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The Magnitude of Implied Volatility Smiles:
Theory and Empirical Evidence for Exchange Rates

Stephen ] Taylor and Xinzhong Xu

Abstract

Theoretical methods are used to show that implied volatilities are approximately a
quadratic function of the forward price divided by the exercise price when volatility is
stochastic, asset price and volatility differentials are uncorrelated and volatility risk is not
priced. The curvature of the quadratic function depends on the time to maturity of the
option and several volatility parameters including the present level, the long-run median
level and the variance of future average volatility. The magnitude of the 'smile effect' is a
decreasing function of time to maturity. Empirical evidence for exchange rate options
supports the theoretical predictions, although the empirical smiles are approximately
twice as large as those predicted by theory.



The magnitude of implied volatility smiles :

theory and empirical evidence for exchange rates

1. Introduction

At any moment of time implied volatilities vary for different times to option expiry T and
different exercise prices X. A matrix of implied volatilities is frequently available, with
columns ordered by T and rows ordered by X. Rational expectations of the average volatility
during the next T years will vary with T whenever volatility is believed to be stochastic. Thus
the rows of the implied volatility matrix may provide information about. the term structure of

‘expected future volatility. Xu and Taylor (1993) have explained how this term structure can

- . be estimated from a row of the implied volatility matrix. In this paper we present theoretical

and empirical results for the columns of the matrix.

Hull and White (1987) and Stein and Stein (1991) have shown that it is rational for the
implied volatility to vary with X when the asset volatiﬁty is believed to be stochastic. Their
equations and calc':ulations show that a plot of theoretical implieds against X displays a
’smile’ : the function has a U-shape with the minimum implied occurring when X is the
forward price of the underlying asset. Shastri and Wethyavivorn (1987) show that a ’smile
effect’ is predicted by theory when prices follow a mixed jump-diffusion process.

There have been several attempts to decide if option prices have a ’strike bias’ but we
are only aware of one empirical study which explores the idea that a *smile effect’ is the
appropriate form of strike bias. This is the exchange rate paper by Shastri and Wethyavivorn
(1987). They concluded that empirical implieds in 1983 and 1984 were a U-shaped function
of the exchange rate divided by X. Fung and Hsieh (1991) discuss informally some empirical
’smile’ pictures. Traders have told us that they know implieds *smile’ but there evidence is
largely anecdotal.

Section 2 reviews notation and definitions, followed by theoretical results in Sections 3

to 5. Stochastic volatility is shown to be a sufficient reason for smiles to exist. The theoretical



effects are of economic importance especially when T is a relatively short time. Section 6
describes empirical estimates of the magnitude of the smile effect for spot currency options
traded at the Philadelphia Stock Exchange. A general effect is found although it is more

pronounced than predicted by the theory we develop. Conélusions are stated in Section 7.

2. Notation and definitions

To develop the theoretical results we consider European options, traded upon an asset which
pays dividends at a continuous rate. The fair price for a call option when the asset price

follows geometric Brownian motion is i‘epresented by

¢($,T,X,r,d,V), V=0,
or simply ¢(X, V), with S the spot price, T the time to expiry, X the exercise price, r the
riskfree interest rate, d the dividend rate and o the volatility (which is constant for the

assumed price model). Time ¢ is measured in years and the present time is z = 0.

When volatility is stochastic and therefore depends upbn tlet

V(@) =o(),

and suppose the conditional distribution V | V(0) has probability density function f(v) for
which the mean and variance are respectively iy and G%.

The fair price in a world of stochastic volatility is represented by

Cl oo Xys )

When firstly the price and the volatility both follow diffusion processes within the general
structure discussed by Hull and White (1987), secondly volatility risk is not priced and
thirdly the price and volatility differentials are uncorrelated, C (X)) is given by the following
integral :



o= [ e fw)av. 1)
0

For each X there is a Black-Scholes implied volatility corresponding to the fair price given by
a stochastic volatility process. This implied quantity is defined by :

CX)=c(X,0%, X)) )
3. Theoretical approximations

Series expansions of ¢ (X, V) around V = i permit theoretical analysis of the smile effect. A
quadratic approximation is required in (1) and a linear approximation in (2) to ensure that

o5, depends upon X. Then :

C(X)=ff(v)[c(x,uv>+(v—uv)gv—"%( ~Hp) azc]

avz
1 ,d%
=c(X, llv)+§ Gé'a? 3)
and
CO =X, ) +[ 02,00 = 1|2 @
From (3) and (4) :
oc o’
-l L2
and so
1 ,d%c/oV?
-3 20 ®

with the partial derivatives evaluated at V = ;.. These partials are functions of X and other

variables.



