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A Review of Option Pricing with Stochastic Volatility

ABSTRACT

In this paper we consider the problem of option pricing when the volatility
is changing randomly. We review some of the major advances in option pricing
with stochastic volatility which have appeared in the literature. We discuss their
advantages and disadvantages from both a theoretical and practical view point. In
particular we focus on the key issues of how the models deal with the risk premium
on volatility, hedging the volatility risk and the correlation between the asset and
its volatility. We consider realistic and tractable choices for diffusion processes
driving the volatility. Finally, we attempt to reach some conclusions regarding the

most promising and useful approaches.



1 Introduction

The no-arbitrage, risk neutral option valuation approach introduced by Black and
Scholes (1973) and Merton (1973) provides the theoretical basis for todays deriva-

tive markets. However, none of the assumptions made by Black and Scholes,

namely,
e costless trading takes place in continuous time
e the short term interest rate is constant
e the underlying security pays no dividends

e the underlying security follows geometric Brownian motion with constant

volatility

hold in real markets. Some of these assumptions have been relaxed by later au-
thors. Merton (1973) showed that an option can be priced in terms of a bond price
so relaxing the assumption of a constant short term interest rate. The no divi-
dends assumption was dealt with by Merton (1973), Roll (1977) and Geske (1978).
Merton (1973) also showed that volatility which was a deterministic function of
time could be handled.

The assumption of geometric Brownian motion for the underlying security

implies that it is lognormally distributed or that returns are normally distributed.



Since daily price changes are the sum of many intra day price changes it may be
supposed that the central limit theorem would imply they are normally distributed.
However, the conditions for the central limit theorem almost certainly do not hold
intra day. For example the number of intra day price changes is probably itself
random leading to a subordinated process.

The consensus from empirical investigations (Mandelbrot (1963), Fama (1965))
is that the distributions of stock prices are fat-tailed and skewed. However mix-
tures of normals with different variances appear to fit the data better than sta-
tionary distributions with infinite variances for example.

This suggests the need for an option pricing theory in which the volatility itself
follows a stochastic process. Recently there has been a great deal of work in this
area. The papers Hull and White (1987), Johnson and Shanno (1987), Scott (1987)
and Wiggins (1987) established that option prices could be computed if the risk
premium for the volatility could be identified. This tells us what options prices
should be in equilibrium in an economy in which investors have certain preferences.
However it does not indicate how arbitrage profits can be locked in if market prices
deviate from the model prices. In this paper we review the development since 1987

of the theory of option pricing when the volatility is changing randomly.



The paper is organised as follows: In section 2 we review the continuous time
framework within which the option pricing equation under stochastic volatility can
be derived. Section 3 discusses some of the theoretical and empirical properties
of stochastic volatility. The distributional approach of McDonald and Bookstaber
(1988) is discussed in section 4. The alternative source of randomness for the
underlying asset proposed by Madan and Senata (1990) is considered in section
5. In section 6 we consider possible diffusion processes for the volatility. Models
based on volatility as a diffusion process are considered in sections 7, 8 and 9.

Finally section 10 concludes the paper.

2 The Continuous Time Framework

The basic framework for developing a continuous time model with any number
of state variables has been established by Garman (1976) and Cox, Ingersoll and
Ross (1985). Consider a world where the n state variables S, ..., S, follow the

random processes

d.S’,- = Nidt + aidz,- (1)

where p; is the drift term, o; is the volatility of S; and dz; is a Wiener process.

In general p; and o; can be functions of all the state variables and time. The



correlation between dz; and dz; is p;; and o;; is the instantaneous covariance,
pi,j0:i0; between S; and S;.
Now suppose we have a contingent claim C which depends on the state variables

S1, +..y Sp and time ¢. Then, by Ito’s Lemma C(S,t) follows the process

dC = (Ct + E /L,‘C,; + %Z Za,-,jC’,-,j)dt =+ Z a,-C’,-dz,- (2)

i=1 =1 j=1 i=1

where subscripts on C' denote partial differentials with respect to time (¢) and
the state variables (z, 7).

