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Optimal Delta-Hedging

Under Transactions Costs

ABSTRACT

The paper examines the problem of delta-hedging under transactions costs, using the
stochastic optimal control approach first described by Hodges and Neuberger (1989).
Rather than seeking a strategy for exact replication, which is liable to be expensive and
may be dominated by other strategies, this approach obtains the optimal hedging strategy
to maximise expected utility (or to minimise a loss function defined on the replication
error). Under proportional transactions costs this results in policies characterised by
control bands within which the hedge delta must be maintained. Only with a fixed cost
component would it be appropriate to make large transactions to jump into the interior of
the control region.

This method has the advantage over Leland's (1985) approach that it works just as well
for hedging mixed portfolios of long and short positions, and also mixed maturity dates.
The paper describes the basic approach, and derives a new computational method which
substantially reduces the storage required for the calculation. Characteristics of the
optimal policies are discussed, and a simulation study is completed to compare the
hedging performance of some alternative policies. The strategies we tested were chosen
so that we could examine which features of a hedging strategy are most important:
hedging to the "correct" delta or hedging only to within a band in order to conserve
transactions costs. The simulations show that the optimal control approach is
substantially more effective than Leland's method, and that while the target delta and the
band around it are both important, surprisingly good hedges can be obtained by hedging
using a control region of the right width but based around an incorrect central delta.



Optimal Delta-Hedging Under
Transactions Costs

1. Introduction

This paper describes a stochastic optimal control approach for delta-hedging contingent
claims. It extends earlier work by Hodges and Neuberger (1989). The paper describes
an efficient numerical procedure for this type of hedging, discusses properties of the
optimal hedging strategies, and reports on the results of a series of numerical simulations
to compare the effectiveness of the approach to some alternative methods.

The construction of hedging strategies which best replicate the outcomes from options-
(and other contingent claims) in the presence of transactions costs is an important
problem. Hedging is central to the theory of option pricing. Arbitrage valuation models,
such as that of Black and Scholes (1973), depend on the idea that an option can be
perfectly hedged using the underlying asset, so making it possible to create a portfolio
which replicates the option exactly. Hedging is also widely used to reduce risk, and the
kind of delta-hedging strategies implicit in Black and Scholes are commonly applied, at
least approximately, by participants in options markets. Optimal hedging strategies are
therefore of direct practical interest. Much of the theory of options assumes that markets
are frictionless. This paper considers the impact of transactions costs on delta-hedging
and valuation. This is closely related to the valuation issues which arise where the
nature of the market dictates that trading is discontinuous, or that the asset process is
such that the market is incomplete and contingent claims are not spanned by existing
securities.

The first paper to consider the problem of replicating options' payoffs using delta-
hedging under transactions costs was Leland (1985). The issue is particularly interesting
because under the usual Black-Scholes strategy, implemented as rebalancings at discrete
intervals, the expected volume of transactions becomes unbounded as the number of



rebalancings is increased. Leland's analysis is set in a continuous-time framework and
assumes proportional transactions costs. It describes how by making an adjustment to
the variance (which depends on the exogenously specified revision frequency) the Black-
Scholes formula can be used to hedge with a zero expected replication error, and with a
standard deviation which tends to zero with the length of the rebalancing interval.
Neuhaus (1989) contributes some further theoretical insights to this approach. However,
this method is in no sense an optimal one.

The method described in this paper follows earlier work by Hodges and Neuberger
(1989) and is based on maximising expected utility. Alternatively, we may view it as
minimising a loss function defined on the replication error. This approach seems more
appropriate since the valuation bounds provided by exact replication may be very wide.
Depending on the choice of risk aversion parameter we can obtain either tight or much
looser (but also cheaper) hedging. The approach is in a paradigm similar to that of
Davis (1988), Davis and Norman (1988) and Taksar, Klass and Assaf (1988) and Dumas
and Luciano (1991). These papers describe optimal portfolio policies to maximise
expected utility over an infinite horizon. They extend earlier work by Merton (1971)
and Constantinides (1986). However, while these papers are concerned with optimal
policies, they are not directly concerned with the problems of replicating (or similarly
hedging) contingent claims by means of the underlying asset.