The ratio of the second partial derivative to the first partial derivative of ¢, with respect

to V, can be calculated from the following familiar equations :

cX,V)=SeN(d,)-Xe"'NWd,),

. =1n(S/X)+( —d+) V)T

(VT)

d,=d,~(VTY,

dc 1 !

—dI' 'i 2
=5 SeTUA)TY

azc 1 _ﬂ' 2
26 2T T 1),

and hence
d*c/oV? _ dd,—1

= . : 6
dc/oV 2V , )
Using the forward price F = Se” =7,

_In(F/X)+3VT
o (VT )%
and thus
dl(X)dz(X)=[ln(F/X)]z—iV"Tz. -
VT
Also,

2
400400 - dyFyF) = LEEL ®

Substituting (7) into (6), then replacing V by iy and finally substituting (6) into (5)
gives the following approximation :

oy
OopX) = Py + Z_[dl(X)dz(X)—ll ©)
Hy



Sy [ Un(FX)P - pyT -3 15T

B u'V EV- uvT

(10)

From (7) and (9) the approximate implied volatility is minimised when X =F.
Furthermore, the quadratic term [In(F/X)]? predicts a theoretical smile.
The height of the smile can be approximated if it is assumed that the second term on the

right of (9) is small compared with the first term. This assumption gives

- oy
CppX) = uv[1+(d1(X)dz(X)—1)—8F . (11)
v
From (8), an approximate height is given by
CinyX) =0,y (F) = [In(F/X)P—==. 12
imp(X) = O (F) [In( )]8Tu%5 (12)
From (8) and (11) it can also be shown that an approximate relative height is given by
Gunp(X) ' 2 G%
= 1+[In(F/X : 13
Gou (F) [In( . )] 8T1 (13)

Several manuscripts, some unpublished, cbntain subsets of equations (1)-(8), whilst equations
(9)-(13) are believed to be new. |

A plot of theoretical implied volatilities against the exercise price will display a
quadratic function (approximately) of In(F/X) with the magnitude of the smile effect being
dependent upon T, V(0) and the parameters of the process defining {V(¢),0<t <T}.

4. Accuracy of the approximations

| The approximations have been evaluated for one of the most frequently specified
continuous-time stochastic processes for volatility. This process is an Ornstein-Uhlenbeck
(O-U) process for the logarithm of volatility, studied by Scott (1987), Wiggins (1987) and
Chesney and Scott (1989). These authors have considered discrete-time approximations to
this process, as also have Taylor (1986, 1993), Harvey, Ruiz and Shephard (1992) and
Jacquier, Polson and Rossi (1992).



Recall o(t) = W(t) and denote the unconditional mean and variance of In(o(t)) by
respectively o and B The diffusion model for volatility is then :

1
“d(nc) = ®(a—Inc)dt + (QO)YPdW. (14)
with @ a positive parameter which controls the rate of reversion towards the mean level o

.and with W (¢) a standardised Wiener process. For the *half-life’ 4, equal to (In2)/®, :
1
E[lno(h) | c(0)] = 5[a+ln(c(0))].

Monte Carlo methods have been used to calculate exact implied volatilities when the
volatility logarithm follows the above O-U process. These methods require a discrete-time
approximation to (14). The discrete-time process is also required for the éalculation of py and
0% and hence the approximate implieds given by (11) and the approximate relative smile
heights given by (13).