Consider that the position in the claim is financed through borrowing its value
C at the instantaneous riskless rate r. The dynamic of the value associated with

this leveraged position, CZ, is given by

dOE = (Ct + Z wiCi + %Z Z o'i,jCi,j — TC)dt + E 0;C;dz; (3)

=1 =1 j=1 =1

In the special case where the S; are traded assets which pay a continuous
dividend at rate «;, the dynamic of the value associated with a similar, zero-net

wealth, leveraged position is given by

dS,L = (,u,- —-rS; + a,-S,-)dt + o;dz; (4)

Now if we form a portfolio P such that



dP =dC" - C;dSF (5)

=1

we obtain the dynamic of a portfolio with zero investment and zero risk

n 1 n n
dP = (Ct —rC + Z(T‘ - oq)SiC,- + § Z Z O'i,jCi,j)dt (6)

=1 =1 j=1

By economic considerations this portfolio must have zero rate of return. Thus

we obtain the general pricing equation for contingent claims

n 1 n n
C: + Z(’I‘ — a,-)S’,'C,- + 5 Z Z di,jC,',j =rC (7)

=1 i=1 j=1

Note that the Black-Scholes equation is just a special case of equation (7) with
n = 1. If some of the state variables S; are not traded securities then equation (7)
can still be applied but with two reservations. Firstly, it is necessary to establish
a value for the dividend yield o; at which the state variable would be accepted as
a traded security. This is called its “convenience yield”. As we shall see below,
some researchers have equivalently worked with the “price of risk” associated with
a given untraded state variable. Second, we note that where some state variables
are not traded, we can only derive equilibrium prices for contingent claims and

riskless arbitrage is not possible if market prices are different from the equilibrium

prices.



The general pricing equation (7) may be interpreted as the valuation equation
in a risk-neutral setting. If investors were risk neutral then the drift on §; would
have to be r — a; for S; to trade in equilibrium. We can interpret the difference
between S;’s objective rate of drift y; and the “risk-neutral” drift as a risk premium

as follows

Aioi = pi — (r — o) (8)
We are interested in a world in which the first state variable is the underlying

asset and the second is the volatility or variance of that asset. Thus equations (1)

become

dS = uSdt + 0Sdz 9)
do = podt + o9dzy

where p, and o will in general be functions of o.

Scott (1987) shows how it is possible to replicate an option in a stochastic
volatility world using the underlying asset and another option of a different time
to maturity. However, although one obtains a replication strategy, the pricing
equation obtained does not have a unique solution because an option is not a known

function of volatility. Furthermore, the proportions of the underlying security and



the second option are functions of the partial derivatives of the option with respect
to the security and its volatility so a solution to the GPE is still necessary to make
the replication strategy practical.

Recently Dupire (1992) has described a new approach to pricing and hedging
volatility. The aim being to develop continuous-time no- arbitrage pricing with
stochastic volatility without the need to specify a volatility risk premium. He does
this by specifying conditions for the evolution of prices which preclude arbitrage.
This parallels recent developments in the pricing of interest rate term structure
contingent claims. The prices of European options are taken as traded assets which
are priced consistent with no-arbitrage within the continuum of exercise prices and
time to maturity. Dupire then shows that the forward variance can be synthesised
and priced in terms of the natural logarithm of the forward prices of the underlying
security. Since the variance can be priced and synthesised as a traded asset Dupire
shows how the risk-neutral process for the instantaneous variance can be derived.
It is this which ensures compatibility with the initial volatility term structure.
Prices of more complex claims contingent on the underlying asset and volatility
can then be computed as the discounted risk neutral expectation of their payoff.
This is a promising new approach, however it does not solve the problem of pricing

standard options since their prices are taken as given.



