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Abstract

There have been many studies on the use of dividend yields to predict returns, most concentrating on
US data. There is a paucity of studies based on data from the UK stock market. We investigate the
ability of dividend yields to forecast nominal returns on the value weighted FTA All Share Index,
for return horizons ranging from one month to four years. We use non-overlapping as well as
overlapping observations in our study and the sample period runs from 1965 to 1992,

Following Goetzmann and Jorion (1993), we allow for the lagged price relation between returns and
dividend yields in our regression specification and use the bootstrap methodology to model the
distribution of test statistics under the null hypothesis that returns and dividend yields are
independent. We extend Goetzmann and Jorion’s methodology by using WLS rather than OLS to
estimate our model and thus correct explicitly for heteroscedasticity in the regression residuals. We
also study the yield -return relationship using a methodology that does not impose a particular
functional form on the data, a priori.

Our overall conclusion is that when we take adequate account of potential nonlinearities in the yield-
return relationship, evidence supportive of return predictability largely disappears. This is
consistent with the findings of Goetzmann and Jorion for US data, although their results were
obtained within the framework of a linear model. The results obtained from applying the joint tests
are in close agreement with the results obtained using individual return horizon statistics. Finally,
none of the alternative covariance matrix estimators evaluated in this study are satisfactory; all of
them yield standard error estimates which are substantially downward biased in the presence of
overlapping observations. Therefore, researchers ought to focus primarily on the regression slope
coefficients to conduct inference.



1. Introduction

The notion that the current dividend yield can forecast future stock returns has a long tradition dating
back at least to Dow (1920). Early studies of the effects of dividend yields on stock returns, including
those of Litzenberger and Ramaswamy (1979), Blume (1990), Gordon and Bradford (1980), and Miller
and Scholes (1982) point to a positive and significant relation between dividend yield and stock returns.
The intuition underlying this result is that stock prices are low relative to dividends when discount rates
and expected returns are high, so that dividend yields should reflect changes in expected stock returns.
Formally, in a perfect-certainty model, i.e. where agents know the constant growth rate of dividends (g)

and the discount rate (r), the stock price P, at time t is

=i D, (1+g) _ Dy 1)

U & a+ry r—g

The dividend yield is equal to the known discount rate minus the constant growth rate of dividends.

— = Tr—8 : @

In this setup, the discount rate for dividends is the expected return on the stock. In a world of
uncertainty, where g and r may vary over time, the link between discount rates and stock returns is not
as straightforward as expressed in (2). However, the perfect-certainty model suggests that dividend

yields may possibly capture variations in expected returns in the real world.

A nonlinear relationship between long-run dividend yields and returns in January is found by Keim
(1985). He finds that the regression coefficients on dividend yields exhibit a significant January
seasonal effect, even when controlling for size. When January observations are excluded the predictive
power of dividend yields is no longer significant. Keim's results suggest that the observed relationship
between long-run dividend yields and stock returns is not solely attributable to differences in marginal

tax rates for dividends and capital gains.



Fama and French (1988) employ an ordinary least squares (OLS) regression framework and show that
the dividend yield predicts a significant proportion of multiple year returns to the NYSE index. In a
prominent study using US data, Goetzmann and Jorion (1993) point out that the results obtained by
Fama and French as well as a number of other studies should be interpreted with caution, It is well
known that dividend payments follow persistent patterns and so variations in dividend yields are
dominated by stock price movements. This being the case, the right-hand-side variable in regression
models used by researchers is in fact a lagged dependent variable and not exogenous as assumed when
the model is estimated using OLS. This implies that the regression framework typically used to
examine the relationship between dividend yields and stock returns is subject to biases which

complicates the task of drawing inference.

Hodrick (1992) uses a VAR model in three variables: real stock returns, dividend yield and the T bill
return. This formulation is appropriate because it permits the dividend yield to be endogenous rather
than predetermined. Hodrick uncovers statistical evidence consistent with the view that stock returns

are predictable.