A discrete-time approximation to (14) which matches the mean, variance and half-life

is the following AR(1) process :

1
In(G,,,)~In(0) = (1-9)(@—In(6))+B(1—-0¥e, . (15)

with ¢ = exp(—(n2)(A2)/h)

and {€,,,€54,, ...} a set of i.i.d. standardised Normal variables. For model (15) and T = N(At),

straightforward mathematics and calculations provide the conditional mean and variance of

— 1X 1X
Vdi.rcnle = NJEI ‘,j(At) = ﬁjzll cf(N)

for any specified initial variance V/(0). All the calculations in this paper based upon the
discrete process assume At = 1 day = 1/365 years.

The accuracy of the approximations derived in Section 3 has been evaluated by
considering parameter values similar to the empirical estimates reported for currencies by
Taylor (1993) and Harvey, Ruiz and Shephard (1992). The parameter o was chosen so that
o(¢) has median value equal to 10%. The parameter  was chosen to be 0.4 and results are

given for the initial volatility 6(0) equal to one of the lower quartile Q, = exp(a.— 0.674p) =



7.6%, the median Q, = exp(ct) = 10% and the upper quartile Q, = exp(ct+0.674pB) = 13.1%.
‘The half-life h was set equal to 30 days.
.Tablc 1 presents results when :
T=0.5, 1, 2 or 4 half-lives,
X/F =0.92,0.96, 1, 1.04 or 1.08,
0(0)=0,,0,0r 0,
r=d=0.06, and
S = F = 100.
Columns 3 to 6 list the exact implieds 6;,,(X), the approximate implieds given by equation
(11), the exact relative heights 6;,,,(X)/0;,,(F) and the approximate relaﬁvc heights given by

equation (13). Sufficient Monte Carlo replications were performed to ensure that the standard

- . errors of the exact implieds were less than 0.00001.

It can be seen from Table 1 that the approximations are close to the exact results when
X/F equals 0.96, 1 or 1.04 but the approximations are sometimes inaccurate when X/F equals
0.92 or 1.08. Both the exact and approximate results show that smile magnitudes decrease as

either T or 6(0) increases.
5. Further results for Ornstein-Uhlenbeck processes

Equation (13) predicts that empirical estimates of G,,,(X)/0;,,(F) may depend upon X/F and

the function

14

8Ty

R(T)= (16)

It is helpful for empirical work to understand how R depends upon T and o(0).

Table 2 presents some relevant results when In(o(z)) follows an O-U process. The
parameters o and A are as before but now B is one of 0.2, 0.4 or 0.6. Once more
o(0) = Q,, O, or Q,. Panel A of Table 2 lists values for both 62/(83) and 6%, with V
approximated by V giecrere- These functions of T are unimodal. Panel B of Table 2 lists the



values of T which maximise these functions for the nine combinations of B and ¢(0). Most of
the maxima are at between two and four "half-lives’.

The function R (T') decreases as T increases for each of the nine combinations. It is
difficult to say at what rate the function R (T') decreases. When Bis 0.4, R(T) is, very
approximately, proportional to 7°° when T is around one half-life and proportional to T~
when T is around 2.5 half-lives. The function is proportional to T for large T.

Table 2 confirms that R (T') decreases as ¢(0) increases and, for fixed T, 6(0) is
approximately proportional to 1/6(0). Also R(T) increases with .

Analytic results can be obtained when V(¢), rather than its logarithm, follows an O-U
process. Of course it is then impossible to guarantee that V(¢) is positive. Suppose the

unconditional mean and variance of V(¢) are 1y, and 6%, and :

dV = ®W,-V)dr + Q®Yo,dWw (15)

with @ positive and W(z) a standardised Wiener process. The "half-life’ again equals
(In2)/®, with :

BV VO] = 2 (b +V(O).

Adapting the analysis presented in Cox and Miller (1972, Sec. 5.8) gives the following results

for the first two conditional moments :

_ l_e-—OT
Ky = EIVIV(O)] = llv"'[V(O)_llv]( — ) (16)
and o = var(V|V(0) = ;sz[q>T—(1—c*"T)—%(1—c*"")2]. (17)

The conditional variance as a function of T is unimodal and converges to zero as T — 0 or
T — oo. The maximum of this function is at T = 1.89/® (approx.) which is 2.73 *half-lives’

(approx.). The conditional variance depends on neither p; nor V(0). From (17),

oy = %ozy(ch) as T —0,

= 028067,  when T =(n2)/®,



0.380;  when T =1.89/®,

265/(®T) as T —eo.