Mention should also be made of a number of other recent papers related to ours. The
model first proposed by Hodges and Neuberger (1989) has been further studied by Davis
and Panas (1991), and Davis, Panas and Zariphopoulou (1992). Dixit (1991) and Dumas
(1991) provide useful material on smooth pasting conditions which usually apply to
problems such as ours. Figlewski (1987) gives some interesting simulation results.
Boyle and Vorst (1992) provide an elegant reworking of Leland's analysis within a
binomial framework. This has the following interesting feature. Their variance
adjustment differs from Leland's, essentially because the binomial assumption distorts
the expected absolute price change in any sub-interval even though it provides the
correct variance. Edirisinghe, Naik and Uppal (1991) also provide a binomial
replication based approach, and apply a technology based on linear programming.
Replication can be a dangerous philosophy. Bensaid, Lesne, Pages and Scheinkman
(1991), also in a discrete-time framework, show that it can be cheaper to dominate a
contingent claim than to exactly replicate it. Neuberger (1992) shows that in contrast to
the diffusion case, under a pure jump process (with fixed jump size), exact replication
can provide tight bounds on option values.



Section 2 of the paper describes the general problem of the best replication of a
contingent claim (or portfolio of claims) under transactions costs. Exact replication at
finite cost, even when possible, is generally too expensive to be desirable. The
replication problem must therefore be formulated relative to some loss function (or
utility function for marginal wealth changes). We show that this problem is one of
stochastic optimal control and can be characterised by a conventional backward
recursion (dynamic programming) technique like a binomial procedure. In general it is
necessary to use numerical methods of solution as the general problem involves three
state variables. By using a suitable utility function (exponential), the number of state
variables is reduced to two and we are able to obtain numerical solutions to realistic
problems. Section 3 of the paper describes the method we have chosen for numerical
implementation of our procedures, and section 4 discusses some of the properties of the
optimal hedging strategies we obtain. Our simulation analysis, in section 5, compares
the hedging pei'formance of a variety of approaches to hedge a small selection of option
exposures. The optimal control based strategies are shown to be considerably better than
the alternative strategies described by Leland. Section 6 presents our conclusions, and
summarises the advantages of our optimal-control approach.

2. The Model

The structure of the model follows that developed in Hodges and Neuberger (1989).
Davis and Panas (1991) and Davis, Panas and Zariphopoulou (1992) have developed
some of its theoretical properties. We consider an asset whose price S; at time ¢ evolves
under the diffusion process described by

ds, = u(s; )at +o(s; )az )

The problem is to replicate the outcomes from a contingent claim whose payoffs at a
single future date T are given by C(S7). The replication is to be accomplished by
holding x; units of the asset plus either borrowing or lending at a constant interest rate r.
The holdings in this replicating portfolio are to be actively managed through time, but
transactions in the underlying asset involve a transactions cost amounting to &(v,S) where
v is the volume of shares transacted (either positive or negative) and S is the (mid) share
price. For most purposes we shall specialise this to the case of costs which are a
constant proportion of the value transacted:
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In general it is either impossible or at least undesirable to replicate the contingent claim
exactly. For many problems exact replication at finite cost is impossible. For others,
while exact replication at finite cost may be possible, it will be too expensive to
represent an attractive policy. The replication problem is therefore ill-defined until we
have specified a criterion for choosing between alternative replicating strategies. We
will assume initially a fairly general expected utility criterion which will later be
specialised to a particular function. Thus we assume that an initial amount of money is
invested through time (managed between the risky asset and the risk free rate). By the
terminal date 7, after liquidating the asset holding, an amount of cash yT is available to
set against the contingent liability C(S7). At this date we have an accumulated surplus of

wr =yr —C(Sr) 3)

net of the option value to be replicated. We define a utility function U(wy), and seek to
characterise and calculate replication strategies which maximise the expected value of
this utility function. We may also allow the horizon date to be later than the expiry date
of the contingent claim. Also, since it is definitely possible for y; to be negative, we
are precluded from using some commonly employed utility functions, such as power or
logarithmic utility functions for U(.). We shall assume that U(w) is defined for all real
numbers w, that its first two derivatives exist, are continuous, and satisfy the usual
properties for a risk averse utility function, ie, that U,,>0 and U,,,,,<0.

We now describe the structure of the general problem. Using the notation already
introduced we define the indirect utility function J(.) as:

J(t,S,x,y) = maxE[U(wr)] @)

as the maximum expected utility possible starting at time # when the asset price is S, with
initial holdings of x shares, and an amount y in cash. E[.] is the expectation operator
under some suitable probability measure, not necessarily the objective one. We also
define p* as the rate of drift of S under this measure. The maximum is taken over all
feasible transactions policies. At the last date 7, it is clear that by definition J(.) is
obtained trivially as
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where

wr = xSt +yr —C(Sr) (62)
corresponding to no costs at termination (ie. stock settlement permitted), or

wr = xSy —k(x,5r)+yr - C(sr) (6b)
corresponding to cash settlement after transactions costs have been paid.