The essential difference between Goetzmann and Jorion's paper and other papers in this area is twofold.
First, Goetzmann and Jorion explicitly allow for the lagged price relation between returns and dividend
yields in their regression specification. Secondly, they use the bootstrap methodology to model the
distribution of test statistics under the null hypothesis that returns and dividend yields are independent.
The use of the bootstrap methodology is particularly appropriate when the distribution of the time
series under investigation, i.e. stock returns, is unknown and can only be guessed at. One unfortunate
consequence of using the bootstrap methodology, however, is that the time varying volatility in stock
returns is destroyed and so one is forced to assume that stock returns are homoscedastic under the null
hypothesis. One possible procedure for alleviating this problem is to use the Weighted Least Squares
(WLS) bootstrap methodology proposed by McQueen (1992). Failure to use this, or some other
suitable technique that corrects explicitly for heteroscedasticity in the regression residuals means that
the results presented in the Goetzmann and Joﬁon study are not robust to heteroscedasticity. Also,
Goetzmann and Jorion do not entertain the possibility of a nonlinear relation between stock returns and

dividend yields in their study.



There have been many studies on the use of dividend yields to predict returns, most concentrating on
US data. There is a paucity of studies based on data from the UK stock market. In this paper we
investigate the ability of dividend yields to forecast nominal returns on the value weighted FTA All
Share Index, for return horizons ranging from one month to four years. We use non-overlapping as
well as overlapping observations in our study and the sample period extends from 1965 to 1992. This
study is of methodological interest as well, in that it uses a variety of techniques, thereby enabling one
to gauge the sensitivity of the results to the specific technique employed. This paper has numerous
distinguishing features. In a small Monte Carlo study we show how much statistical power is gained
by using overlapping instead of non-overlapping returns. We investigate the performance of altemnative
covariance matrix estimators for computing standard errors when the regression model has overlapping
data. We extend Goetzmann and Jorion's methodology by using WLS rather than OLS to estimate our
model and thus correct explicitly for heteroscedasticity in the regression residuals. We explore the
extent to which our results are sensitive to the assumption of a linear functional form. The aim is to

develop a robust model to predict stock returns over different measurement intervals.

The remainder of this paper is organised as follows. In section 2, we describe the data used in this
study and discuss the methodology which we use to compute the tests. In section 3, we present and

interpret the empirical results. In the final section we summarise the results and offer our conclusions.

2, Methodology

2.1 Data Construction And Model Specification

Goetzmann and Jorion use data on the S&P 500 index over the period 1927 through 1990. Their data
series are monthly total, capital, and income returns on the S&P 500. We calculate these series from the
FTA All Share index. We use the FTA All Share total return index to calculate the total returns data
and the FTA All Share price index to construct the capital returns data. Income returns are calculated
from the capital, and total returns data series. The monthly capital, and income returns are used to

construct a price series P, exclusive of dividends, from which monthly dividend payments are inferred.
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Because of seasonalities in monthly dividends, an annual dividend series D was computed by

reinvesting the dividends at the monthly riskless rate (the one-month Treasury bill rate).

Total returns are constructed from the FTA All Share total returns index as follows

TPt +1— TP:

where TPy is the total returns index at period t, and TR is total returns at period t. Capital returns are
constructed in a similar manner from the FTA All Share price index.

WDP: +1 — WDP:
WDP,

= TRP, t,t+1

where WDP; is the without dividend price or the price index at period t and TPRy is the capital returns

series.

Income returns are calculated by subtracting capital returns from total returns.
DF, =TR, —TPR,

where the variable DP; is the income returns data series.

To form a price series Py that excludes the reinvestment of dividends, Py is set at 100, then Py is
recursively computed from the series TPR; (capital returns series).

The monthly dividend Dy is recursively computed from the series DPy

D, = DP, x P,

A monthly annualised dividend series DD; is computed from continuously compounding twelve monthly
dividends at the one-month Treasury bill rate R;. This annualised dividend is calculated for each

observation in the series.



DD, = D, +(14+R) D,y + 1+ R,) 1+ R_)) D, +...

The actual dividend yield is thus defined as

pr, = 2D

B

An OLS regression is then performed with total return TR, regressed on the dividend yield DTy

TR(t,t+T)=0o(T) + B(T) DT(¢) + e(t,t +T) 3)

The null hypothesis being tested is that there is no relation between TR(t, t + T) and DT(t). A rejection

of the null hypothesis would indicate that dividend yields can help to predict returns.

2.2 The Use Of Randomisation To Estimate Significance Levels

Goetzmann and Jorion employ the bootstrap methodology to investigate the sampling distribution of the
beta statistic under the null, whereas we use the randomisation methodology. Both methods rely on
resampling the data; however, the main difference between randomisation and bootstrapping is that in
the latter method the data is sampled with replacement. Randomisation is based on the premise that
under the null hypothesis one variable is distribﬁted independently of another. The null hypothesis in

which we are interested in is that retums are distributed independently of dividend yields.