The theoretical magnitude of the smile effect as a function of T depends particularly upon
o%/T. This quantity is essentially constant for small T, is proportional to T near to 2.73
*half-lives’ and is proportional to T2 for large T.

It is concluded that when either V(¢) or its logarithm follows an O-U process then the
theoretical relative smile height is

(i) a decreasing function of T, and

(ii) a decreasing function of o(0).
It is also concluded that, in theory, ’large’ smiles should be found at those markets whose

prices have ’high’ values of var(V (¢)).
6. Empirical estimates of smile magnitudes

6.1 Currency data

The primary source database for the options prices is the transaction report compiled
daily by the Philadelphia Stock Exchange (PHLX). Only the closing call and put options
prices and the simultaneous spot exchange rate quotes for the (British) Pound, (German)
Mark, (Japanese) Yen and (Swiss) Franc against the US Dollar have been used. All eight
datasets start on November 5, 1984; Pound calls and puts, Mark calls and Yen calls end on
January 8, 1992 while the other four datasets end on November 22, 1989. This is determined
by the availability of the PHLX data. However, the transaction report is not available for
some trading days and then prices have been collected manually from the Wall Street Journal
(WSJ). Approximately 10% of our implied volatilities are calculated from WSJ prices.

The domestic and foreign interest rates used are London euro-currency rates, collected
from Damsﬁeam. This source provides overnight, seven days, one month, three months, six

months and one year interest rates. For intermediate times, we simply use linear interpolation.
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Often applied exclusion criteria have been used to remove uninformative options
records from the database. Option prices less than 0.05 cents are eliminated as transaction
costs including the bid-ask spread and liquidity premia are then large relative to the options
prices. We also remove options with less than 10 calendar days to expiry because of

well-known expiration effects.

6.2 Calculation of implied volatility

Implied volatilities have been calculated from American model prices. The model
prices are approximated by the very accurate functions derived in Barone-Adesi and Whaley
(1987). The calculations of implied volatility used an_intcrval subdivision method, which

always converged to an unique solution.

6.3 Estimation of G,,,(F)

In order to empirically examine the relative smile effect, we require estimates of the
implied volatility when the exercise price is exactly equal to the forward price. These
estimates are required for all values of T found in the datasets. Estimates have been obtained
by fitting the term structure model developed in Xu and Taylor (1993) to nearest-the-money
options whose exercise prices minimise | X — F |. This methodology provides approximate
estimates of the at-the-money implied volatilities.

The volatility term structure model involves two factors representing short-term and
long-term volatility expectations. These volatility expectations are assumed to be mean
reverting. The average squared volatility over a general time interval is a linear function of
squared short- and long-term expected volatilities.

A Kalman filtering method has been applied to obtain both parameter estimates for the
term structure model and time series of volatility expectations estimates. Estimates of
at-the-money implied volatility are then calculated using equation (7) in Xu and Taylor

(1993). These estimates are denoted by

G F,T).



11

6.4 The regression model
Let M denote the moneyness’ of an option defined by

M = In(F/X).
Guided by the general conclusions about theoretical smiles given in Section 5, the following

regression model has been estimated using ordinary least squares :

LIPS P .
GW(F,T)— 0 lﬁ aZW a3T 4T

2 2

+ a = +a.,—=
*NT Gipp(F,T)  TCimp(F,T)

+ residual. (18)

The smile theory developed in Section 3 assumes that asset price and volatility differentials
are uncorrelated and hence smile effects are symmetric functions of M. This prediction can be
assessed by fitting the above regression specification which permits the relationship between
implied volatility ratios and M to be asymmetric. Additional variables can be included in the
regression model but it has been found that explanatqry variables such as M and M? do not

change the functions fitted to implied volatility ratios.