The indirect utility function J(.) is solved recursively backwards through time using the
dynamic programming approach of stochastic optimisation. J(.) evolves backwards as
given by

J(t,8,x,y)= max{Eds[ J(t+dt,S+dS,x*,y(x *))]} (7

where the maximum is taken over the choice of the quantity of shares x* to hold.

This optimal control problem is characterised by the second order partial differential
equation (using subscripts to denote partial derivatives)

Je+1*(S)]s+%0%S) ss +yr], =0 (8a)
for interior values of xeX, subject to the boundary conditions

I(T,S,x,y)=U(wr) (8b)
defining J at the terminal date T, and

J(t,S,x+u,y-uS—k(u,S))<]J(t,S,x,y) (8¢)



which defines the boundary of the region X on which transactions occur. For the special
case of constant proportional transactions costs, equation (8c) simplifies to an inequality
relationship between J, and J,,.

The solution to this problem provides a "reservation selling (or buying) price" for the
contingent claim, and also the optimal strategy for hedging it. For our case of
proportional transactions costs the optimum strategy is defined by the functions

x—(tl Sry)r x+(tl S/ y)

which define lower and upper bounds for the number of shares to be held: the discovery
that x<x— leads to transactions to re-establish x at the value x—, and similarly if x>x+ it is
re-established to x+.

The reservation selling (and buying) prices are defined as follows. We define JC(1,5,x,y)
as the expected utility (under an optimal hedging strategy) of assuming the state
contingent liability C, (eg. C(Sy) as before). The individual's reservation selling price
of C, Vg(C) is defined as the price required to provide the same expected utility as not
selling the contingent claim. Thus Fgis defined by the equation

J€(0,5,0,V5)=1°(0,5,0,0) ©)
where JO is defined as JC, but with no state contingent liability assumed.

Similarly, we can define the buying price V5 as the maximum price worth paying to buy
the contingent claim, defined by the equation

77(0,5,0,-vg)=1%0,5,0,0) (10)

In addition to calculating optimal hedging strategies and valuations, we can also
calculate recursively as many moments of the distribution of wy as may be of interest.
The moments of w about zero simply accumulate as expectations conditional on the
state variables involved.

Note that under this general formulation, at each date in the calculation, the indirect
utility function (and also any derived moment functions) depend on the three state
variables of S, x and y. The computational effort required may be considerable, unless



simplifications are found. A general numerical solution would be daunting. We
therefore specialise the utility function to the negative exponential

U(wr)=—exp(-Awr) (11)

and also choose the risk free interest rate r as the risk adjusted rate of drift, u*. This
reduces the state variables by one and makes the computations relatively straight
forward. It also enables us to produce strategies which have the attractively simple
properties of not being wealth dependent and not creating risky positions in the absence
of any contingent claim to be hedged. The optimal control problem under this specific
set of assumptions is developed in Appendix A.

3. Computational Aspects

In this section we give a brief description of some transformations and approximations
we use to obtain a robust and quick computational scheme. In their original work,
Hodges and Neuberger used a binomial tree for the stock price, with a large vector
corresponding to different possible deltas at each node of the tree. At each stage, the
value of the indirect utility function H(.) was calculated for each element of each vector
by the usual binomial averaging scheme, and these were then modified to reflect the
inequality relationships which stem from undertaking transactions when it improves
expected utility to do so. Although this scheme works reasonably well, it has a number
of disadvantages. The values of expected utility are exponential in terminal wealth, and
therefore computationally liable to "blow-up" as either underflow or overflow. It
therefore seems better to work with the logarithm of (minus) the utility, which is simply
the reservation price.

