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Abstract

This paper examines two alternative approaches to recovering the risk-neutral density
function from contemporaneous option prices. First, we propose to recover the risk-neutral
probabilities through a parameterization of the equivalent martingale measure using the
Generalised Beta distribution. Then, we use a non-parametric method to approximate the
volatility smile using B-splines approximating functions and use the chain rule of
differentiation to recover the implied distribution. We end the paper with a comparison of the
two estimation methods using a sample of daily closing prices of the Chicago Mercantile
Exchange options on the S&P 500 index future to assess the quality and stability of the

implied distributions through statistical analysis.
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1. INTRODUCTION

The absence of arbitrage opportunities in a complete market implies the existence of a unique

probability measure Q under which all discounted prices are martingales. Using the
martingale approach and having a bank account B, =¢" as a numeraire, we have that the

price of a general European contingent claim V with maturity at the time T and general payoff

function g(S) is given by:

V(S,.t)=e" " E?|g(S,)] (1)

V(S,.1)=e" " [ g(S,)d0(S,.T/S, 1) 2)

From (2) it is evident that if we know the cumulative risk-neutral distribution of the stock
process we can value the contingent claim. Conversely, in the case of European options,
given the option prices there exists an implied cumulative distribution Q such that (2) holds.
In other words, the option valuation problem is equivalent to the problem of determining the

distribution of the asset variable S, under the martingale measure.



We review the main approaches used in the literature to estimate the implied risk-neutral
distribution function from option prices. We begin Section 2 with a description of the
Breeden and Litzenberger (1978) approach to recover risk-neutral probabilities from
portfolios of standard call options that replicate elementary securities payoff. Their results
lead to a vast group of techniques to recover distributional information from option prices.
We then present a proposition stating the convexity and non-arbitrage conditions that the
contingent claim pricing function must satisfies in order to generalise Breeden and
Litzenberger (1978) results. This proposition underlies a non-parametric estimation method
that we propose in the following section. Section 3 describes three different approaches to
estimate the risk-neutral distribution and reviews relevant studies on parametric and non-
parametric estimations. We then present our own methods to estimate the implied risk-neutral
distribution function from option prices. In Section 4, we propose to recover the risk-neutral
probabilities through a parameterization of the equivalent martingale measure using the
Generalised Beta distribution. This distribution has enough flexibility to produce satisfactory
results when fitting the observed volatility smiles. Section 5 presents our own non-parametric
method to approximate the volatility smile using B-splines approximating functions. We use
the chain rule of differentiation to recover the implied distribution (in the same way as
presented independently by Shimko (1993)). We describe our method and examples are given

of the estimates using this non-parametric approach.

There are many papers in the academic literature that examine the estimation of the risk-
neutral distribution from option prices but we are not aware of published papers that examine
their results in terms of the plausibility of the resulting estimates. The purpose of Section 6 is
to assess the stability of the implied risk-neutral distribution for a sample of daily closing

prices of the Chicago Mercantile Exchange (CME) options on the Standard & Poor's 500



(S&P 500) index future. We evaluate the performance of our nonparametric and parametric
models through the examination of the estimation residuals and the implied probability time
series. This analysis allows us to compare the two approaches in terms of their fitting

performance and their time series stability. Last section summarises the paper.

2. CONVEXITY IN ARBITRAGE-FREE OPTIONS PRICES AND THE RIS-
NEUTRAL DISTRIBUTION FUNCTION

Breeden and Litzenberger (1978) were pioneers in the estimation of probability distributions
from contemporaneous option prices. They derived the price of a primitive security from the
cost of a portfolio of European call options with different strikes and the same maturity. They
assume there exists an asset S with a finite number of future states and consider a butterfly
spread portfolio of European call options with maturity at time 7 constructed by shorting two

options with strike price K and buying one option with strike K+ AK and one with strike

K—-AK:

[c(k +AK,T)- C(K,T)]-[C(K,T) - C(K - AK,T)] 3)
AK

(K, T)=

The payoff of portfolio IT is the same as the one of a pure security that pays off one unit of
cash if and only if S7 is equal to K. Thus, it turns out that a complete set of options at all
exercise prices is equivalent to a complete set of Arrow-Debreu securities where the

probability of reaching any of the states of the asset domain is: '

' An Arrow-Debreu security is also known as a pure security or elementary claim. It pays one unit of cash in one
specific state of the world and nothing in any other state. See Arrow (1964) and Debreu (1959).
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QI (Sl) = _H(K9T)
T K=S,
: 1 :
Let us now consider AK shares of the latter portfolio:
1 [C(k + AK,T) - C(K,T)|~[C(K,T)- C(K - AK,T)] (5)
—TI(K,T)= 2
AK (AK)
Assuming that the asset S has a continuous payoff and taking the limit of expression (5) as
AK goes to zero, it is clear that the expression approaches to the second derivative of
Cc(K,T)*
li LH(K T)= i Cc(k,T) 5
sk50 AK ) ’

Thus, we can consider the second derivative of the call prices formula with respect to the
strike price to be a continuous state price function that measures the value of one unit of cash
to be delivered at the time 7 in the event that the value of the asset happens to be K at that

time. Therefore, this pricing function for elementary claims can be used to value any

derivative security on the asset S with payoff function g(ST) at the time 7

? Indeed, the payoff function of the portfolio II tends to a Dirac delta function with mass at K.



2

oo d° (7
V@JLJ;gmhmsz=SJMS

One important characteristic of Breeden and Litzenberger (1978) approach is that no
assumptions are made about the underlying asset price dynamics and market participants
preferences are not restricted as they are reflected in the call option prices. Their work is the
starting point of a line of research addressed to the recovery of relevant aspects of the

underlying asset distribution from option market data.

The derivation of Breeden and Litzenberger (1978) results shows intuitively how the first and
second derivatives of the option valuation formula can be considered good estimates of the
risk-neutral distribution and density functions. The following proposition modestly

generalises their results:

Proposition 1: If call prices satisfy the following arbitrage restrictions related to the actual

underlying security price S, and strike price K:

a) S, 2 C(K)> MAX[0,S, —e K] ®)
9
IC(K) _ _, . IC(K) (
b) K >—e and K]l,r& K =0

c) C(K) is a monotone, convex and differentiable function on a

continuous set I' ¢ R



then there exists a risk-neutral probability whose cumulative distribution function is given by:

L IC(K) (10)

and when C is twice differentiable the density function is given by:

_9*C(K) (11)

do(S,)=e g

K=S;

Proof.