Randomisation shuffles the data to destroy any time dependence and then recalculates the test statistic
for each shuffle to estimate its distribution under the null. This experiment is repeated a thousand
times. The empirical probability value (p-value) is the proportion of times the randomised beta
coefficient exceeds the historic beta coefficient. This method assumes no knowledge of the distribution

of stock returns and therefore avoids the problem of non-normality.

Following Goetzmann and Jorion, the randomisation methodology is adopted to enable us to maintain
the temporal relationship between returns, dividends, and prices that is consistent with their historical
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behaviour. We know that price levels at a particular point in time are dependent upon the capital
appreciation return history up until that point and that dividends exhibit a high degree of serial

correlation. To capture this relationship in the randomisation model, we implement the following

procedure:

1. Randomly shuffle historical total returns data to obtain simulated total returns TR,

2. Subtract income return series DP™ from simulated total returns TR* to obtain capital return
series TPR*,

3. Capital return series TPR* is compounded to calculate a pseudo price level series P*, which is

used to create pseudo dividend yield DT*, where DT*=DD/P*, DD=actual annual dividend
flow and P*=simulated price series.
4, Regress multiple horizon retumns on dividend yields and save slope coefficient and R2,

5, Repeat steps 1 to 4 one thousand times.

As total returns have been shuffled randomly, there is no relationship between returns and dividends,
and the dividend series is highly autocorrelated. The price series is similar to its capital appreciation

return history because it is formed from the recursive computation of the pseudo capital appreciation

return series.
2.3 Alternative Covariance Matrix Estimators

It is well known that the use of overlapping observations yields more powerful tests; however, it is not
clear exactly how much more statistical power is gained by using overlapping as opposed to non-
overlapping data. Thé principal drawback associated with the use of overlapping data is that they
induce serial correlation in the regression disturbances which leads to biased and inconsistent estimates
of the conventional OLS standard errors. Under the null hypothesis, the regression disturbance follows
an MA process of order m, where m is equal to the return measurement interval minus one. The point

estimates of the slope coefficient, however, are consistent but not efficient.



Various methods have been proposed in the literature to purge the standard errors of this bias. Hansen
(1982) proposed a GMM estimator to correct the OLS standard errors for the presence of serial
correlation. The covariance matrix for the vector of parameters in equation (3), & = (o, B), is

calculated as V(8) = (X’ X)? 1 (X’ X,

% A m a n T
where  Sp=Q, + 3 [Q;+ Q1 Q= Y, X X_je,
j=1 t=j+1
X. is the vector of explanatory variables and e, the residuals in (3). This GMM method is used in
Hansen and Hodrick (1980), and they note (p.836) this procedure has greater power than an alternative

solution, which involves constructing new series made up of non-overlapping observations of the

original series and undertaking the analysis using standard OLS on this subsets of observations.

Hansen’s (1982) method does not ensure that the covariance matrix is positive definite. Newey and
West (1987) proposed an alternative method for obtaining serial correlation consistent and
heteroscedasticity consistent standard errors, with a positive definite covariance matrix. This new
procedure modified the Hansen (1982) GMM estimator by weighting the sample autocovariance

function, such that the weights decline as j increased. For the Bartlett weighting method,

Sr=90,+3 o(jm) [Q; +Q;], where @(,m) =1-[j/ (m+1)].

=1
Alternatively, for the Quadratic Spectral (QS) weights, St = Q + E o (j) [QJ- + Q' i1, where
_ j=1

()= 25 (sin(61tu /5)

12n%u? \ 6mu/5 —oeslame 5))’ and-w= i m+ B

The Newey-West method with Bartlett weights has been used by Frankel and Froot (1987), however,

there are few examples of an application of Newey-West with QS weights.



Finally, Andrews and Monahan (1991) extended the class of GMM estimators, by first prewhitening
the series and then using the Newey-West covariance matrix with QS weights on the prewhitened
series. The prewhitening entails fitting a Vector AutoRegressive model of order b (VAR(b)) to the
series z; = X, €. In their study Andrews and Monahan (1991) use a VAR(1) model to approximate both

autoregressive (AR) and moving average (MA) processes.