The indirect utility function H evolves as a normal diffusion. It is a simple matter to
work out (using Ito's Lemma) the diffusion for In(~-H), normalised as the reservation
price. The boundary condition on the reservation price is now the obvious linear slope
condition that d¥7/0x must lie between -S(I+k) and -S(1-k). We still use a conventional
binomial scheme for the evolution of S, and it is chosen so that the up and down
probabilities are equal. Our numerical scheme is based on the following evolution of
reservation values in our binomial tree. The reservation price ¥ at a particular node j is
related to the corresponding indirect utility function by



exp{?» V]} =-H;

Hj diffuses backwards, so ¥ is related to its two successor values V7, 2 as

exp{AVq}+exp{A 15}
2

1+ exp{?»(Vp_ = Vl)}
2

exp{AVp}=

= exp{?» Vl}

This gives

1 —
Vo= v1+11n{ +expiA(Vs Vl)}]

A 2 %)

Finally we note the power series expansion:

Lol ®)_ g, 22
1(2+2e) >t% —digg -

A
o =3+ )+ (-1 - (19)

and we can ignore the higher order terms as long as A is not chosen too large, and our
grid size is also sufficiently small.

We can also use this approximation to find the first derivative of Vp, as

Vi =3+ 1)+ 2 (4 -)( -v3)... o)

in order to take account of the boundary conditions arising from transacting.

The method we adopt is to make a functional approximation to ¥ as a function of x at
each node. This approximation is based on knowing the values of x and ¥ at which
dVj/ox equals -S(1+k), -S, and -S(1-k) respectively. The first and last of these correspond
to our control limits x- and x+, and outside these V; is simply a linear function. From
the functional approximations we can use the equations given above to search for the



corresponding points at the next node of our tree. We use a combination of Newton-
Raphson and bisection to perform this search, as in some parts of the tree the pure
Newton-Raphson does not converge. We can thus ‘make the same type of functional
approximation on the new node and proceed in this way for the entire tree. This
procedure gives a large improvement in speed, and an enormous saving in storage

requirements, as we now need only store a handful of parameters at each node of the
binomial tree.

4. Properties of Optimal Hedging
Strategies

We will now provide some general comments regarding the properties of optimal
replication strategies. The problem of finding the optimal policy is one of solving the
partial differential equation corresponding to (8). The solution starts from the terminal
boundary condition and is also subject to a free boundary condition which corresponds
to the position of the control boundary. The solution provides a reservation selling price
(or buying price) above which it is advantageous to sell (or buy) the contingent claim
and hedge the risk using the prescribed strategy. As we have just seen, the optimal
control x is constrained to evolve between control limits which depend on time, and on
the asset price. Under the negative exponential utility assumption the amount of cash
accumulated into the replicating portfolio is irrelevant. No controlling action is taken
until the control parameter x attains one of its limits. We will use some numerical
examples to illustrate general features of our solutions.

Figure 1 shows the buy and sell reservation prices computed for a six month call option,
with Black-Scholes values for comparison. The asset value is 100p, the exercise prices
is 100p, the volatility is 30% and we have used a zero interest rate. Transactions costs
are at 2% (each way) and we have chosen A=1. We have used these values throughout
the numerical work reported in this paper, excepting that for our simulations we have
used a transactions cost of 1% instead of 2%.

Figures 2 and 3 plot the control region for fixed time to expiry as a function of the price
of the underlying asset. This region evolves through time in a way comparable to the
behaviour of the Black-Scholes delta curve for hedging options in the absence of any
transactions costs. As .S changes, it is necessary to adjust the delta of the hedge only as



much as is required to keep within the region defined by the two curves. The shape of
the curves depend on the contingent claim to be hedged, on the level of transactions cost
and on the degree of risk aversion. They also reflect the variance intuition of Leland
(1985). Leland noted that when there is a short gamma exposure (so that an increase in
asset price needs to an increased requirement for the underlying) the transactions cost
makes it as if the price movement had been even greater. If we are hedging a short call
our control region is flattened, corresponding to an increased variance assumption. Note
that for out-of-the-money and in-the-money options, the Black-Scholes delta may be
outside the optimal control region. In other words, if we inherit an options book which
is currently exactly delta-hedged under Black-Scholes and we face delta-hedging costs, it
may nevertheless be optimal to move the hedge away from the Black-Scholes value. If
we plot Black-Scholes delta curves on our diagram for different values of volatility we
find that they cross the curves we have computed: our curves are not simply "Leland"
ones for simple constant volatility adjustments. We should think of the volatility
adjustment as reflecting the expected cost of future hedging transactions, and this
depends on the level of the price itself.

Conversely, for the case where an option has been purchased, the positive gamma means
we can sell some of the underlying after a price rise, so here it is as if the variance were
smaller, and hence our hedging region slopes at a steeper angle. In this case the region is
wider, which reflects the fact that the convex shaped payoff presents much less risk of
large losses. For lower levels of cost or higher levels of risk aversion we should expect
the width of the no-transactions region to be reduced.