Let us first explain the kind of arbitrage opportunities that could arise if any of the arbitrage
relationships are violated. Firstly, restriction (a) sets the boundaries for the call prices with
C =S, for K = 0. If the call has a negative price, i.e., C(K) <0, then a riskless profit could
be made by buying the call (receiving an instant positive profit equal to the value of the call)

and holding it until expiration to make a non-negative income equal to the value of the call at

expiration. If C(K)< S, —e K, once again we can make an instant profit by buying the call
and selling the portfolio S, —e™" K . Then at expiration date we receive a non-negative
payoff equal to MAX [0, K- ST] . Finally, if C(K) > S, buying the stock and selling the call
would create an instant profit of C(K)— S, and generate a non-negative amount at expiration

equal to S, — MAX|0,K — S, |. Second, restriction (b) determines the asymptotes of the call
q T T

option prices. It is clear than when the strike is very low relative to the value of the underlying

security then the option is very likely to be exercised and a one-unit increase on the strike



price would imply a reduction of one-unit in the final payoff at the expiration date. In the
same way if the strike is very high relative to the underlying security then the option is
worthless and a marginal increase in the strike would have little effect on the price of the
option. Restriction (b) also determines the monotonicity of the call option prices, i.e., it

establishes that

c(k,)-c(k,)< e (K, - K,), for K,>K, (12)

A violation of this condition would create a vertical spread arbitrage opportunity by selling
C(Kl), buying C(Kz) and keeping the amount e"rT(K2 - KI) in a bank account. This

operation produces an instant profit and a non-negative amount on the expiration date. We
shall see later that monotonicity on the call prices guarantees a non-decreasing risk-neutral
distribution function. Finally, the third restriction (c) further constrains the general shape of

the call price curve and implies a non-negative risk-neutral density function when it exists.

The current value of an European call option is determined as the discounted present value of

its expected payoff at the maturity date:

C(K) =" (S, - K)dQ(s;) (13)
hence:
JC [t
=" [ ao(s;)
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JK
(14)
., IC(K)
_ T
O(K)=1+e K
or equivalently
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Q(Sr)=l+e’TaCa(KK) (13

K=S;

Thus, the risk-neutral distribution is given as a function of the first derivative of the call
option pricing formula. Here the monotonicity assumption with respect to the strike price is

equivalent to the function Q being non-decreasing. Note that if,

8C( K) —aT =T - ( 1 6)
}(11)% K - >—e" with a>r
then there is a probability mass at S, =0 equal to:
(S, =0)=1-et=" (17)

If C is twice differentiable the risk-neutral density function is given by the following

expression:



7+ 0°C(K) (18)

do(s,)=e e

K=Sy
where given restrictions b) and c) we confirm that dQ(ST) satisfies the following properties:

do(s,)=e 2

a direct implication of the convexity assumption and

+oo +oo , 82C(K:S )
J;) dQ(K: ST)dK :»[0 e T_aI(Z—TdK
= - (20)
o i aC(K ST)_hm IC(K =S,)
Koo JK K—0 dK

=1

Also note that these assumptions are sufficient to ensure that the mean of the distribution is

the forward price since:

E,= J.(:STdQ(ST)

_ 1 I IC(K = ST)d

7 ), K Sy (21)

gy S , i.e., the underlying forward price.



end of proof.

Proposition 1 provides the basic relationships to determine probabilities from no-arbitrage
prices. In a no-arbitrage world the first derivative of the price function produces the
cumulative distribution function and the second derivative produces the probability density
function. In the following section we review alternative methods to estimate the risk-neutral

density function, some of them are a direct application of the above results.

3. RISK-NEUTRAL DISTRIBUTION: ESTIMATION METHODS

There are three common approaches to the estimation of the risk-neutral distribution function
in the finance literature. The first begins by describing the dynamics of the underlying
security and then obtaining an implicit characterisation (but not necessarily in a closed form)
of the risk-neutral density function. The Black-Scholes (1973) assumption that the underlying
security follows a Brownian motion process implies a lognormal distribution for the security
returns. Cox and Ross (1976) constant elasticity variance model, Hull and White (1987)
stochastic volatility model and Scott (1997) jumps and stochastic volatility model are also
examples where the dynamics assumed for the underlying implicitly determine its
distribution. The drawback of this approach is that for general underlying security processes,
i.e., processes with jumps and non-stationary volatility, there is not a closed form solution for
the risk-neutral density function and numerical methods have to be used to recover it. The
second approach is called the parametric approach. It assumes that the risk-neutral
distribution belongs to a general distribution family whose vector of unknown parameters
values ©® must be estimated from the asset or option data. This parameterization of the

equivalent martingale measure allows the development of general non-arbitrage option

10



pricing models placing minimal structure on the process of the underlying security. The third
is the non-parametric approach. This is the most general of the approaches, where no
assumptions are made about the underlying security dynamics nor about the probability
measure. The non-parametric methods usually approximate or interpolate the call price curve
or implied volatility smile by means of polynomial approximations or optimisation

techniques to recover the risk-neutral density function.

The key advantage of the parameterization of the equivalent martingale measure is its
generality. Jumps and stochastic volatility in the underlying security are reflected in the
relevant moments of the terminal distribution, thus it is always possible to find a flexible
function with a wide skewness-kurtosis range that captures the distributional properties of the

underlying security independently of its process dynamics.

Several papers have addressed the problem of general no-arbitrage option pricing models by
assuming a particular functional form for the density function. Jarrow and Rudd (1982) use
the generalised Edgeworth series expansion for a more general no-arbitrage option pricing
model. They approximate the risk-neutral density function by a lognormal distribution in
terms of a series expansion involving second and higher moments. The resulting option price
is expressed in terms of the Black-Scholes formula plus three adjustment terms to take into
account discrepancies between the variance, skewness and kurtosis of the lognormal
distribution and the true underlying security distribution. The drawback of using Edgeworth
or another probabilistic expansion is that it does not always represent a proper probability

density function because there are many intervals for which it could take negative values and

11



this substantially reduces the flexibility of this approximation in terms of its skewness-

. 3
kurtosis range.