For these alternative covariance matrices the choice of the bandwidth parameter, m, is important for
obtaining good standard error estimates. Hansen and Hodrick (1980) use a bandwidth parameter, m =
order of the moving average process. Frankel and Froot (1987) consider two values of m, m = order of
the moving average process and m = twice the order of the moving average process. Recently,

Andrews (1991) developed a method for choosing the optimal bandwidth parameter, 2T, according to

the type of - weighting scheme used. For Bartlett weights,
@G) =1- (/Zy), Z, = 11447 (G 1) T)"?, where

4A2 ~d4

Y w,_ 4P &

Lo = 1“'\ 8 ].A 2 — A A
6() =255 ana w, = [¥ 5] {a, 8D a=1,...0}

are the parameter estimate and innovation variance of an AR(1) model fitted to each of the series

formed as the product of the p explanatory variables, X, and the residuals, e,. For the QS weights the

parameter u is calculated as u = j/ Z t where Z 1= 1.3221 (& (2)T)'5, and

4 A2 a4
D w, 4% 6.
5 =1 (1-p,)¢
a2) = pp_-— .
D, w, &
a=1 (1_‘3.)4

It would be interesting to verify, for our particular empirical model, exactly how much statistical power
is gained by using overlapping data. Also, it would be worthwhile to investigate the relative

performance of the alternative covariance matrix estimators. To shed light on these issues we



undertake a Monte Carlo study with a sample size that corresponds to the sample size that we use in
our empirical study. For the Monte Carlo study, the total returns series is created by sampling

randomly from a normal distribution with mean and variance equal to those of the historical data.

2.4 Joint tests

Richardson (1989) is critical of studies which focus on individual return horizon statistics, typically the
return horizon which provides strongest evidence consistent with deviations from a random walk model,
on the grounds that individual test statistics are not independent and so reliance on them may yield
misleading results. In this paper we conduct joint tests over multiple return horizons. The joint test we

use in this study is simply the average of the individual regression betas.

2.5 Stratified randomisation and WLS randomisation

UK stock return variances were higher in the stock market boom in 1975, the crash around September
1981, and the crash in October 1987. It is also apparent that volatility reverts to pre crash/boom levels
after these periods. Thus, one would expect that the return series is heteroscedastic and that the
regression errors exhibit variation through time. Randomisation, however, destroys the temporal
pattern of heteroscedasticity present in the data. Consequently, under randomisation we are forced to
assume that returns are homoscedastic under the null hypothesis. It would be interesting to investigate
how the presence of heteroscedasticity under the null alters inference. To preserve the pattern of
heteroscedasticity present in the actual return series we carry out a stratified randomisation of the total
return data. We partition the sample into five regimes or strata, where each regime displays a different
level of return variance. To generate an artificial return series, the return data are sampled without

replacement from each regime.

One drawback is that the partitioning of data into different regimes based on return variance is very
arbitrary. Researchers may disagree about the number of different regimes based on return variance
required to ensure that the pattern of heteroscedasticity in the data is maintained. In the limit, one

would require as many variance regimes as there are data points, thereby rendering this technique
9



impractical. An alternative and preferable approach is to use 'WLS which deflates the dependent as
well as the independent variables by estimates of the monthly standard deviation of returns. This
method corrects explicitly for heteroscedasticity in the sense that it renders the regression residual

homoscedastic and thus yields more efficient parameter estimates.

Following French, Schwert and Stambaugh (1987) and McQueen (1992) we utilise daily returns on the
FTA All Share index to construct unconditional estimates of the monthly variance of stock returns.

The monthly return variance is computed as:

n n-1

22 2

o; = 2 TRi,t + 2 Z TRi,t X 'I‘Riﬂ’t
i=1 i

i=1

where n is the number of trading days in month t and TR;, is the return on the FTA All Share index on

day iin month t.

Under the null, stock returns and dividend yields are independent and so the standard deviation of the

error term in (3) is

6t,t+T = (&Zt + 62t+1 oot 62t+T)0'5 s 4

1
WLS technique is implemented by using — as weights.
Ot t+T

The WLS Randomisation technique is very similar to OLS Randomisation. The only difference is that
under WLS Randomisation, monthly returns and their corresponding variances (computed using daily
data) are shuffled together. Shuffled retumns and variances are subsequently aggregated to obtain
overlapping observations on returns and variances. The reciprocal of the square root of the aggregated

variance is then used as weights and WLS estimation is implemented.
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2.6 Nonparametric Model

It is not entirely clear from (3) that the link between dividend yields and stock returns is linear and
stable over time. Indeed, Keim finds a nonlinear relationship between dividend yields and returns for the
month of January. In a recent paper based on data from the US stock market, Christie and Huang
(1994) study the yield-return relationship using a methodology that does not compel them to impose a
particular functional form on the data, a priori.