The general pricing equation (GPE) which we obtain cannot in general be
solved analytically. However, we can write down the general solution as the risk-

neutral expectation of the payoff (A)

C = e " T E*[A] (10)

where ¢ is the current time, T is the time at which the option expires and E* is
the risk-neutral expectation operator. Both analytical and approximate solutions

rely on solving the GPE or the integral implicit in the expectation operator.

3 Some properties of stochastic volatility

Stein and Stein (1991) find that the option pricing bias (the difference between
the option prices of the stochastic volatility model and the Black-Scholes model)
is always positive becoming larger the further away from the money the option
becomes. Hull and White (1987, 1988) find that the bias is negative for near
the money but becomes positive and increases in agreement with Stein and Stein
as the option becomes further away from the money. However the bias tends to
zero as the option becomes very far away from the money for the Hull and White
models. Hull and White (1988) also examine the case of non-zero correlation

and find that when the correlation is negative the bias decreases as exercise price
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increases. The reverse is true when the correlation is positive. In most of these
papers this exercise price effect is clearly non-linear (the so called smile effect) yet
we are only aware of one paper (Shastri and Wethyavivorn (1987)) which explicitly
mentions the non-linearity. However, it does not seem possible to account for the
size of the empirically observed smile effects with any of the diffusion models we
will describe using reasonable values for the parameters of the volatility process.
Empirically observed smile effects are typically characterised by implied volatilities
around 10% higher for away- from-the-moneyness of around 5%. The Hull and
White (1988) model gives implied volatilities of only 1% higher for this level of
away-from-the-moneyness. This seems to imply that empirically observed smiles
are not due to stochastic volatility but other effects such as transaction costs.

As we have already noted, when the drift term is non-zero then the Black-
Scholes implied volatilities will vary with time to maturity. The exact shape
of this term structure will depend on the stochastic process or equivalently the
relationship between the current volatility and its mean. This is confirmed by
empirical evidence from currency options (Xu and Taylor (1992)). Generally the
smile effect decreases with increasing time to maturity.

There are very few studies which actually examine the pricing ability of stochas-

tic volatility models using actual options data. Wiggins (1987) developed an esti-
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mation method for the parameters in his stochastic volatility model and applied
it to daily-returns data for eight stocks and two broadly based indices. He finds
that the volatilities of two stock indices behave differently from the volatilities of
the individual stocks in volatility persistence and the volatility of the volatility
and that the correlation between stock returns and volatility is much more pro-
nounced for the indices and the estimates are generally negative. He then uses a
finite difference method to price options while the risk premium is assumed to be
zero. The option prices from the stochastic volatility model are not very different
with those from the Black-Scholes model in most cases, except Black-Scholes may
significantly overvalue out-the- money call options relative to in-the-money call
options on stock indices for long maturities. This is consistent with other studies
(Hull and White (1987, 1988)) as the correlation between stock index returns and
volatility is significantly negative.

Chesney and Scott (1989) first apply a stochastic volatility model to study its
pricing ability for currency options on the Swiss Franc against the US dollar traded
in Geneva. They also apply the method of moments to estimate the parameters.
The estimated correlation coefficient between currency returns and volatility is
not significantly different from zero. Although Black-Scholes performs very poorly

when an historical estimate of volatility or constant volatility is used, it performs
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much better than the stochastic volatility model if the volatility estimate is revised
every day.

Melino and Turnbull (1990) give results for spot exchange rate options written
on the Canadian dollar against the US dollar. The correlation coefficient esti-
mate is marginally significant. They tried different values of the volatility risk
premium and conclude that it has significant effect on the option prices; when the
risk premium is equal to -0.1 the stochastic volatility model prices options much
more accurately than the Black-Scholes model, although systematic pricing errors
remain.