Others attempts to use option price information to recover the risk-neutral distribution
function include Fackler and King (1990) using closing price option data to examine the
calibration of no-arbitrage implied price distributions for four agricultural commodity and
Sherrick et al. (1992) using a three parameters Burr distribution to study the non-stationarity
of expected S&P 500 futures price distribution. Sherrick et al. (1996) use the Burr III to
estimate the risk-neutral distribution using daily data on options on soybean futures. The Burr
family distribution may take on a wide range of skewness and kurtosis including all the
region covered by the commonly used distributions such as the gamma family, the Weibull

family, the lognormal family, the normal distribution, etc.*

Malz (1996) assumes the exchange rate follows a jump-diffusion process and uses over the
counter currency option data to estimate the risk-neutral probability distribution of the pound
sterling exchange rate against the mark. In a recent paper, Melick & Thomas (1997) express
the bounds of the American option price in terms of the risk-neutral distribution. They use
these bounds together with observed option prices on crude oil futures to solve for the

parameters of a mixture of three lognormal distributions.

In contrast to the parametric method outlined in the previous section, the non-parametric
approach does not assume any particular distribution family for the risk-neutral measure or

for the dynamics of the underlying security. Instead, a given call option market price curve or

? See Johnson and Kotz (1970) for a detailed analysis of Series Expansions.
4 See Tadikamalla (1980) for a detail exposition of the Burr family distribution.
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implied volatility smile is modelled by means of polynomial approximations or optimisation

techniques to recover the risk-neutral probabilities from option prices.

We know from Cox and Ross (1976) and Breeden and Litzenberger (1978) that given the
risk-neutral measure we can calculate options prices, and conversely, we can identify the risk-
neutral probabilities from a given set of option prices. Two related approaches have been used
in the literature to estimate the risk-neutral probabilities by means of non-parametric methods.
In the first, optimisation techniques are used to solve for the risk-neutral probabilities under
different pricing constraints and prior or starting distributions assumptions. Rubinstein (1994)
proposes a quadratic optimisation that results in a discrete estimate of the risk-neutral density
probabilities defined on a set of stock prices corresponding to the terminal node of a binomial
tree. He specifies a prior parametric distribution, typically the lognormal and the risk-neutral
probabilities are then estimated by minimising its distance to the prior under the constraints
that it correctly prices a selected set of derivatives securities. In a later paper, Jackwerth and
Rubinstein (1997) work in an improved version of Rubinstein (1994) estimation technique.
They apply optimisation to solve for the probabilities but trying to minimise the roughness of
the resulting distribution measured by the integral of its squared second derivative. Kelly and
Buchen (1995) propose the use of maximum entropy as a criterion for choosing among

alternative probability distributions in the solution space of the risk-neutral distribution

estimates.

The second approach is to fit a curve to call prices (either directly or indirectly via implied
volatilities) and then obtain the risk-neutral density as proportional to its second derivative.
This approach is a direct implementation of the results presented in Proposition 1, i.e., if

European call prices are continuous on the underlying security with the same maturity date

13



then the terminal risk-neutral distribution can be determined as the second derivative of the
call pricing function with respect to its strike price. In order to implement this formula,

different approximations on the call price curve or implied volatility smile have been

suggested in the literature.

The problem with these estimates arises when we want to implement this idea for a discrete
set of market option prices and strikes that sparsely cover a small interval in the domain of the
underlying asset distribution. At first instance, it seems obvious to interpolate the option
prices with a smooth function of the strike. There are several papers in the literature that
attempt to approximate the option price curve in order to recover the risk-neutral probability
measure by applying Proposition 1 results. Bates (1991) and Mayhew (1995) use natural
splines to interpolate the option prices on a partition of the asset price domain. Apart from the
pricing restriction, Mayhew (1995) imposes different constraints to identify all the splines
parameters and to satisfy the properties of a density function. Abadir and Rockinger (1997)
present a nonlinear method to estimated the risk-neutral density function based on the
estimation of the parameters of a general function based on a generalisation of Kummer
functions. Their method have the advantage of leading to a valid density (positive function

that integrates to one) without exogenous constraints.

Another way of dealing with the strike interpolation problem is approximating the implied
volatility smile and assuming that the volatility is a deterministic function of the strike price.
Shimko (1993) proposes the following methodology. First, he calculates the implied
volatilities of a given set of call options with different strikes and the same maturity. Second,
he uses a quadratic function to interpolate the implied volatilities between the minimum and

the maximum strike. Third, he substitutes the smoothed volatility curve into the Black-
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Scholes formula to generate smooth call option prices as a continuous function of the strike.
Finally, taking the second derivatives of this function, he determines the risk-neutral density
function for the given range of strikes. Outside this range, he uses lognormal distributions to

approximate the tails of the density function.

One limitation of Shimko’s methodology is the use of quadratic functions as approximation
for the observed market smiles. It is well documented that the implied volatility curve
presents a smile shape with different levels of skewness depending on the market®. If the
skew of the smile is too pronounced, then a quadratic function seems not to be suitable for

fitting the smile.

Finally, we mention the kernel estimation technique suggested by Ait-Sahalia and Lo (1995).
They use a three-dimensional kernel regression of the implied volatilities on asset price, strike
and time to maturity to estimate the volatility function. This approach has the disadvantage of
needing hundred of data points for reasonable levels of accuracy. Hence, it is not a good

method for estimating the volatility function when just a few strikes are available in sets of

daily data.

4. IMPLEMENTING THE PARAMETRIC APPROACH

We implement the parametric approach through the use of the Generalised Beta (GB2)
distribution proposed by Bookstaber and McDonald (1987) for describing security returns.
This is a four parameter distribution that is extremely flexible and it includes a wide range of

well-known distributions as limiting and special cases, e.g., lognormal, Burr type 12 and Burr

15



type I and a wide range of mixed distributions. The GB2 density function is defined as

follows:

ap-1 (23)
GB2(y;a.b, p,q) = aly y>0

b B( p,q)[l + (% ] Tq

where B denotes the beta function given by:
1
Bo.a)= [0, &

The shape and moments of the distribution are directly specified by its four parameters: b is a

scale parameter and it has a direct effect on the mean of the distribution:

8o Ya- ) 2

B(p.q)

E(y)

The parameter a has effect on the kurtosis of the distribution and with the parameter ¢
determines the existence of higher moments. No moments of order equal to or higher than ag
will exist. Finally, the skewness of the distribution is determined by the interaction of the

parameters p and g. We refer the reader to McDonald (1984) for a detailed analysis of the

GB2 distribution.

5 See for example Rubinstein (1994).
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4.1.1 Parameter Estimation

For a given contract/day and a set of n call options and m put options market prices, with the
same maturity 7" and different strike prices, we estimate the parameters of the model by
minimising the sum of squared errors between observed market prices and theoretical prices

given by the following equations:

C(K)=e"[ (S, - K)GB2S :a.b,p.q) dS;  i=1l.n (26)
P(K,)=e["(K,~5,)GB2(S :a.b,p.g)dS;  j=1.m @7
S, =¢™ [$,GB2(S1a,b, p.q)dS, (28)

We know already the mean of the distribution is given by the forward price of the underlying
security. This additional information must also be used to estimate the implied risk-neutral
distribution parameters. Estimation of the parameters is performed by solving a non-linear

constrained optimisation problem by means of Sequential Quadratic Programming method

routines (See Grace (1995)).