Hedging more complex positions is especially interesting, since with a combination of
both long and short positions Leland's method may find it hard to know whether to
increase or decrease the variance. The optimal-control approach has no such problems.
Conditional on any pre-specified contingent payoffs, which can even occur at differing
dates, it works out the best hedge for a given degree of risk aversion. The risk aversion
reflects the trade-off to be made between the expected cost of managing the hedge and
its variance. We have chosen to hedge the payoffs from a bull spread in order to
illustrate hedging a portfolio with mixed positions.

We next turn to the behaviour of the boundary as a function of time. Close to expiry, the
shape of the control boundary depends critically on the assumptions about settlement.
Where stock settlement is permitted, it is not worth paying transactions' costs
immediately prior to expiry just to avoid minor replication errors. In this case the limits
x_ and x, flare outwards near to the expiry date. However, if settlement must be made in
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cash, any excess position in the underlying had better be liquidated sooner rather than
later. These features are evident from Figures 4-7 which show how the no-transactions
regions evolve through time for various fixed values of the underlying.

It is worth noting how the corridors we compute frequently have fairly constant width
once we are back from the immediate pre-expiration transient. They are not obviously
related to the gamma of the claim, though that is clearly one aspect of their determinants.
Overall we are struck by the complexity of these diagrams and we are no longer

surprised that we have so far failed to obtain any real analytical results as to their
behaviour.

S. Simulation Analysis

In this section we compare the performance of the optimal delta-hedging strategy against
other common strategies: Black-Scholes, Leland and a heuristic strategy based on the
optimal strategy. For the Black-Scholes and Leland strategies it is necessary to choose a
replication interval which reflects the investor's risk aversion. We compute the relevant
delta at the start of each interval and adjust the holding in the underlying asset
accordingly. The heuristic strategy is designed to highlight the relative importance of
the two facets of the optimal strategy: the optimal delta and the width of the no-
transactions region around this delta. The heuristic strategy therefore centres the optimal
region on the Black-Scholes delta rather than the optimal delta. For the optimal and
heuristic strategies we must choose the risk aversion parameter A, we then wait until the
holding in the underlying asset moves outside the no-transactions region at which point
we adjust the holding to the nearest boundary of the no-transactions region.

In order to compare the four strategies we require a suitable metric. We simply adopt a
mean-variance framework and plot the expected cost relative to the Black-Scholes "fair"
value and the standard deviation of that cost. This cost is defined as follows: we sell or
buy the contingent claim for the Black-Scholes (no transactions cost) fair value and use
the proceeds to replicate the claim under the transactions costs. At maturity we compute
the cash value of the portfolio (the value of the underlying asset held less the borrowing
and the liability). This value discounted back to the present is the cost of the strategy
relative to the no transactions costs case.

-11-



Our simulations are based on replication over a year where the minimum revision
interval is one day. We simulate replication of selling and buying a European call (with
an exercise price of 100) and a bull spread! (with a lower exercise price of 100 and an
upper exercise price of 110). The price of these options is set, as stated above, at the no
transactions costs fair value. For all the simulations the initial underlying asset price is
100, the annualised volatility is 30% and the riskless rate is 0. We set the proportional
transactions costs to be 1% of the value of any single trade in the underlying asset.

The simulation proceeds as follows: Firstly we compute the binomial lattice solution to
the optimal strategy. We save a table of the no-transactions region boundary values for
each binomial lattice value of the underlying asset and each time step (we arrange for the
binomial lattice to have the same number of time steps as the simulation). The initial
hedge portfolios are then set up and we begin simulation of the underlying price path.
After each daily time step we check the optimal and heuristic hedges to see if the holding
in the underlying asset is outside the no-transactions region. This is done by
interpolating for the region at the current underlying price from the saved table. Note
that it is possible for the underlying price to move outside the range in the table. If this
occurs we must recompute the binomial lattice solution. However, by arranging for the
binomial lattice to have three nodes rather than one at the current time, we almost never
have to recompute the solution?. If the holding is outside the no-transactions region we
rebalance the hedge back to the nearest boundary. At each Black-Scholes/Leland
replication interval we rebalance these hedges. Finally, at maturity we compute the cost
of each strategy and collect the statistics necessary to compute the mean and variance of
the costs. This path simulation is repeated 1000 times.