Failure to take account of possible nonlinear dependence between stock returns and dividend yields will
lead to functional form misspecification. It is well known that OLS will yield biased and inconsistent
estimates if the model is misspecified. To rectify this situation, we make use of a nonparametric
estimation technique, Nearest Neighbour (NN), to estimate the regression function. Other related
nonparametric techniques, namely kernels and series could be used. However, our choice is motivated

by the superior performance of the NN estimator relative to the other estimators in finite samples.

Additional justification for a nonlinear model is provided by another strand of the literature. The notion
that stock returns exhibit strong ARCH effects is amply documented in the literature. It is not
inconceiveable that ARCH effects may be a symptom of omitted nonlinearities in the regression model.
Diebold and Nason (1990) point out that strong ARCH effects may show up in the data as a
consequence of our failure to take adequate account of possible nonlinearities in the model. It would

seem to be worthwhile to explore the robustness of our results to alternative assumptions regarding the
functional form of the model.

Therefore, in what follows, we do not assume that the functional form of the model is linear, when even
casual inspection of the scatterplot (Figure 1) suggests a nonlinear specification would be more

suitable. Hence we avoid reliance on conventional econometric techniques which impose a particular

functional form, a priori.

The modelis TRt = F(DTY) + &t ®)

where F(.) is a smooth function and the residual term has 0 mean and constant variance. NN technique
entails estimating F at a point DT*. Let H{DT*,DT,) = | DT*-DTLI be the Euclidean distance between

DT* and DT:. The neighbourhood weight function is given by:

W (DT*, DT,, DTy) = V [H(DT*, DT,)/H (DT*, DTy)],

11



where H(DT*,DT,) is the Euclidean distance between DT* and the kth nearest DT,. In line with the
recommendations of Cleveland and Devlin (1988) and Diebold and Nason (1990), we utilise the tricube
weight function for V(.):

V) = (1-ud)3 ifu<l,

= 0 ifu21.
The fitted value of the dependent variable at the point DT*, i.e. F(DT*) is given by:
TR*r = F(DT*) = BDT*

To obtain an estimate of the slope coefficient B, WLS regression is performed with weight
W(DT*,DT,,DTy). In other words, to obtain an estimate of [ we minimise:

E W; (DT*, DT;, DTk) X (TR;,H.k = BDT[),

where the summation ié over the number of observations in the estimation period. Following standard
practise, the slope coefficient is the first derivative of F(DT,), evaluated at the average value of the
dividend yield variable in the estimation period.

The use of NN estimator requires that the researcher make some choices which may be considered
judgemental, especially regarding the number of nearest neighbours (k) to be used. However, in our
empirical study we investigate the sensitivity of our results to different choices of k. We allow k to
vary between 0.4 and 0.8 times the sample size, in 5 steps, and find that the results are remarkably
robust. To conserve space, beta coefficients for k equal to 0.5 times the sample size are reported in the

paper.
3. Results

We begin with a discussion of the results obtained from the Monte Carlo simulations. Table 1 presents
the standard errors of the slope coefficients across the 10000 regressions. From Table 1 it is evident
that the standard errors are higher for non-overlapping observations than overlapping observations. It

is clear that more accurate estimates are obtained using overlapping data, especially as the return
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horizon lengthens. For one to six month return horizons, however, there is little gain in the accuracy

with which slope coefficients are estimated using overlapping data.