4.2 DATA
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We used six contracts from the sample of daily closing prices of the Chicago Mercantile
Exchange (CME) options on the Standard & Poor's 500 (S&P 500) index future. The futures
contracts have maturities on June and September of 1987 and on March, June, September and
December of 1992. They are cash settled on the Thursday prior to the third Friday of the
contract month. Riskless interest rates have been calculated from London euro-currency

interest rates collected from Datastream.

CME options on the S&P 500 index future are American style, i.e., they can be exercise at
any moment prior to maturity and their prices implicitly contain early exercise premiums. We
use the Barone-Adesi and Whaley (1987) approximation to recover the implied volatilities
from American option prices and used them to recalculate pseudo-European option prices
using the Black-Scholes option pricing formula. We used the Barone-Adesi and Whaley
model to translate the early exercise premium information into the implied volatility and the
Black-Scholes model to express this information into European prices. Thus, the models are

used as simple devices to obtain and translate the implied volatility information.

Pricing errors and/or tick-size rounding in the available data are reflected in the smile and
particularly in-the-money puts and calls have distorted and jagged smiles. Given that the
procedure used for fitting the risk-neutral density function is very sensitive to the estimate of
the smile, we decided to work with an extended smile calculated from combined daily data
sets of out the money calls and puts. Doing so we include in our estimation only parts of the
smile with small cross-sectional noise and we also extend the observed set of strikes prices

taking a wider range of available out the money options. Table 1 describes the samples

considered in this paper.
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4.3 Empirical results

Figures 1 and 2 show the estimates of the risk-neutral density function using the lognormal
and the GB2 distributions for two option samples with 90 days to expiration. We can identify
a distinct change in the shape of the distributions between the lognormal and the GB2
distributions for the post-crash sample. This is consistent with the empirical evidence that
before the crash the S&P 500 index distribution resembled the lognormal distribution and
after the crash a more flexible distribution is needed to fit the volatility structure observed.
Figure 3 plots a set of implied densities given by the GB2 distribution for options with the
same maturity. All distributions are skewed to the left, the opposite of the right skewness

associated to the Black-Scholes lognormality assumption.

[Please insert Figures 1-3 here]

We calculated the skewness and kurtosis time patterns of the resulting implied distributions.
Figures 4-7 show the skewness and kurtosis for the sample contracts. For the pre-crash
sample we find that the implied probability distributions are left skewed for short maturities
and positive skewed for long maturities. Although the pre-crash skew sample is very
dispersed, for medium-long maturities the level of skewness is close to the lognormal levels.
A different pattern is observed for the post-crash contracts where distributions are
consistently left skewed and at significant levels with respect to the lognormal estimates. The
post-crash skewness also show a decreasing trend across time. Time variability and strongly
negative levels of the implicit skewness after the crash has been reported in different studies

by Bates (1991), Bates (1994), Rubinstein (1994), Jackwerth and Rubinstein (1996) and
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others. Both samples show distributions with higher levels of kurtosis than the lognormal
estimates. However, the post-crash distributions present higher kurtosis levels that are
negative correlated to the maturity of the options. This pattern has been explained by the
presence of jumps and stochastic volatility in the underlying security process. Basically,
excess kurtosis in short maturity distributions is associated to the presence of jumps in the
underlying security process whereas excess kurtosis for longer maturities is usually explained
by the presence of stochastic volatility in the dynamics of the underlying. Jumps in the
underlying dynamics produce a series of independent variance shocks with an overall effect
on the kurtosis of the distribution that decrease with the maturity of the options (a direct
implication of the central theorem). Stochastic volatility models are assumed to be

instantaneously lognormal with effect on medium/long horizons distributions.

[Please insert Figures 4-7 here]

The parametric estimation of the risk-neutral distribution through the GB2 distribution or
another distribution family has several advantages: First, the estimator is itself a probability
function, therefore the estimated distributions will satisfy the properties of a density function
without additional constraints in the implementation method. We also obtain probability
estimates outside the observed strike interval. This avoids an additional extrapolation of the
tails of the distribution.® Second, this approach is very general allowing the GB2 distribution
to be replaced for any other distribution. Third, the implementation is very easy and only

requires a standard optimization software. However, we ought to be cautious. Models that

% The tails of the density function will depend on the functional form assumed for the distribution. For a rich
enough family the fit would not be unique with more than one distribution satisfying the probability mass
previously determined for the tails.
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are not flexible enough to fit the observed option prices within the arbitrage bounds and

asymptotes are likely to produce distorted estimates of the implied densities.

5. IMPLEMENTING THE NON-PARAMETRIC APPROACH

The idea of approximating the volatility curve to recover a continuous formula for the call
prices is very convenient. First, it could be compared to the common market practice of
estimating implies volatilities to calculate corrected Black-Scholes prices. Second, this
method allows arbitrary definitions for the volatility curve, implied or historical volatilities
could be use to approximate the volatility function and individual considerations could be

incorporated into the model resulting in different option pricing models with deterministic

volatility functions.

We propose to estimate the risk-neutral probability distribution using the method suggested
by Shimko (1993) but with a more flexible approximation for the volatility. Given a set of
observed options prices we want to approximate a continuous volatility function o(K)in

order to recover the probability distribution through the first two derivatives of the pricing

formula respect to the strike price:

J _dC JCdo (29)
5 C(K:ol ))_8K 90 oK

AR ARt 2‘1+8—Caza+azc{‘9—°—}2 e
oK N O E e T LSOk 0K T 90 K2 90 | 9K
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We use a linear combination of cubic B-splines functions as a more flexible approximation
for the volatility structure. The estimate of the risk-neutral probability distribution is very
sensitive to the changes in the volatility so we look for a spline function that is as smooth as
possible but which still fits the observed option values closely enough. Using a smoothing
spline curve fitting algorithm proposed by Dierckx (1995), our problem is to estimate a cubic

spline s(K) such that it minimises the following function
e=n+pd 31
where

nk 2 (3 2)

n= Z(s(”(ﬂ,l*)— s(3)(l_,-)) and 8= i(c. - C(s(K,. )))

7 is a measure of smoothness given by the size of the discontinuity jump of the third
derivative of s(K) at the interpolation knots A and & measures the accuracy of the
approximation respect to the observed option prices. p represents the penalty imposed on the

roughness of the approximation. To avoid the nonlinearity of the problem we use the

following approximation for & :

5= (c - (o))

i

2

_ 2 (o, - s(&,)) (¢, - c(s(k.)))