6.5 Results

Five figures are used to summarise the regression results for the Mark options. These
clearly demonstrate the existence of smile effects in the prices of these options. Further
figures, available from the authors, make clear that similar implied volatility smiles are found
for the other three currencies. These figures all show the fitted regression relationships when
the at-the-money volatility is 12%.

Figure 1 summarises the implied volatility smiles given by the regression estimates for
Mark calls. Six curves representing six different maturities ranging from 10 déys to 360 days
are plotted. Implied volatility smiles are most pronounced for short maturity options and
become smaller when the time to maturity becomes longer as predicted by theory. There is
little evidence of skewness in these implied volatilities. Similar smiles have been obtained for

Mark puts as in figure 2, although the magnitude of the effects for the puts is slightly larger
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than those for the calls. The results presented here are broadly consistent with those of Shastri
and Wethyavivorn (1987) for two earlier years although they simply examined average
implied volatilities across different maturities and different levels of moneyness.

Figures 3 and 4 plot implied volatility smiles when the regression model is estimated
for subsets of the Mark calls data, respectively when the time to maturity is first restricted to
Bc 10 to 30 days and second with the restriction from 31 to 60 days. The magnitude of the
smiles on Figures 3 and 4 are extremely close to those on Figure 1. Furthermore, the curves
for T = 30 days on Figures 3 and 4 are almost identical. These observations confirm that the
results are robust against the selection of maturities T.

Figure 5 presents the results for 30-day implied volatility smiles for Mark calls on a
year-to-year basis. The variation between years is small during the first six years, although it
seems the magnitude of the volatility ratio has increased gradually for in-the-money options.
Skewness in the fitted curves is more evident than for the full sample estimates. The
skewness changed from negative to positive sometime around 1988.

Comparing Table 1 with Figure 1 we find that the empirical implied ratios are larger
than the theoretical ratios. The magnitudes of the empirical smiles are very approximately
twice the magnitude of the theoretical smiles. This might be explained by our assumptions
about the price process (for example, no jumps) or by market imperfections (for example,

transaction costs).
7. Conclusions

The *smile effect’ has been shown, by theoretical methods, to be a logical consequence of
stochastic variation in asset volatility. Implied volatilities are approximately a quadratic
function of In(F/X) when asset price and volatility differentials are uncorrelated and volatility
risk is not priced. This conclusion is probably also true when volatility risk is priced although
we have not yet proved this conjecture. The curvature of the quadratic function depends on

the time to maturity T of the option and several volatility parameters including the present
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level, the long-run median level and the variance of future average volatility. The magnitude
of the smile is a decreasing function of T. It is concluded that implied volatilities ought to be
functfons of both T and X, even when there are no term structure effects so that at-the-money
options have the same implieds for all T.

The empirical evidence for exchange rate options supports the theoretical predictions,

although the empirical smiles are larger than predicted by the theory.
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Parameters

S$=100, r=0.06, d= 0.06

median 6(¢) = Q, = 10%

standard deviation of In(c(z)) =P = 0.4
lower quartile for o(t) =0, = 7.6%
upper quartile for () =0;=13.1%
half-life h = 30 days

P

(days)

15
15
15
15
15

30
30
30
30
30

60
60
60
60
60

120
120
120
120
120

: Initi

92
96
100
104
108

92
96
100
104
108

92
96
100
104
108

92
96
100
104
108

exact
implied
%

n/a
8.79
8.18
8.75

n/a

n/a
9.16
8.66
9.12

n/a

10 .52
9.69
9.35
9.66

10.37

10.77
10.32
10.16
10.31
10.68

15

Table 1

Accuracy of smile approximations
when the logarithm of volatility follows an O-U process

approx.

implied
(11)
%

8.93
8.17
8.87

8.62
9.21

11.03
9.70
9.28
9.67

10.77

10.88
10.28
10.09
10.26
10.77

exact

ratio

1.074
.000
1.069

[y

1.058
.000
.054

(]

.125
.036
.000
.033
.109

N

.059
.016
.000
.014
.051

H R R R e

approx.