Next, we consider the performance of alternative covariance matrix estimators in the presence of
overlapping observations. A variety of alternative covariance matrix estimation methods are
considered: standard OLS (OLS), Newey-West with Bartlett weights and m = order of MA process
(NWB), Newey-West with Quadratic Spectral weights and m = order of MA process (NWQS), Newey-
West with Bartlett weights and m chosen using Andrews (1991) procedure (NWBA), Newey-West with
Quadratic Spectral weights and m chosen using Andrews (1991) procedure (NWQSA), the Andrews
and Monahan (1992) method with QS weights and m chosen using Andrews (1991) procedure (AM),

and the Hansen (1982) method (HAN). The results are based on 10000 replications and are presented
in Table 2. ' |

We find, in general, that the corrected standard errors obtained using the various covariance matrix
estimators are unsatisfactory; they underestimate the true standard errors and the magnitude of the
downward bias increases with the retum measurement interval. Consequently, inference based on the
slope t statistics is likely to be seriously misleading. Therefore, we eschew reliance on slope t statistics

to conduct inference and focus attention on the p-value of the slope coefficient instead.

Table 3 summarises the results obtained from regressing overlapping and non-overlapping returns on
dividend yields for the period 1965-1992. All the slope coefficients are positive and increase over the
return measurement interval, from 0.369 for one month returns to 8.695 for the 48 month period. The
empirical p-values associated with all the regression slopes are well below 0.05, which implies that the
slope coefficients are statistically significant. Notice also that R2 increases in the time horizon, from
almost 0 to around 62% for the 48 month return. All the R2 values are highly significant. The results
from applying the joint test confirms the conclusion obtained using individual return horizon regression

statistics, that dividend yields can predict stock returns.

Table 4 reports the results obtained from performing a stratified randomisation of the returns data

under the null. In general, stratified randomisation produces p-values that are larger than those under
13



randomisation. However, the basic conclusion remains unaltered as none of the empirical p-values
exceed 0.05. In other words, all the beta coefﬁcients and R? remain statistically significant. As pointed
out earlier, stratified randomisation is not a technique which is satisfactory in ensuring that the
temporal pattern of return volatility is maintained under the null. Hence, we should treat the results

with caution. Instead, more attention will be focused on the WLS estimates of slope coefficients in

order to draw inference.

Table S reports the WLS estimates of slope coefficients. None of the slope coefficients for regressions
utilising non-overlapping observations differ significantly from those obtained under the null hypothesis
that returns and dividend yields are independent. However, the reverse is true for slope coefficients
obtained using overlapping observations; the empirical p-values are well below 0.05 for 12, 24 and 36
month return horizons and marginally below 0.05 for 48 month returns. In contrast to the findings
reported using OLS randomisation, WLS randomisation only yields regression statistics suggestive of a

significant positive relation between returns and dividend yields over longer return horizons.

Table 6 reports the beta coefficients obtained from using the nonparametric NN technique due to
Cleveland and Devlin. The p-values associated with the beta coefficients suggests that dividend yields
cannot forecast returns, with the sole exception of returns for the 24 month period. Specifically, for

some values of k, the beta coefficient on 24 month returns is marginally significant as evidenced by a p-

value that drops slightly below 0.05. Subperiod analysis using this technique demonstrates that the

results are not sensitive to the particular sample period under scrutiny. Compared to OLS and WLS
Randomisation, the p-values produced under NN randomisation are substantially higher, implying that

use of either OLS or WLS is likely to lead to an over rejection of the null hypothesis of no
predictability.

Figure 2 graphs the empirical distribution of the beta éoefﬁcient for 36 month returns that is obtained
from the yield-return model under the null. The OLS beta coefficient appears approximately normal; it
fails to capture the skewness in the beta coefficient as compared to the NN beta coefficient. This
failure to capture the skewness is evident for overlapping as well as non-overlapping observations (see

Figure 3).
14



Table 7 presents the results of OLS randomisation for subperiods. The results for the two subperiods
are strikingly different. For the 1965-1978 suﬂperiod, the regression slope coefficients are significant
but for the latter subperiod, the evidence appears to be in favour of the null hypothesis that dividend
yields cannot forecast returns. The p-value for the 36 month return is 0.018 in the first subperiod and

0.299 in the second subperiod. Highest statistically significant value of R2, 68%, is obtained for the 36

month return horizon.

Further subperiod empirical analysis reveals that return predictability is largely confined to the 1971-
1975 period. This period witnessed massive swings in the level of the market. Annualised return
standard deviation for the 1971-1975 period was higher than the 1965-1970 and 1976-1992 period by
25% and 30%, respectively. Evidence consistent w1th the notion that US mstock returns contain -
predictable components has been documented by Kim, Nelson and Startz (1991) and McQueen (1992)

for a highly volatile period, i.e. the period following the 1929 Crash and prior to WWIL

Table 8 reports results using the WLS technique to reestimate the model over the two subperiods. Once

again, significant slope coefficients are only found for the early subperiod.