,- (o, - s(k,))" (33)
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=Y w'(o oK)

aC
where w; = —=— is the Vega of the option

Jo

We require to look for the optimal p such that § is less or equal than a given degree of
accuracy. As extreme cases we have that if p =+, s(K) becomes the cubic interpolating

spline and if p=0, s(K) becomes the weighted least-squares polynomial of third degree.

5.1 Implied distribution tails

An obvious disadvantage of the spline interpolation technique is that it does not recover the
tails of the risk-neutral density function outside the range of available strike prices. Figures 8
and 9 show the graphs of the implied volatility smile and the truncated density function for
the CME September 1992 future index contract on the 11th of June 1992. The density is
truncated on both tails so they have to be approximated by extrapolating either the volatility

smile, the call price curve or the truncated density function itself.

[Please insert Figures 8 and 9 here]
Before reviewing different methods to estimate the risk-neutral distribution tails, it is
important to understand how the insufficient number of available strike prices for each

maturity option affects the assumed functional form of the density. Option prices only provide

information about the conditional mean of the distribution and probability mass (area under
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the density curve) for the intervals: below the lowest strike (left tail), between each strike, and

above the highest strike (right tail).

Any number of distributions could generate the same results for these probabilities and
conditional expectations. Therefore, we would expect ambiguity about the best fit, since we
can always find an alternative distribution (e.g., a series of uniform densities) that will be
observationally equivalent to the given distribution relative to the data considered in the
sample. Furthermore, assuming that we obtain a good fit of the distribution between the range
of observed strikes, there is still ambiguity about the tails of the distribution for we can
change the tails a lot without affecting the predictions we fit with. This freedom for choosing
the tails of the distribution allows us to obtain distributions that are right or left skewed and
with fat or thin tails. For example, we could approximate the right tail of the distribution in
Figure 9, by using a degenerate distribution with probability mass at only one point (creating
a distribution with very small kurtosis) or by using a degenerate function with probability
mass at two points (one of them far off in the right tail to create infinite kurtosis). Our
concern is to fit a functional form for the distribution in order to get a range of non-

pathological tails.

Shimko (1993) uses the estimated values of the implied risk-neutral density and distribution
functions to solve for the parameters of a lognormal distribution at each tail of the truncated
risk-neutral distribution. Thus, he proposes an estimated density function whose tails are
given by lognormal distributions. Although his methodology has the advantage of being easy
to implement, it does not take into account possible changes of the smile shape beyond the
available range of strikes. It is also not clear how convenient is the choice of the lognormal

distribution for the density extrapolation given its very limited range of skewness-kurtosis.
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We suggest a more flexible version of Shimko technique to approximate the tails of the
distribution. Although basically we are following Shimko’s extrapolation idea, our
methodology differs from his in two aspects: First, we use the more general Ramberg
distribution instead of the lognormal distribution originally proposed by Shimko. Second, we
use the estimates of the implied risk-neutral distribution and density functions to solve for the
parameters of the Ramberg distribution whilst maximising and minimising the kurtosis of the

resulting estimate. This gives us a range of plausible tails setting bounds for the distribution

in terms of kurtosis levels.
Ramberg et al (1979) proposes a four parameter distribution which allows a wide variety of
curve shapes, negative skewness and high levels of kurtosis. The Ramberg distribution is a

generalisation of the two parameters Lambda distribution proposed by Tukey (1960) and it is

defined by its percentile function R :

R(p)=4+[p™ -(1-p)" /2 0<ps (34)
and its density function:

)= £(R(p)) (35)

7 The percentile function is the inverse of the distribution function.
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The moments of the distribution are related to its parameters in the following way: A is a

location parameter, 4, is a scale parameter and A, and A, define the skewness and kurtosis of

the distribution.

When extrapolating the tails, we use the risk-neutral distribution and density estimates to
recover the parameters of the Ramberg distribution such that its value at the end of the strikes
interval coincides with the value of the truncated distribution. One of the advantages of using
the Ramberg distribution is that the density function is given in terms of the percentile
function, therefore, matching the value of the density function at any point implicitly would
match the value of its distribution function at the same point. Another advantage is that we
have now four parameters (instead of two in the case of the lognormal) so we have two
additional degrees of freedom that are going to be used to choose the more convenient set of
parameters among the space of Ramberg density functions that matches the required values.
Ideally, we want a risk-neutral density function with fat tails so we decided to solve for the

parameters that maximise the kurtosis of the resulting distribution.

Given x,,x, and x, three points at the upper (lower) end of the strike interval (at which we

know the values of the risk-neutral density and distribution functions), we solve the following

optimisation problem to recover the right (left) tail of the distribution :

Find A € R* such that,

h(ﬂ, ) = max h(1)

feni?

(36)
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and

g(xi/)“):fi 1=12,3.

where g is the Ramberg density function, f,,f, and f, are the known values of the
probability functions at the end (beginning) of the strike price interval and % is a non-
decreasing, continuous function of the Ramberg distribution kurtosis. Figure 10 shows the

resulting tail approximations for the example considered in Figured 9 using both the

lognormal and the Ramberg distributions.

[Please insert Figure 10]

Maximising the kurtosis we get an excess kurtosis equal to 3.99 whereas the excess kurtosis
using the lognormal distribution is 2.1. Thus, it is clear that we must be careful when
interpreting any estimated distribution, especially in the regions below the lowest strike and

above the highest strike where we have information only on the conditional expectations and

the probabilities.

It should be mentioned that both approaches, the parametric and the non-parametric, require
an approximation of the tails of the distribution for there is no information about the density
function outside the range of observed strikes. The ambiguity of the parametric approach is
given by the richness of the functional form assumed for the distribution whereas for the non-

parametric approach is given by the variety of specifications that can be used to approximate

the tails.
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5.1.1 Density function shapes

We used our nonparametric method to calculate the implied risk-neutral density functions for
the September 1987 and September 1992 CME Future option data. For the purpose of these
examples, the volatility functions were extrapolated keeping the curvature of the B-Spline
approximation beyond the available set of strikes. Figures 12 and 13 plot the smiles for seven
maturities of the September Future option contract in 1987 and 1992. After the 1987 crash,
the implied volatility curves are characterised by pronounced smiles and skews compare to
the ones obtained during the pre-crash period. It is also evident how the smile and skew
become more pronounced as time to maturity decreases. This might be explained by the short

term effect of jumps and the long term effect of stochastic volatility in the asset price

dynamics.