Scott (1992) gives the results of a general equilibrium model for the S&P 500
index options. He estimates significant negative correlation between stock returns
and volatility. His analysis of implied volatility suggest that the magnitude of
the risk premium on volatility has a substantial effect on the behaviour of option
prices and implied volatilities and that this risk premium should be negative. He
concludes that the negative correlation between stock returns and volatility and
the potential of a negative volatility risk premium can explain recent empirical

observations of implied volatilities for stock index options.
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4 A Distributional Approach

Bookstaber and McDonald (1987) and McDonald and Bookstaber (1988) advocate
the generalised beta distribution of the second (GB2) kind for security prices. It
includes the lognormal, log-t, log- Cauchy, Chi-squared and a wide variety of other
distributions as special cases. The GB2 can be interpreted as a generalised gamma,
mixed by an inverse generalised gamma. The GB2 has the stationarity property
of closure under multiplication, that is returns over all time periods have a GB2
distribution. McDonald and Bookstaber (1988) are able to solve the risk-neutral
expectation integral to obtain an explicit option pricing formula. However, no
known continuous time process leads to the GB2, so McDonald and Bookstaber
are not able to identify an equivalent change of measure and have to assume that
risk-neutrality prevails. The absence of a continuous time process also means
that we have no model for replication of the option and thus locking in arbitrage
profits. McDonald and Bookstaber motivation for advocating the GB2 is that its
generality allows fitting to a wide variety of security price time series. However,
we believe that the estimation of the four parameters will be very unstable. This
is because very different values of the parameters can lead to similarly shaped
distributions. This together with the lack of a continuous time process and an

associated replication strategy limits the usefulness of this model.
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5 An Alternative Source of Randomness for
Asset Prices

Madan and Senata (1990) suggest that any model of security price returns should

satisfy the following criterion,

(1) long tailedness relative to the normal distribution for daily returns
(2) finite moments of at least the lower powers of returns

(3) independent stationary increments, the distribution of increments belonging

to the same family irrespective of the length of the period

(4) extendible to multivariate processes

They note that the symmetric stable (Mandelbrot (1963)) fails (2) and (3),
the t-distribution (Praetz (1972)) fails (3) and as described above the GB2 has no
known process. The model of Press (1967) of normally distributed jumps at Pois-
son times does satisfy all four conditions but Madan and Senata claim their model
has advantages being a pure jump process. The model they choose, which they
call the variance gamma model, has a unit period distribution which is normal
conditional on a variance which is distributed as a gamma variate. The process is

a pure jump process which can be approximated as a compound Poisson process
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which in the limit has infinite jump frequency and zero jump magnitude. The pro-
cess can be viewed as Brownian motion evaluated at a random time change. They
are able to obtain an incomplete markets equilibrium approximate option pricing
formula which is similar to Black- Scholes. However a self-financing continuous
trading strategy which replicates the payoff of an option at maturity cannot be
constructed for a pure jump process. Thus any solution to the option pricing equa-
tion must depend on investor preferences. Also the identification of the change of
measure is extremely difficult, Madan and Milne (1991) are only able to obtain an

approximate solution.

6 A Diffusion Process for the Volatility

Reasonable and tractable specifications for the volatility or variance process leave
us with the following choices: The drift can be constant, constant proportional
or mean reverting and the volatility of the volatility can be constant or constant
proportional. We believe that any reasonable specification should satisfy the fol-
lowing conditions: the volatility is mean reverting, this is supported by empirical
evidence (e.g. Stein (1989), Merville and Pieptea (1989)) and to some extent by
the extensive ARCH model literature; it respects the non-negativity of volatility;

the parameters should be practical to estimate and the pricing model practical
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to implement. Therefore for the drift we should choose a mean-reverting term.
Choice of a constant volatility of volatility leads to the possibility of negative val-
ues. The variance process is the square root process of the Cox, Ingersoll and
Ross (1985) (CIR) short term interest rate model. However, if the variance fol-
lows the CIR process with mean reverting drift then although the volatility has
an arithmetic stochastic term the drift term is such as to exclude the possibility
of negative values (the drift term tends to positive infinity as the volatility tends
to zero). Note that choice of a constant volatility term for the variance leads to a
process for the volatility whose drift and volatility tend to infinity as the volatility
tends to zero - a very undesirable property. A constant proportional volatility for
either the volatility or the variance leads the other to also be constant proportional

volatility with neither allowing negative values. Our preferred process is therefore

of the form

dV = a(V = V)dt + £VFdz, (11)