It would thus appear that evidence supportive of the ability of dividend yield to forecast retumns is
concentrated entirely in the first subperiod, and then only if we assume a linear relationship between
returns and dividend yield. However, if we allow the return-yield relationship to be nonlinear, there is

little evidence to reject the null that dividend yields cannot predict stock returns.

4, Conclusions

The aim of this study was to test the null hypothesis that the dividend yield has no predictive content.
The results reported in this paper are robust to the non-normality and heteroscedasticity of stock
returns. We find that failure to correct explicitly for heteroscedasticity in the regression residuals is
likely to overstate the evidence that dividend yields can forecast returns. The OLS randomisation yields

probability values (p-values) that are lower than that obtained under WLS randomisation, implying that
15



OLS randomisation rejects the null hypothesis more frequently. Researchers should be wary of

reporting results based exclusively on OLS and WLS randomisation.

The results obtained from applying the joint tests are in close agreement with the results obtained using
individual return horizon statistics. None of the alternative covariance matrix estimators evaluated in
this study are satisfactory; all of them yield standard error estimates which are substantially downward
biased. Therefore, researchers ought to focus primarily on the p-values of the regression slope

coefficients to conduct inference.

Our overall conclusion is that when we take adequate account of the potential nonlinearities in the
return-yield relationship, evidence supportive of return predictability largely disappears. This result is
consistent with the findings of Goetzmann and Jorion for US data, although their results were obtained
within the framework of a linear model. The difference in the results using the nonparametric NN
technique can be explained by the fact that local fitting is less sensitive to the presence of extreme

observations compared with OLS.

One extension of the empirical analysis conducted here would be to reestimate the regression model
with real and excess retumns as the dependent variable in order to discover whether the conclusions
reported in this paper are materially affected. Another important extension would be to explore the

robustness of the WLS slope coefficient estimates to alternative weights.
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Table 1

Monte Carlo Results

Standard Deviation Across 10000 regressions

Return Overlapping Non-overlapping
Horizon Observations Observations
(Months) True Standard True Standard
Deviation Deviation
3 0.3653 0.3695
6 0.7140 0.7330
9 1.0422 1.1041
12 1.3501 1.4902
24 2.4220 3.0765
36 3.3696 44212
48 4.2406 8.6604
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Table 2

Monte Carlo Results

Mean of Corrected Standard Errors

Overlapping Sample

Return Horizon (Months)

The bandwidth parameter, m is equal to the order of the moving average

process

The bandwidth parameter, m is equal to twice the order of the moving average

process.

The bandwidth parameter, m is chosen according to the method of Andrews

(1991).
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Alternative 12 24 36 48
Covariance
Matrices
TRUE 1.3501 2.4220 3.3696 4.2405
OLS 0.4058 0.5564 0.6620 0.7361
NWBI1 0.9913 1.6844 2.1744 2.5317
NWB2 1.0384 1.6825 2.0412 2.2156
HAN! 1.1450 1.8230 2.2354 2.4468
HANZ 1.0328 1.5820 1.7711 2.0085
NWBA3 1.0194 1.6403 2.0168 2.3265
NWQSs! 1.0737 1.7957 2.2936 2.6231
NWQSA3 1.2728 1.5918 1.8695 2:.1292
AM3 1.1561 1.8360 2.4392 2.7790
Notes:

~




Table 3

OLS Regression of FTA All Share Total Returns on Dividend Yields
Sample Period: 1965-1992
Randomisation probability (p) values are based on 1000 shuffles

Return Beta Empirical Empirical
Horizon Coefficient p-value R2 p-value
(Months) of Beta of R2

Non-overlapping
1 0.369 0.005 0.025 0.010
3 1.111 0.004 0.072 0.008
6 2412 0.002 0.130 0.002
Joint 1.298 0.007
Overlapping
12 4.023 0.014 0.244 0.001
24 5.897 0.016 0.354 0.009
36 7.825 0.015 0.521 0.004
48 8.695 0.024 0.618 0.000
Joint 6.610 0.011
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Table 4

OLS Regression of FTA All Share Total Returns on Dividend Yields
Sample Period: 1965-1992
Stratified Randomisation probability (p) values are based on 1000 shuffles

