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Abstract

Option prices observed in the market do not agree with the as-
sumptions of the Black and Scholes model. In particular, the volatil-
ity, which is assumed constant in the model, takes different values for
options with different maturities or strike prices. Dupire showed that,
if we relax the hypotheses of the Black and Scholes model, and we
assume the stock prices are driven by a general diffusion, it is always
possible to recover such a process that mimics a given price system
(provided that the price system is sufficiently regular). The aim of
this paper is to investigate the behaviour of the system of option prices
whose underlying is driven by a discontinuous process (more precisely,
by a lognormal jump process): we want to check whether this prices
system can be recovered by a diffusion or not, and we want to analyse
its local volatility function.

1 Introduction

The problem of option pricing is to specify a model so that it is possible
to compute the option prices as a function of the parameters of the model.
The Black and Scholes model is at the same time a typical example and a
cornerstone in option pricing. It assumes that the stock price is driven by a
geometric Brownian motion: the solution of the model depends therefore on
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two features of the process that drives the underlying asset price, continuity
and the Markov property. It is well known that many of the hypotheses
underlying the Black and Scholes model are quite implausible. In particular,
the volatility of the underlying asset is not constant. In fact, we can observe
option prices in the market, and we can compute the value of the volatility
that fits exactly the price of the option in the Black and Scholes model — i.e.,
we can compute the implied volatility of the option. Then, the values of the
implied volatility for different options show a strong dependence both on the
strike price and on the maturity of the option.

Following Dupire [2], volatility can be allowed to be a function of time and
of the current price of the stock. The underlying asset price is then driven
by a diffusion. On the other hand, there is a price that we have to pay: the
system of option prices must be sufficiently smooth — i.e., it must fulfill the
regularity conditions shown below. Provided that the option prices satisfy
these conditions, it is always possible to recover a diffusion that mimics these
prices.

Instead, we can choose a different model, keeping the Markov property
of the process that drives the stock price, but relaxing the continuity. In
this model the underlying asset price is driven by a jump process (more
precisely by a lognormal jump process): option pricing is still possible, but
some additional assumptions on the structure of the market is needed, as
Merton [6] showed.

In this paper we want to investigate what happens if we apply the Dupire
methodology to the system of option prices generated by the Merton jump
model. In section 2 the Merton jump model is briefly explained, in section
3 it 1s proved that the prices system generated by a lognormal jump process
cannot be recovered by a diffusion, since only one of the two regularity condi-
tion is fulfilled. In section 4 it is discussed the behaviour of the local volatility
function corresponding to the prices system generated by a lognormal jump
process. Section 5 concludes.

2 The Merton Jump Model

Merton assumes that the stock price is the composition of two types of
changes: a normal change, driven by a Brownian motion, and an abnor-
mal change, driven by a Poisson process. Such a process is called a jump
process. When a Poisson event occurs, moreover, there is a drawing from
a distribution to determine the impact of the event on the stock price: if
St is the stock price at time ¢ and Y is the random variable describing the



drawing, then
St = YSt—

where S;- is the left limit of S, i.e. S;- = lim,_,;- Ss. The stock price process
can be described by a stochastic differential equation

dSt = (,LL = )\IC)St— dt + O'St— dB + (Y = 1) St— dq (1)

where 1 is the expected return on the stock, o2 is the variance of the return
(given that no Poisson event occurs), dB is a standard Brownian motion, dq
is a Poisson process with rate A and k is defined as follows:

k=E[Y —1]

i, 02, X and k are real, positive constants;The stochastic differential equation
(1) has an explicit solution

2
Si = Soexp [(u — Xk — %) t+ aBt] Y™

where B; is a (Gaussian random variable with mean zero and variance t;
Y©® =1 and Y = [[;_1Y; for n > 1, where {Y;} are all independent
and identically distributed to Y; n is Poisson distributed with mean At.
In particular, if Y is itself lognormally distributed, i.e. logY is normally
distributed with mean log(k+1) — §2/2 and variance §2,then the distribution
of S; is itself lognormal. Such a process is called a lognormal jump process®.
It is possible to derive the partial differential equation for the price A (S, t)
of a contingent claim on a stock whose prices follows the process (1) expiring
at time T' > t, if we make the further assumption that the jump component
is uncorrelated with the market:
1 92\ OA OA
50252@ +rSas+ 5 +AE [A(SY,t) — A(S,t)] =rA (2)
subject to the appropriate boundary conditions. The solution of the equation
can be computed explicitly, since we know the distribution of Y.
The price Cs+(X,T) of a standard European call option expiring at time
T with strike price X (given that the of the underlying at time ¢ is S) satisfies
the boundary conditions

C(),t(X,T) = 0

OS’T(X,T) = maX(O, S = X)

17t is not a standard definition.