[Please insert Figures 12 and 13 here]

Figures 14 and 15 show the non-parametric estimates of the risk-neutral density function for
the sample dates considered before. Once again there are obvious differences in the shape of
the pre-crash and post-crash distributions. Pre-crash distributions look very much like a
lognormal distribution while the post-crash distributions are more left skewed and
leptokurtic. We can also observe how the distribution becomes more leptokurtic as the option
approaches to the expiration date. This corresponds to the pronounced smiles observed for

short term options. Tables 2 and 3 contain the summary statistics of the distributions.

[Please insert Figures 14 and 15 here]
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The B-splines approximation of the volatility smiles is flexible enough so as to fit the cross-
sectional option prices data almost exactly. This is an obvious advantage with respect to other
approximations although the risk of overfitting the observed data is high. A drawback of the
non-parametric approach is the ambiguity of the method itself given by the extrapolation of
the volatility smile (or call prices curve) in order to recover the tails of the distribution. This

obviously makes it more difficult to implement when compared to the parametric approach.

5.2 COMPARISON OF THE PARAMETRIC AND NON-PARAMETRIC
APPROACHES

Most of recent studies about risk-neutral distribution estimation has been limited to an
examination of which alternative distribution would better fit options prices with the
lognormal as a benchmark, which is by itself, an odd comparison. Whether the resulting
implicit distributions are plausible or not has been less thoroughly examined. As mentioned
by Bates (1995a) one of the problems of implicit parameter estimation is that there is not an

associated statistical theory, so comparisons are restricted to goodness-of-fit tests.

We have already described and implemented two different methods to recover the risk-neutral
distribution. One method is more flexible than the other and both introduce residuals with
respect to the observed option values due to market imperfections and model

misspecification.

For instance, we know that the flexibility of the non-parametric approach results in a better fit

of the observed volatility structures than the GB2 estimates. However, there is also a risk of
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overfitting. Non-parametric methods, like the B-spline approximation to the volatility smile
described in this paper can also reflect noise and pricing errors in the market data producing

improbable implied distributions.

We evaluate the performance of the parametric and non-parametric estimations using the
following comparisons: First, we provide a comparison of the residuals between the observed
implied volatilities and the estimated volatilities implied by the alternative estimates
distributions. This would indicate if there is a significant improvement in the goodness-of-fit
of the non-parametric approach with respect to the parametric one. Second, we analyse the
estimates of the distributions themselves. If prices are exact and continuous, and if the pricing
models holds exactly for every single option and for different maturities, time series of
implied risk-neutral distributions can be recovered such that they are a martingale under the

risk-neutral measure, i.e., if 7, and 7, are two observed distributions under the risk-neutral

measure for times ¢ and s, with 7 < s, then E (7?; / F ) =m, . Of course, in real situations there

are market frictions and pricing errors and the estimated distributions will not give the
martingale property exactly. However, time series of plausible implied risk-neutral
distributions are expected to present random walk properties with uncorrelated innovations.

We set these properties as a benchmark to assess the stability of the implied distributions.

5.2.1 Implied volatility residuals

We calculated the residuals between the observed implied volatilities and the estimated

volatilities implied by the estimated distributions. The residuals are given by:
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G(Ki ’t) = O-nb.\' (Kl ? t) - o"""I’ (K’ ’t) (37)

where K; is an observed strike price, 0, is the Barone-Adesi and Whaley implied volatility

calculated from the option data and o, is the volatility implied by the three models

considered in this comparison: the non-parametric, the GB2 and the lognormal parametric

models. We restricted our analysis to the post-crash contracts.

Summary statistics of the percentage implied volatility residuals are reported in Table 4. The
results are presented for three intervals of moneyness. The moneyness was calculated as the
percentage ratio between strikes and the average of the observed index future prices per future
contract. As we expected, the non-parametric method provides the best fit of the observed
volatility structures. None of the means of the residuals are significantly different from zero.
The magnitudes of the GB2 residuals are satisfactorily small with average residuals
statistically significant only for deep out/in-the-money options. The economic significance of
the GB2 residuals have yet to be assessed. At-the-money optiens are the most sensitive to
volatility errors so for a given error in the estimated implied volatility, the dollar valuation
error is larger for at-the-money options than for out/in-the-money options. Thus, the GB2

residuals may not be economically significant.

The poor performance of the lognormal distribution is again illustrated by the significant
errors obtain for all categories. The patterns of the residuals is consistent with the observed
volatility smiles in the index markets. Black-Scholes prices appears to be to low for in-the-

money calls and for out-the-money puts.
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Underfitting is also revealed by autocorrelated residuals, since for the right degree of fit we
would expect to obtain uncorrelated residuals. We applied a general test of randomness or

white noise based on the first L autocorrelations through the Portmanteau statistic or Q

9

statistic calculated for each strike series as follows®

2

L (K1) : (38)
Q(K,.,‘L') = T(T+2)Tz={m ~ X
where r(K,. ,’r) is the 7 -lag sample autocorrelations of the residuals:
T
S oK, . 1)e(K, )
(K, 7)== (39)

t=1

Tables 5-8 show the sample autocorrelations and the Q statistic for each strikes series and for
1, 2 and 3 periods lag. The non-parametric approach passed the test of randomness for all
contracts and almost all strikes series. The GB2 model instead presents higher levels of
autocorrelation with respect to the non-parametric model, although the levels are not
significant for more than a half of the of strikes series per contract. The signs of the
autocorrelation coefficients for the GB2 are predominantly positive. This may be interpreted

as the times series of the residuals having more random walk properties than white noise

$ White noise is defined as a sequence of uncorrelated random variables with constant mean and variance.
? See Harvey (1993) for a complete analysis of the Portmanteau test.
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properties. The lognormal case, as expected, presents high positive autocorrelation levels for

all strikes and lags.

We also calculated the autocorrelation coefficients and the Q statistics across time and strikes

using the following expressions:

r(T) — i =741 - ‘ (40)

and

(41)

L I"
0(t)=T(T+2 Z 2
‘L':]

Qualitatively the results using the more general statistics are the same. The non-parametric
model does not present significant levels of autocorrelation and the GB2 and the lognormal

models are strongly rejected by the randomness tests.