Return Beta Empirical Empirical
Horizon Coefficient p-value R2 p-value
(Months) of Beta of R2

Non-overlapping
1 0.369 0.023 0.025 0.044
3 1.111 0.015 0.072 0.032
6 2412 0.016 0.130 0.014
Joint 1.298 0.022
Overlapping
12 4.023 0.042 0.244 0.014
24 5.897 0.033 0.354 0.016
36 1.825 0.022 0.521 0.033
48 8.695 0.048 0.618 0.011
Joint 6.610 0.039
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Table 5

WLS Regression of FTA All Share Total Returns on Dividend Yields
Sample Period: 1965-1992
WLS Randomisation probability (p) values are based on 1000 shuffles

Return Beta Empirical Empirical
Horizon Coefficient p-value R2 p-value
(Months) of Beta of R2
Non-overlapping

1 0.294 0.060 0.017 0.316

B 0.481 0.141 0.027 0.194

6 1.212 0.086 0.072 0.099
Joint 0662 | 0092

Overlapping

12 2.793 0.034 0.157 0.041

24 5.244 0.029 0.324 0.020

36 6.805 0.039 0.491 0.004

48 8.106 0.046 0.638 0.000
Joint 5.737 0.039
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Table 6

NN Estimates of the Beta Coefficient
Sample Period: 1965-1992

NN Randomisation probability (p) values are based on 1000 shuffles

Return Beta Empirical
Horizon Coefficient p-value
(Months) of Beta
' Non-overlapping

1 0.175 0.403

3 ' 0.553 0.352

6 1.063 0.419
Joint 2.597 0.459

Overlapping

12 2.061 0.404
24 5.253 0.052
36 6.946 0.181
48 9.647 | 0.128
Joint 5.977 0.378
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Table 7

OLS Regression of FTA All Share Total Returns on Dividend Yields
Randomisation probability (p) values are based on 1000 shuffles

First Period 1965 - 1978

Return Beta Empirical Empirical
Horizon Coefficient p-value R2 p-value
(Months) of Beta of R2

1 0.229 0.015 0.039 0.016
3 0.712 0.012 0.118 0.023
6 1.577 0.001 0.180 0.036
Joint 0.839 0.031
12 6.236 0.006 0.391 0.019
24 8911 0.029 0.530 0.028
36 10.496 0.018 0.682 0.006
48 9923 0.014 0.606 0.005
Joint 8.892 0.024
Second Period 1979 - 1992

Return Beta Empirical R2 Empirical
Horizon Coefficient p-value p-value
(Months) of Beta of R2

1 0.185 0.090 0.075 0.088

3 0.554 0.140 0.180 0.079

6 1.062 0.189 0.331 0.075
Joint 0.600 0.121

12 0.765 0.395 0.023 0.601

24 1.247 0.417 0.046 0.612

36 3.500 . 0.299 0.202 0.418

48 5.424 0.227 0.427 0.284
Joint 2.734 0.344
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WLS Regression of FTA All Share Returns on Dividend Yields

Table 8

WLS Randomisation probability (p) values are based on 1000 shuffles.

First Period 1965 - 1978

Return Beta Empirical Empirical
Horizon Coefficient p-value R2 p-value
(Months) of Beta of R2

1 0.331 0.152 0.014 0.528
3 0.382 0.349 0.003 0.796
6 1.400 0.192 0.031 0.565
Joint 0.704 0.241
12 6.042 0.022 0.241 0.111
24 11.317 0.012 0.496 0.044
36 11.347 0.018 0.533 0.045
48 9.305 0.078 0.416 0.060
Joint 9.503 0.044
Second Period 1979 - 1992

Return Beta Empirical R2 Empirical
Horizon Coefficient p-value p-value
(Months) of Beta of R2

1 0.277 0.097 0.015 0.198
3 0.336 0.342 0.035 0.243
6 0.712 0.331 0.097 0. 152
Joint 0.442 0.245
12 0.329 0.511 0.154 0.175
24 0.858 0.500 0.306 0.143
36 3.083 0.345 0.425 0.165
48 5.013 0.240 0.621 0.093
Joint 2.321 -0.388
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Stock Returns (36 months)

Figure 1: Stock Returns and Dividend
Yields, 1968-1992
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Figure 2: Empirical Distribution of
Thirty Six Month Beta Coefficient
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Figure 3: Empirical Distribution of
One Month Beta Coefficient
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