It is possible to compute the explicit solution of the equation (2) with the
above boundary conditions for a lognormal jump process. The price of an
European call option whose underlying asset is driven by such a process — as

Merton showed [6] — is then given by:

AT N n
Cst (X, T) = Ze—ﬂW(X,T,Un,T‘n)

n!
—0

o
= D tWa
n=0

where 7 is the risk free interest rate,

3

T = T—1
XNo= X1+k)
and forn =0,1,2,...:
62
ol = 02+n——
o
log (1+k
Tn = 7-_)\]“_}_M
e AT (NT)"
o
Pn = n!

W (X, T,0,r) is defined by the Black and Scholes formula, i.e.

W (X,r,0,7) = SN(d;) —Xe ""N(dy)

logS —log X +r7 1
di = £ a\/gF +§U\/;

d2 = dl—O'\/;

where N (a:) is the standard cumulative normal distribution function:

1 ¥ 2
N(z) =— e /2t
( ) vV 2 \/—oo
Forn=0,1,..., W, is then defined as follows:
Wn = N(d”) - Xe ™ N(d§")

4

(3)

(4)



logS —log X +7r,7 1
d(”) = _
1 Unﬁ + 20-11.\./F

dY = dM - o /T

For the sake of simplicity, in the following we assume that jumps up and
jumps down are equally likely. It implies that

k=E[Y —1] =0

Moreover, we use a saving account which grows at the risk free rate as nu-
meraire, and hence

r=0

Then, the above formulas are further simplified:

N=A
and forn =0,1,2,...:
r, = =0
e (A1)"
I — —
p’n. - pn - n!
- logS —logX 1

On\/T 2
dY = d" — o /T

3 Diffusion versus Jump Processes

Given a system of option prices Cs: (X, T'), i.e. the set of option prices for
all the possible values of the strike price and of the maturity?, Dupire showed
that it is possible to recover for the underlying price a diffusion process under
the risk neutral probability measure which mimics the prices system. The
process is driven by the following stochastic differential equation,

dS = s(S,t)dB (5)

2In this idealized model, the strike price X can take any value in the interval (0, +00)
and the maturity 7" varies in the interval (t,T"), where T is the time horizon.



It can be shown that the local volatility s is then given by a function of the
derivatives of Cs+(X,T)

S(X,T) = %\/278 CS"B(;(’ D / m"g;@f” (6)

This reconstruction is always possible, provided that the following conditions
are fulfilled by the prices system Cg(X,T):

1. Slow growth condition

ICs(X,T) 0 Cs(X, T) (7)
or 0X?

for a certain positive real number v and for large values of X; this
condition is necessary in order to ensure the existence and uniqueness
of the solution of the stochastic differential equation (5) and it is also
required for (6) to remain bounded;

< X2

2. Dupire condition
. ICs(X,T)
X—teo 0T

this condition is necessary in order to derive relation (6).

0 ®)

In the following, we will show that the prices system (3) generated by a
lognormal jump process fulfills the second condition, but not the first, and
therefore cannot be recovered by a diffusion process (5).

3.1 Slow Growth Condition

It can be checked directly that condition (7) does not hold. The derivative
of Cs+(X,T) with respect to T is given by:

8CS7t(.X,T) . 8CS’t(X,T) . ad n 8Wn
N O Lt = IO

n=0
and the second derivative of Cg+(X,T") with respect to X is given by:

axz  ZPoxe

n=0

02Css(X,T) = W,



Recalling the following relations:

ow Xoe " rr
O*wW e ""n(ds)
0X?2 Xo\/T (11)

|

where

e—:l:2/2

Ver

is the standard normal density function, and that the risk free asset is used
as numeraire, we get:

0Cs4(X,T) n Xon )
aT “; Pn (T ’\) W"+p”2ﬁ”(d2 )

where the first term in the summation arises from differentiating p, with
respect to T', and :

nlw) =

82Cs4(X,T) = n(dd)

oxz " Xon T
Both 8Cs+(X,T)/ 8T and 8*Cs (X, T)/ OX? are positive quantities since all

the terms of the two series, but (n — A7)/, are positive and by the Harris

inequality?®
> e (2= A) Wa 20
n=0

3The Harris inequality states that if f and g are both increasing (or both decreasing)
functions, then