Summarising, the evidence reported in Tables 5-8 support the notion that models with a very
flexible volatility structure will better fit the observed options prices data. The non-parametric
model provides the best fit but satisfactory results can also be obtained with the GB2

approximation. The residuals for this model appear not to be economically significant.
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5.2.2 Plausible Distribution Functions

When there is no arbitrage and the market is complete, there is an unique equivalent
probability measure under which all the asset in the economy are martingales. This equivalent
martingale measure satisfies the Kolmogorov’s equations and it is itself a martingale. Hence,
without market frictions and pricing errors we would expect the time series of a risk-neutral
distribution to have random walk properties'®. This is the argument for our second analysis of
the implied distributions. If any of our methods is overfitting the data then it is likely to
generate probability distributions time series with negative autocorrelated innovations. This
indicates the method is clearly picking up noise in the data and reflecting it in the implied
probabilities distributions. This, of course, it is not a desirable property of an estimation

method.

We used the estimated risk-neutral distributions to calculate time series of the probability of

several strike intervals, i.e., for two given strikes K, and K 7 with K, < K i, we calculated the

following probability for all dates available in the sample data:

E(K,-,K,-)=I:_de, t=12..T (42)

'% A random walk characterizes a time series that moves randomly away from its current position:
Y, =y, +t¢&, t=1,.,T.Arandom walk process is not stationary but the mean is constant over the time

and it is equal to the initial value Yo - The first difference of a random walk process is white noise, i.e.,
uncorrelated random variables with constant mean and variance.
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Figures 16-19 illustrate our analysis with the time series for the future index and the

probability of the strike interval (410,420) for the September 1992 contract implied

distributions.

[Please insert Figures 16-19 here]

Notice the highly irregular pattern described by the probability series generated through the
non-parametric approach with respect to the GB2 and the lognormal probability time series.

We also calculated the innovations or first differences of these time series for each strike

interval:

e(K.K,)=F(K.K)-F(K.K) . t=1.T (43)

Figures 20-22 show the innovations time series of the probability time series plotted in the
previous figures. The innovations for the non-parametric approach show an autocorrelated
pattern and absolute magnitudes significantly larger than the ones obtained through the GB2
and the lognormal distributions. The lognormal distribution innovations are the smoothest

and smallest.
[Please insert Figures 20-22 here]
We calculated the autocorrelation coefficients and Q statistics for the probability innovations

series. Tables 9-12 summarise the results for each estimation model. The non-parametric

approach presents negative and significant first order autocorrelation for all strikes intervals
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and all contracts. It is also rejected when tested for second and third orders autocorrelations.
The GB2 model probability innovation series have significant autocorrelation in no more than
three strikes series in the March, June and September contracts. December series are
significantly autocorrelated at the 5% level but the null hypothesis of uncorrelated
innovations cannot be rejected at the 1% level for the most of the strikes. Still the levels of
autocorrelation are significantly lower than the ones presented by the non-parametric model
series. The probability innovation series given by the lognormal model present similar

characteristics to the GB2 model series.

We conclude from this part of the analysis that the high level of negative autocorrelation of
the innovations series obtained through the non-parametric approach may be an indication of
overfitting the market data, picking up noise and pricing errors that later are reflected in the
distributions. On the other hand, parametric models with flexible distributions like the GB2
model clearly produce plausible distributions With time series properties close to the desirable

random walk properties.

5.3 SUMMARY

We presented two alternative parametric and nonparametric methods to recover the risk-
neutral distribution from contemporaneous option prices. The parametric method assumes
that the future distribution of the underlying asset is a Generalised Beta distribution. We

showed this distribution is flexible enough to capture a wide variety of shapes for the implied

volatility smiles.
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We use the GB2 parametric model to examine six contracts from the sample of daily closing
prices of the Chicago Mercantile Exchange (CME) options on the Standard & Poor's 500
(S&P 500) index future. Implied levels of skewness and kurtosis have very different patterns
before and after the crash. Before the crash, the skewness of the implied distributions appears
to be negative for short maturities and positive for long maturity options. We found the level
of excess kurtosis also increases with the maturity of the options. After the crash the pattern is
well defined. The skewness for all maturities is predominantly negative and the level of

excess kurtosis is negative correlated with the maturity of the options.

We proposed a nonparametric method using B-splines approximations for the volatility smile.
The flexibility of the nonparametric method allows an almost exact representation of the
observed volatility smiles. This method requires an additional extrapolation for the tails of the
risk-neutral distribution. We explained how the enormous freedom for choosing the tails
creates ambiguity about the distribution for we can change the tails a lot without affecting the
predictions we fit with. We examined alternative specifications for the tails and proposed the
flexible Ramberg distribution to approximate the tails of the risk-neutral density function by
minimising or maximising the kurtosis of the resulting estimated distribution. This allows us
to calculate bounds for the density function in terms of kurtosis levels and used them as a
benchmark for any interpretation of the estimated distribution in the regions below (above)

the lowest (highest) strike.

We also examined the performance of the parametric and non-parametric methods in terms of
the quality of the fit and the stability of the resulting implied distributions. As we expected, as
a result of the flexibility of the B-splines to fit the volatility function, the non-parametric

model outperformed the GB2 and Lognormal parametric models in fitting the observed
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option data. However, our results indicate that the GB2 model is flexible enough to capture
the market price curves and/or volatility smiles with residuals that appear not to be

economically significant.

To assess the stability of the implied distribution we analysed the autocorrelation pattern of
the probability time series innovations. The implied distributions recovered using the non-
parametric approach generated high negative autocorrelated innovations indicating an
overfitting at the estimation stage. On the other hand, the GB2 and lognormal implied
distributions presented time series with properties similar to a random walk. We conclude
that the implied distributions are less plausible as the estimation model becomes less

parsimonious with a high risk of overfitting the data.

