as efficient. These strategies only remain efficient in a world
which is characterized by the kind of equilibrium we have briefly described above. If instead
we wish to consider more realistic assumptions in which assymetries of information provide
some participants with differential forecasting ability, we shall have to re-intepret our

inefficiency measures as the opportunity costs associated with trading on information.

One final reason why managers may not follow strategies like our "efficient" ones in practice
concerns transactions costs. There has been significant recent progress on the topic of
intemporal portfolio management under transactions costs (eg. Taksar, Klass and Assaf
[1988], Dumas and Luciano [1989], and Davis and Norman [1990]) and in the replication of
options positions under costs (eg. Hodges and Neuberger [1989]). It would be interesting to

see what implications that work carries for the technique we have described here.
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6. Conclusions

The paper has demonstrated a practical procedure for estimating (from minimal data) the
opportunity costs implied by dynamic portfolio strategies which are inefficient. The measure
is based on observing what a manager actually did, rather than on knowing what he would
do under every eventuality. The technique provides a measure of the extent to which the
strategy used was imperfectly diversified in an intertemporal sense. It is analogous to the
opportunity cost imputed by Fama [1972] for unsystematic risk stemming from imperfect
cross-sectional diversification. The analysis builds on earlier work by Dybvig [1988a], and
the type of estimation proposed is not dissimilar to that in Admati and Ross [1985].

Simulations demonstrate that the technique is remarkably robust.
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Footnotes

It is both significant and typical, for instance, that Kritzman [1990] which covers a
great deal of material on various types of dynamic strategies, contains no material at
all on performance measurement.

It may be noted that Dybvig [1988a] contains a misprint, with this part printed |
incorrectly as "Consumption is nondecreasing in the terminal state-price density".

In this framework the state-price density is essentially the Radon-Nikodym derivative
of the risk neutral probability measure with respect to the objective one.

Note that this concept of efficiency is far more general than that of mean-variance
efficiency, which would be quite inappropriate in this context. See Dybvig and
Ingersoll [1982] for a discussion of the role of options in an economy in which tyhe
underlying assets are priced in a mean-variance framework.

Note that these subscripts on P do not refer to dates as does that on S.

See, for example, Powell [1981] for related convergence theorems for spline functions
such as these. The extension of these results to our specific problem is
straightforward.

As stated, the equations ensure that E[x, €] = 0, but not that E[e,] = 0. To ensure that
this latter condition always holds exactly we need to append an additional constraint.

The use of Singular Value Decomposition (see, for example, Press et al [1989], Golub
and Van Loan [1983]) provides a robust way of performing the computations.

Part of the reason for this lies in the relation to the following recoverability result
described by Dybvig [1986]. The key assumptions are that the portfolio is managed
under an efficient strategy and that it is possible to calculate the state-price density
function. Under these assumptions if we can observe the asset mix along a single
realised sample path, we can recover (and actually construct) the entire portfolio
strategy over the whole probability tree. It turns out that small disturbances in the
strategy employed along the observed path result in large perturbations to the terminal
wealth profile (as a function of the value of the market portfolio) that would be
derived under the path independence assumption. (This casts some doubt on the
conjecture in that paper that the utility function is recoreable in the continuous limit).
Conversely, monotonicity of terminal consumption implies considerable smoothness
in the corresponding efficient investment strategy. It is this smoothness which makes
our approach well behaved, and also means that the grid of horizon date prices can
be rather coarse.
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10.

The papers of Merton [1971], [1973], Breeden [1979] and Cox, Ingersoll and Ross
[1985] treat the issues of optimal consumption, optimal portfolio selection and
equilibrium within continuous time economies. Further properties are developed by
Cox and Huang [1987]. Bick [1987a, 1987b] deals particularly with a simpler Black-
Scholes like economy. The characterisation of equilibria of the kind described is the
subject of a further paper by the author.
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