Figures 8, 9, 10 and 11 summarise the results of the simulations. The curves correspond
to rebalancing intervals of one to twelve days for the Black-Scholes and Leland
strategies and to A from 0.2 to 10.0 for the optimal and heuristic strategies.

Consider first the replication of a European call (Figures 8 and 9). For the optimal
strategy and the Leland strategy the expected cost is strictly monotonically increasing
with decreasing standard deviation of the cost (increasing risk aversion). But for the

INote that the Leland strategy is strictly only applicable to globally convex or concave payoff functions.
In our implementation of the Leland strategy for a bull spread we use the sign of the Black-Scholes
Gamma to determine the direction in which the volatility is adjusted in an attempt to account for this
problem.

2In the case of a lognormal underlying asset we can of course quantify this probability.
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Black-Scholes and heuristic strategies this is not the case. As we rebalance more and
more frequently the variance of the cost begins to be dominated by the variation of the
underlying asset price. As the risk aversion increases the heuristic strategy tends towards
the Black-Scholes strategy. This is because the no-transactions region becomes very
narrow and since it is centred on the Black-Scholes delta we obtain the Black-Scholes
strategy in the limit. The heuristic strategy helps us to understand the relationship
between the Bléck-Scholes, Leland and optimal strategies. At low risk aversion the no-
transactions region is wide and the optimal delta tends towards the Black-Scholes delta.
As the risk aversion increases the region becomes narrower and the optimal delta
deviates from Black-Scholes.

The curves for the Black-Scholes and Leland strategies exhibit more variability than
those for the optimal and heuristic strategies because for low levels of risk aversion they
rebalance very infrequently and the times when they do rebalance can be severely sub-
optimal. In contrast the optimal (and heuristic) strategies mean rebalancing interval only
varies from 4.6 to 1.6 days over the entire range of A from 0.2 to 10.0.

For the bull spread (Figures 10 and 11) we obtain the same qualitative results but the
details are different. The Leland strategy suffers a similar problem to the Black-Scholes
and heuristic strategies for high levels of risk aversion in that the standard deviation is
not monotonically decreasing with expected cost. In fact the Leland strategy now
performs worse than Black-Scholes. This is because (as we noted earlier) the Leland
strategy is only strictly applicable for globally concave or convex payoff functions where
the volatility is adjusted upwards or downwards respectively.

In summary, it is very important for risk averse investors, to optimise their delta-
hedging; the alternative strategies we have examined are poor substitutes.

6. Summary

The paper has examined the problem of delta-hedging under transactions costs, using the
stochastic optimal control approach first described by Hodges and Neuberger (1989).
Rather than seeking a strategy for exact replication, which is liable to be expensive and
may be dominated by other strategies, this approach obtains the optimal hedging strategy
to maximise expected utility (or to minimise a loss function defined on the replication
error). Under proportional transactions costs this results in policies characterised by
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control bands within which delta must be maintained. Only with a fixed cost component
would it be appropriate to make large transactions to jump into the interior of the control
region.

This method has the advantage over Leland's approach in that it works just as well for
hedging mixed portfolios of long and short positions, and also mixed maturity dates.
The paper describes the basic approach, and derives a new computational method which
substantially increases the speed and reduces the storage required for the calculation.
Characteristics of the optimal policies are discussed, and a simulation study is completed
to compare the hedging characteristics of some alternative policies. The strategies we
tested were chosen so that we could examine which features of a hedging strategy are
most important: hedging to the "correct" delta or hedging only to within a band in order
to conserve transactions costs. The simulations show that the optimal control approach
is substantially more effective than Leland's method, and that while the target delta and
the band around it are both important, surprisingly good hedges can be obtained (at least
for low levels of risk aversion) by hedging using a control region of the right width but
based around an incorrect central delta.
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Appendix A

We here present the derivation of the optimal control problem under our specific choice
of negative exponential utility.