Equation (11) with # = 1 is the diffusion limit of the GARCH(1,1) model
(Nelson (1990)). Duan (1991) has demonstrated that risk-neutral valuation can
be applied to GARCH models of stock returns. However it requires that asset

returns are conditionally lognormal. Furthermore since the distribution functions

i



of GARCH models do not have simple analytical forms a practical option pricing
formula does not seem possible. Finally this model does not yield an option
replication strategy.

In the context of time series models of volatility there appears to be a paradox
in that no choice of the conditional distribution seems able to fully account for the
kurtosis observed in actual price series. This is not encouraging with regard to
the likelihood that tractable choices of the volatility process will be able to fully

account for the biases in option prices due to stochastic volatility.

7 Integrating Black-Scholes over the mean

variance distribution

Hull and White (1987) make the assumption that the volatility risk premium is zero
which is the case if the volatility risk is diversifiable or that volatility is uncorrelated
with marginal utility of wealth. They also assume that the correlation between
the Wiener processes is zero. In this situation we can assume risk-neutrality
prevails and the solution to the pricing equation is the discounted risk-neutral
expectation of the option payoff. Assuming the following risk- neutral processes

for the underlying asset and its variance
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dS =rSdt + 0Sdz (12)
do? = ao?dt + (ad (13)

where a and ¢ are independent of S and dZ and dw are independent Wiener

processes. Then, conditional on the mean variance over the interval [0, T

_ 1 (T "

V=g [ S (14)
the distribution of log(S(T")/S(0)) is normal (mean rT' — VT'/2, variance VT).
The option price is therefore the integral of the Black-Scholes price ¢(V) over

the distribution of V. It does not seem possible to obtain an analytical form
for the distribution of V for any realistic process for V but it is possible to write
down the moments when p (the objective drift of the variance) and ¢ are constant.
Therefore, if we expand ¢(V) as a Taylor series about V the expected value of V
and integrate the individual terms in the series we obtain

1 &% 1 8¢

2 _ = - - 0/ —_——_—
C(St,at) - C(V) + 2 V2 7 Var(V) t 6 oV3 \ 4

Skew(V) + ... (15)
Only for sufficiently small values of £2(T — t) does the series converge quickly.

This is because the Taylor series expansion is only valid if the variation of V about

V is small. Hull and White state that a choice of zero drift for the variance is
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justified since a non-zero drift would lead to markedly different implied volatil-
ities at different maturities. However, term structures of implied volatilities are
well documented (Stein (1989), Heynen, Kemna and Vorst (1992), Xu and Taylor
(1992)). The problems with this model then are a non-mean-reverting volatility

and no correlation between the security and its volatility.

8 A Quasi-analytical Solution

Stein and Stein (1991) assume a mean reverting arithmetic process for the volatility

dS = pSdt + oSdz (16)
do = a(c — o)dt + Edw 17

They are able to derive a quasi-closed form formula involving a numerical inte-
gration for the probability distribution of the security by using Fourier inversion of
the characteristic function. Then by assuming the risk premium for the volatility
is zero they can solve the risk neutral expectation solution to the GPE numeri-
cally (this involves another numerical integration). They also note that a constant
risk premium can be handled by adjusting the mean reversion level. A risk pre-
mium proportional to the volatility can also be handled by adjusting the mean

reversion rate (Hull and White (1988) demonstrate both these adjustments). Fur-
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thermore, from the analysis they obtain the relationship between the parameters
of the stochastic volatility model and the level of kurtosis observed in stock prices.