E[f(X)g(X)] = E[f(X)] E[g(X)]

Since n is a random variable Poisson distributed with parameter \, and W,, < W, 41 (in
fact, W /8o > 0 and o, < 0p11), We have:

“+o0
Zp'n.an = E'n [nW'n]
n=0

v

E, [0 E, [Wy] = ATE, [Wh]

—+o0
= AT Z P Wh

n=0
and therefore

+o00
an(n—/\'r)WnZO

n=0

A complete proof of the Harris inequality can be found in Durrett [3].
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Hence:

0Cs4(X, T) / 205X T) | FoneoPrIngn(X)
oT

0X2 T 3 Pngn(X)
where )
X”(d2n )
w(X) = =2t
gn(X) P~y
Since:
. d(j)
lim 9i (X,) = lim Ixnids ) n( ?k))
X—+eo g (X) X468 gonlds” )
. ; 43 . 2(j_k)62 1 o €2
- Xl—l>I—I+100 . exp{[logS log X] —J?U%TQ +4(k 7)6
4oo ifj>k
— 1 ifj=k
0 ifj<k

If we choose X large enough, for 5 =0,1,...,k we have:

1
p;95(X) < ZPxg (X)

Hence:
Z:,o=0 pnaﬁgn (X) > 0_2 Z?:k Pngn (‘X)
SonoPndn(X) T Y pngn(X)
i Pngn (X
o LX)
Epkgk(X ) Epkgk(X ) 4D me i Pngn(X)
®
— 0_2 Z;o‘:k pngn(X)
* Drgr (X) + Yot Pagn(X)
S g2 nekPrgn(X) _ of
= k [&9) N
2Zn:kp"gn(A) 2
Since )
lim o2 = lim 0®>4+k— = +o0
k—+o0 k—+o00 T
it follows 80, (X,T) 5205 (X, T)
. S,t ) 2 S,t ) =
X1—1>I£oo 8T / o BX 2 1o

and therefore condition (7) does not hold.

8



3.2 Dupire Condition

Since the series (9) converges uniformly, the Dupire condition (8) is ful-
filled. We can check the uniform convergence of the series (9). The function
Ful X)) = Xn(dg")) vanishes as X goes to infinity, f,(0) = 0 and has its ab-
solute maximum in X2** = Sexp [0,1/T — 027/2]. The maximum value of
fn 1s then
i eanﬁ—air/2—1/2
f n (Xn ) S \/ﬁ B, n

Then, let F' be
F = max F,

n=0,1,...

since limn—, 100 Fn = 0, F' is well defined. Therefore:

ow, o,
or 24T

If X is large enough, then

9Cs+(X,T = oWy,
—S%‘_) = Z l?n (g - /\) Wn +pn’_7__j|

< i[pn

Hence, for any given € > 0, provided that ng is sufficiently large,

i [pn (g—/\) Wn+pn8¥”} Sg;pn

n=ng

ﬁ—)\‘,S'—{~pn.‘<an<es
-

since both Y °°°  p, (n/7 — A) and S o puky converge absolutely, because

i = O(\/).

By the fact
lim d™ = lim d{” = -
X —+oc0 X—+o0
it follows that
lim W, =0
X—+oco

and from (10) we have that

X—4o00 OT



Therefore, since the series (9) converges uniformly as function of X we have

. 00X, T) . « n oW,
X]-—I»I-Ikloo BT o X1—1>I-Il-loo o Pr <T /\> Wn + Pn a’l’
— . n oW,
= 3 Jim [ (72 Wt
=0

and the condition (8) holds.

4 The Local Volatility Function

Since the slow growth condition (7) does not hold, it is not possible to recover
a diffusion that mimics the price system generated by a lognormal jump
process. Nevertheless, we can use formula (6) to compute the local volatility*
s(X,T). s(X,T) is then the local value of the volatility of the diffusion that
mimics the price system C, if the behaviour for large X of C were different
and the conditions (7) and (8) were fulfilled. The meaning of local is here
twofold: s gives a local value of the volatility and the diffusion can recover
the price system only locally (since the conditions (7) and (8) are fulfilled
only locally).