ratio -

(13)

o =

N

N Sl =

.091
.000
.084

.072
.000
.067

.180
.043
.000
.040
.154

.076
.018
.000
.017
.064

N

10.50



Panel B : Initial volatility (Q)=Q,=10%
T X exact approx.
(days) implied implied
(11)
% %
15 92 n/a
15 96 10.78 10.86
15 100 10.29 10.28
15 104 10.74 10.81
15 108 n/a
30 92 11.94 12.54
30 96 10.91 10.97
30 100 10.51 10.47
30 104 10.89 10.93
30 108 11.76 12.24
60 92 11.78 12.11
60 96 11.06 11.05
60 100 10.78 10.71
60 104 11.03 11.02
60 108 11.65 11.91
120 92 11.59 11.67
120 96 11.20 11.16
120 100 11.07 10.99
120 104 11.19 11.14
120 108 11.52 11.57

16

exact

ratio

1.047
1.000
1.044

1.136
1.038
1.000
1.036

1.119

1.092
1.025
1.000
1.023
1.081

1.048
1.012
1.000
1.011
1.041

approx.

ratio
(13)

1.055
1.000
1.051

1.193
1.046
1.000
1.043
1.164

1.126
1.030
1.000
1.028
1.107

1.059
1.014
1.000
1.013
1.051

10.43

10.75

11.12

11.41



P

(days)

15
15
15
15
15

30
30
30
30
30

60
60
60
60
60

120
120
120
120
120

. Initi

92
96
100
104
108

92
96
100
104
108

92
96
100
104
108

92
96
100
104
108

ili

exact

implied

13
12
13
14

13.
13.
12.
13.
13.

13
12
12
12
13

12.

12
12
12
12

%

n/a
.35
.96
#32
.19

99
12
80
10
83

.34
.73
51
.71
.23

61
.27
.16
w27
.55

approx.

implied

(11)

%

13.39
12.95
13.35
14.51

14.
13.
.75
13.
14.

12

13
12

13

35
14

11
12

.55
.70
12.
12.

44
68

.39

12.

12

12
12

66

.23
12.

09

.22
.57

17

exact

ratio

1.029
1.000
1.027
1.094

1.093
1.025
1.000
1.023
1.080

1.066
1.017
1.000
1.016
1.057

1.037

1.009-

1.000
1.009

©1.032

approx.

ratio
(13)

1.033
1.000
1.031
1.119

1.122
1.029
1.000
1.027
1.104

1.086
1.021
1.000
1.019
1.074

1.045
1.011
1.000

~1.010

1.039

13.13

13.08

12.87

12.51



18

Table 2

Selected conditional moments for V when the logarithm of volatility follows an O-U process

The conditional moments depend on the initial volatility (0)

Parameters .

median o(t) =0, = 10%

standard deviation of In(c(2)) = B

lower quartile for o(t) = Q, = 10%/exp(0.674P)
upper quartile for 6(¢) = 0, = 10%*exp(0.674p)
half-life A = 30 days

Panel A : Conditional moment functions

B T o5/ (813) 10°c%
(days)

c(0) = Q1 Qz QJ c(0) = Q_x Qz Q3
0.2 15 0.503 0.395 0.310 2.20 3.39 5.24
0.2 30 0.741 0.596 0.478 3.75 5.34 7.64
0.2 60 0.902 0.755 0.629 5.54 7.09 9.12
0.2 120 0.820 0.724 0.636 6.17 7.07 8.15
0.4 15 2.612 1.614 0.995 7.26 17.20 40.87
0.4 30 3.773 2.449 1.577 15.42 31.00 62.91
0.4 60 4.329 3.060 2.125 29.24 46.99 76.98
0.4 120 3.583 2.831 2.182 39.13 50.39 66.60
0.6 15 7.774 3.788 1.834 16.14 58.20 211.39
0.6 30 11.090 5.846 3.026 48.10 133.79 379.24
0.6 60 11.893 7.192 4.180 130.36 255.84 521.13
0.6 120 8.707 6.262 4.268 218.98 309.18 458.64
Panel B : f T which maximi nditional moment function
B oH/(813) oy

c(0) = Q Q. Qs c(0) = Q Q, Qs
0.2 69 78 87 105 84 66
0.4 58 72 90 132 96 64
0.6 49 65 89 154 109 70
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