Since from (4) and (11):
](t,S,x, !/) = E[_exp{_xu)T}] (Al)
and the management of x through time is independent of y,
1(£,5,%,y)=J(t,S,%,0)expl-A y &"T—H)
{ | )
If we define a new indirect utility function
H(t,S,x)=](t,S,x,0) (A3)

then we may derive the following new equations and boundary conditions for H, which
correspond to our previous equations (8):

H;+7r SHg+% 6%(S)Hgg =0

(Ada)

H(T,S,x)=—exp{-Awr} (Adb)
_ _ r(T—t)

H(t,S,x+1)> H(t,S,x) expl-MuS—k(x, 5)) e ] (Adc)

For the special case of a constant proportional transactions cost, £(v,S) = k |v| S, this last
equation translates to

Hx =-AS (1 + k)er(T_t)H (A4d)

for x <x-, and

H,=-AS1-k)e'T-9H (Ade)

for x 2 x+.
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Our valuation formulae for selling and buying values Vg and ¥ simplify as follows. As
before, Vg is defined by the equation

71€(0,5,0,v5)=1%0,5,0,0)

(AS)
which now can be expressed as
HC(O, S,O)exp{—?»VS e’T} = HO(O,S,O) =-1, so
(A6)
Vg = -l T ln(—H C)
A
Similarly, for the buying price V3, we have
1 1 —C
Vg=——¢ " In|-H
p=—¢"TIn(-H ) “n

-19-






Hodges-Clewlow and Black-Scholes

Call Prices
Option Price

100
I" /
R
80 —---------------------------------—-----7’--/- -----
1 T ey R e
40 —----- R LR s -
1 ) I L #= g
" |- - 1 | | | |
40 60 80 100 120 140 160 180 200

Stock Price

Hodges-Clewlow lower bound Black-Scholes Hodges-Clewlow upper bounnd

Figure 1



Hodges-CIeonw and Black-Scholes Delta

Stock Settlement (short call)
Delta

1.2

0.8 [ ------mmmm e 7
G [~ reexsemmmmncass -
04 [~

02 —

0.2) I I I I I I I
40 60 80 100 120 140 160 180 200

Stock Price

Hodges-Clewlow lower bound Black-Scholes Delta Hodges-Clewlow upper bound

Figure 2



Hodges-Clewlow and Black-Scholes Delta

Stock Settlement (long call)
Delta

0.2

(0.2)

(0.4)

(0.6)

(0.8)

(1)

(1.2)
40 60 80 100 120 140 160 180 200

Stock Price

Hodges-Clewlow lower bound Black-Scholes Delta Hodges-Clewlow upper bound

Figure 3



Hodges-Clewlow Hedging Region

Cash Settlement (short call)
Region boundary

1.5

- -

- ==

—

— e ———

05— T T T T T T T T T T T T l'

55 | | | |
0.5 0.6 0.7 0.8 0.9

Time

S=90 S=100 S=110

Figure 4



Hodges-Clewlow Hedging Region
Stock Settlement (short call)

Region boundary

1.5

0.5

-0.5

—_—— — — — . —— — —— s . e e e e ——— e e o — — — —

_— e — — —
—_——— —
_— —
—
—_—

0.5 0.6 0.7 0.8 0.9
Time

S=90 S=100 S=110

Figure 5



Hodges-Clewlow Hedging Region

Cash Settlement (long call)
Region boundary

0.5

-1.5
0.5 0.6 0.7 0.8 0.9

Time

S=90 S=100 S=110



Hodges-Clewlow Hedging Region

Stock Settlement (long call)
Region boundary

0.5

l I l l
0.5 0.6 0.7 0.8 0.9

Time

-1.5

S=90 S=100 S=110



Comparison of Hedging Strategies

for European Call (short)
E[cost]

6

: | I I I | |
1 1.2 1.4 1.6 1.8 2 2.2 24

SD[cost]

Black-Scholes Leland Heuristic Hodges-Clewlow

Figure 8



Comparison of Hedging Strategies
for European Call (long)

E[cost]

6

N
S \
~ -, .
~ = \‘\\~
| | | | | | |
1.2 1.4 1.6 1.8 2 22 2.4
SD[cost]

Black-Scholes Leland Heuristic Hodges-Clewlow

Figure 9



Comparison of Hedging Strategies

for Bull Spread (short)
E[cost]
25

15 -------m---- BRI e R

05 [ -==----rmmmmeme e

SD[cost]

Black-Scholes Leland Heuristic Hodges-Clewlow

Figure 10



Comparisdn of Hedging Strategies

E[cost]

for Bull Spread (long)

25

15 J—--recmserrssmmcazanfrmansssnnn EEEEEREEEEEEEEREE

L R L LR R E L e LR LR

0.5 1 1.5 2
SD[cost]

Black-Scholes Leland Heuristic Hodges-Clewlow

Figure 11

2.5