The first feature of the function s(X,T) is that it has a singularity for T
approaching t, i.e. for 7 vanishing. In fact:

lim s(X, T) =

+oo X #S
lim { (12)

0 fX=S5
This fact can be proved following the same steps shown in section 3.1. In
fact:

8Cs (X, T) | ,82Csy(X,T)
2(v _ S,t ) 9 S,t )
sXT) = =55 /)‘ oX?
o 2
Z Zn=0pnangn(T) (13)

D 0 Pngn(T)

where -
_ Xn(dzn )

gn(T) = o \/7—_

4The variables of the function s are called X and T to stress the close relation with

the strike price and the matutity of the options that form the price system, as it is clear
from (6).

10



is defined as in section 3.1, but it is considered here as function of 7. If

S # X, then

. 49 4+oco ifj>
limg—J(T—):lim—n—((sz)= 1 ifj=k
-0 gy(T) 70 a;n(dy”) 0 ifj <k

and hence, for each chosen k, if 7 is small enough

Zf;o an,%gn (7) > UI%-

>ooPngn(r) T 2

It implies that
%}H}: s(X,T) =

Instead, if S = X

crepiad Ll

and then the inequality (13) is not useful to compute the limit. In this case we
can compute which is the infinitesimal of higher order in both the numerator
and the denominator. We have

Y% Pn |2 (0= A7) Wa + Xouy/Tn(df))

s2(X,T) = -
Zn Opn\/FO-‘r:Ln’(d2 )

Since, for 7 vanishing

d" = 7o
2
d(") = ﬁ
2 T )

I
02
L

W, = Sn(d)on/T + o(v/7)

1l



for small values of T we have

2(X,T) = poSaoﬁn(dgo)) + o(+/T) o2 = o
’ PoSog VT n(d) + o(y/T) T

Therefore, formula (12) is correct.

The function $(X,T) can be studied numerically, for fixed values of the
parameters and for certain range of X and T'. With the help of a FORTRAN
code, we have plotted the graph of the local volatility function for this choice
of the parameter

A=0.1 o=0.2 6=0.1

Since the risk free asset is used as numeraire, 7 = 0. We have set the current
asset price equal to one

S=1

and t = 0 — and hence T' = 7.The range of X is the interval [0.5,2] and the
range of T is [0.001,2]. We can think that 7" is measured in years, so that
the values of the parameter are realistic.

The numerical results agree with the theoretical behaviour of the local
volatility for small values of T. The price of an option close to maturity
exactly at the money behaves as if it is affected only by the Brownian motion.
If a jump happens, the option would become either out or in the money
with virtually no chance to change its character, since it is very close to
expiration. Because jumps up and jumps down have the same probability
(k = B]Y — 1] = 0), these two effects cancel out and the price varies as if
it feels only the Brownian motion. On the other hand, if S # X a jump
with suitable amplitude could change the character of the option in such a
way that it is very unlikely to change it again, since the option is very close
to expiration. In this case the chance are not even, and it causes a great
uncertainty, which is reflected by very high values of the local volatility.

For large values of T, instead, the option price becomes less and less
sensitive to the strike price and the local volatility approaches (indepedently
from X) the value of the unconditional standard deviation per unit time,
which is /a2 + A62.

This behaviour is clear from the three dimensional graph of s. For large
values of T', s is flat — but as T approaches 0 the surface ripples and forms
a valley corresponding to X = S. This valley becomes more and more
narrow and deep as T gets smaller. For T' vanishing, we observe the expected
singularity.

12



5 Conclusions

As Merton showed, option pricing is still possible if prices are driven by a log-
normal jump process. Nevertheless, the set of prices generated by this model
is not compatible with a diffusion, even if we consider a general volatility
which is both time and price dependant. In fact, it is not possible to find
a diffusion that genarates the same prices system, since condition (7) is not
fulfilled.

The local volatility function is still well defined, as it can be computed by
(6).In this case, the local volatility gives the parameter of a diffusion which
can recover the prices system only locally (since the regularity conditions are
fulfilled only locally). If we plot the local volatility as function of X and
T, we observe strange behaviour. For large T', the volatility approaches the
unconditional standard deviation (per unit time). For T' vanishing, instead,
we can observe a singularity: the volatility diverges to infinity if X # S, while
for X = S approaches the volatility of the continuous part of the process.
For small values of T this effect is clearly recognizable: the volatility surface
ripples and forms a deep and narrow valley around X = S.
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