Their model specification suffers three drawbacks. Firstly, it does not com-
ply with nonnegativity of the volatility. Although Stein and Stein argue that for
empirically reasonable parameter values the probability that the process will ever
reach zero is very small and also that Stein (1989) finds no evidence of skewness
in implied volatilities of S&P 100 index options. However, this process leads to a
reflecting barrier at zero for the variance. This will give the variance distribution,
which is the imﬁortant one, very undesirable properties. Secondly, it assumes that
the correlation between stock returns and volatility is zero. Finally, the option
pricing formula requires a double numerical integration which is quite computa-

tionally expensive.

9 A Realistic and Practical Model

Hull and White (1988) assume the following processes

dS = ¢(t)Sdt + 0Sdz (18)
dV = n(V)dt + £V Vdw (19)

where dz and dw are Wiener processes with correlation p. They can handle a
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risk premium which is constant or proportional to the square root of the variance
by adjusting the parameters of the mean reverting term. The option price under

stochastic volatility (C') is assumed to be the Black-Scholes price (¢) plus a bias

C=c+B (20)

B is then assumed to be a power series in £

B =fo+ fi + f26% + ... (21)

where the f; are functions of S, V and ¢. They then substitute the expression for
C (equation (20)) with B replaced by its power series into the GPE. By collecting
terms by powers of £ they obtain a set of differential equations for the functions f;
whose solution is lengthy but straightforward. This model has a realistic process
for the variance, allows correlation between the driving Wiener processes and is
based on the GPE. Hull and White show that only the first three terms in the
power series for { are needed to obtain accurate results and since it is a purely
closed form approximation it is efficient to compute. The only restriction is on the
functional forms allowed for the volatility risk premium.

In a recent paper Scott (1992) essentially assumes the same processes together

with stochastic interest rates. The model specification is consistent with the gen-
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eral equilibrium model of Cox, Ingersoll, and Ross(1985). Again there are no
restrictions on the correlation between the stock return and volatility. The pro-
cess for the short term interest rate is a linear combination of the variance and a
second CIR stochastic process. This is not a very realistic model of the interest
rate and its correlation with volatility. However, it is straightforward to assume
that the short term interest rate is constant and the second stochastic factor does
not exist. A quasi closed form solution for option prices can be derived by using
the Fourier inversion formula for probability distribution functions. To price op-
tions only two univariate numerical integrations are needed which is quite efficient
to compute.

We thus have two different solutions for a model which has no serious drawbacks
in terms of the asumptions it makes. An interesting question is how the two

solutions are related to each other.

10 Conclusions

We have reviewed the main approaches to option pricing with stochastic volatility
which have appeared in the literature. The approach, characterised by McDonald
and Bookstaber (1988), which is concerned with fitting a general distribution

to asset prices is not very helpful. It leaves unresolved the key problems of a
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replication strategy and the risk premium on volatility. The alternative source of
randomness proposed by Madan and Senata (1990) is also unsatisfactory. In order
that the risk associated with a state variable can be hedged we essentially require
sample path continuity. This implies that locally we have Brownian motion. Any
alternative must involve a jump process with the associated disadvantage of not
being able to form a replicating portfolio for the option and option prices depending
on investor preferences.

The most promising way forward seems to be to model the volatility as a
diffusion process. We describe the properties which we believe the process must
have to be both realistic and tractable. The analyses presented by Hull and White
(1987) and Stein and Stein (1991) are helpful in demonstrating techniques which
can be used to obtain practical option pricing formulae. However, they both have
the disadvantages of requiring the correlation between the underlying asset and
its volatility to be zero and having unrealistic processes for the volatility. We then
describe the models of Hull and White (1988) and Scott (1992). We note that
the interest process in the Scott model is not very realistic but that this facet of
the model can be removed to reduce it to the Hull and White model. This model
has all the desirable properties which we sought. The option pricing formulae

which are obtained are practical to implement and the only restriction is on the
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functional forms allowed for the risk premium.

Finally, the new approach which Dupire (1992) has introduced and which we
briefly discussed in section 2 appears to hold great promise. There is still some
work needed to clarify the implications of this model but the prospect of no-

arbitrage evolution and pricing of the term structure of volatility is very exciting.
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