The implications of our results depend on the context of the use of the information. For
example, if an exact description of the prices is required for a given day then the non-
parametric approach would provide the better fit. However, for valuation and risk
management analysis where a time series of plausible implied distributions is required, we
recommend the use of the parametric approach with a flexible distribution like the one

proposed in this paper.
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Table 1: Descriptive statistics of the sample data
CME Future on S&P 500 Index Options

Contract Total of Total of No. of strikes per day Average Max Min
days options Min | Max index future| strike strike

Jun-1987 103 1155 6 20 286.45 220 325

Sep-1987 139 1410 6 18 302.11 235 355

Mar-1992 142 1849 8 18 399.14 340 450

Jun-1992 189 2220 7 20 405.62 340 450

Sep-1992 148 2000 6 21 413.14 340 460

Dec-1992 222 2786 5 20 415.66 350 460
Table 2: S&P 500 Index Future Implied Distributions

September 1987 contract
Maturity (days)
98 84 70 56 42 28 14

Forward 301.30 311.05 308.75 309.30 323.40 336.80 320.00
Mean 301.75 311.20 308.86 309.44 323.43 336.84 319.98
Std. Deviation 30.93 27.37 23.74 18.67 16.97 17.58 12.75
Skewness 0.07 0.05 -0.21 -0.38 -0.49 -0.19 -0.02
Kurtosis 2.87 3.11 3.71 2.98 3.81 3.27 3.17
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Table 3: S&P 500 Index Future Implied Distributions
September 1992 contract

Maturity
98 84 70 56 42 28 14
Forward 410.30 403.20 415.00 412.15 420.65 418.50 418.45
Mean 410.27 403.14 415.50 411.95 421.40 418.47 418.54
Std. Deviation 31.32 29.15 23.80 20.82 17.30 15.57 9.26
Skewness -1.07 -0.94 -1.07 -1.21 -0.50 -0.93 -1.09
Kurtosis 3.92 412 4.32 5.06 4.15 5.81 5.87

Table 4: Summary statistics of implied volatility residuals

Average B-Splines GB2 Lognormal No. of
Moneyness Mean _ Std. Dev. t statistic| Mean Std. Dev. t statistic]| Mean Std. Dev. t statistic| Obs.

[-inf, -3.5] -0.0024 0.2692  -0.4603 0.1198 0.6153  10.0327 2.6346 1.6580 81.8914| 2656
[-3.5,3.5] -0.0009 0.3630 -0.1347| -0.0023 0.5759  -0.2190( -0.2021 6.2730 -1.7796| 3051

[3.5, inf] 0.0043 0.2291 0.8866 0.0591 0.6494 4.3087| -2.4846 7.7275 -15.2143| 2239

Total 0.0001 0.2996 0.0174 0.0560 0.6127 8.1531 0.1029 6.0761 1.5098| 7946

Summary statistics for the percentage differences between the observed implied volatilities and the estimated
volatilities implied by the estimated distributions. Average moneyness is calculated as the percentage ratio
between strikes and the average S&P 500 index future per contract.
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Table S: Autocorrelations of the implied volatility residuals

March 1992 contract

Autocorrelations

B-splines model GB2 model Lognormal model
Lag Lag Lag
Strike 1 2 3 1 2 3 1 2 3
370 -0.0490 -0.0252 -0.1350 0.0451 0.1403  -0.0441 0.8370 0.7776 0.7191
375 -0.1225 0.0307 0.2315 0.4490 0.4535 0.4099 0.9123 0.8605 0.8025
380 -0.0294 0.1100 -0.1136 0.4481 0.4681 0.3110 0.9063 0.8622 0.8230
385 -0.1387  -0.0909 -0.1132 0.3283 0.1885 0.2258 0.9316 0.8935 0.8552
390 0.1247  -0.0671 0.1179 0.2644 0.0428 0.1936 0.8974 0.8397 0.8105
395 -0.0314 0.2423 -0.0112 0.0205 0.2053  -0.0961 0.8591 0.8462 0.7784
400 0.0689 0.1395 0.1208 0.0852 0.2152 0.0809 0.8389 0.8158 0.7714
405 -0.0812  -0.1117 0.0663 0.1378 0.0114 0.0878 0.8770 0.8051 0.7652
410 0.0137  -0.0235 0.1443 0.0864 0.1144 0.1042 0.9043 0.8665 0.8375
415 0.0780 0.0091  -0.0944 0.0855 0.1461 0.0192 0.8814 0.8425 0.8099
420 0.0095 0.0103 0.0637 0.1749 0.2347  -0.0225 0.9444 0.9290 0.9148
425 0.1052 0.0077  -0.0607 0.0060 0.3026  -0.0943 0.9174 0.8637 0.8148
430 0.0883 0.2603 0.0731 0.2548 0.2770 0.0941 0.9597 0.9451 0.9333
435 0.0474 0.0635 0.0804 0.2361 0.1209 0.1318 0.9151 0.9084 0.8797
440 0.0490 0.1673 0.0182 0.4474 0.4183 0.2622 0.9817 0.9694 0.9618
Q-statistic
B-splines model GB2 model Lognormal model
Lag Lag Lag
Strike 1 2 3 1 2 3 1 2 3
370 0.219 0.277 1.976 0.193 2.085 2.274 66.577 124.683 174.928
375 1.202 1.278 5.685 16.135 32.817 46.632 67.442 128.237 181.817
380 0.100 1.504 3.015 23.694 49.781 61.398 97.773 187.037 269.089
385 1.847 2.649 3.906 10.566 14.085 19.190 85.948 165.846 239.828
390 2.100 2.712 4.618 9.647 9.902 15.154 111.9583 210.717 303.418
395 0.107 6.513 6.527 0.046 4.730 5.765 82.676 163.650 232.807
400 0.650 3.336 5.368 1.032 7.660 8.602 101.348 197.880 284.831
405 0.647 1.884 2.325 1.919 1.932 2.728 78.479 145.303 206.283
410 0.026 0.102 3.000 1.060 2.931 4.496 117.764 226.667 329.160
415 0.530 0.537 1.333 0.643 2.544 2.577 69.939 134.602 195.067
420 0.012 0.025 0.558 4.068 11.454 11.522 122.208 241.366 357.780
425 0.654 0.658 0.883 0.002 5.785 6.356 53.068 100.914 144.237
430 0.904 8.839 9.470 7795 17.086 18.168 112,400 222.319 330.436
435 0.095 0.269 0.556 2.457 3.118 3.924 37.745 75.872 112.538
440 0.230 2.948 2.981 20.625 38.836 46.066 101.214  200.892  300.004
All Sample
B-splines model GB2 model Lognormal model
Lag Lag Lag
1 2 3 1 2 3 1 2 3
r 0.004 0.017 0.013 0.243 0.240 0.151 0.915 0.880 0.845
Q 0.040 0.621 0.996 90.507 178.893  213.791 1302.153 2506.209 3618.952
Q statistic critical values
Lag
1 2 3
1% 6.630 9.210 11.340
5% 3.840 5.990 7.820
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Table 6: Autocorrelations of the implied volatility residuals

June 1992 contract

Autocorrelations

B-splines model GB2 model Lognormal model
Lag Lag Lag
Strike 1 2 3 1 2 3 1 2 3
370 -0.1179  -0.0711 0.1609 -0.0538 0.1306  -0.0057 0.8826 0.8549 0.8368
375 0.0292 -0.2617 -0.0237 0.4634 0.2256 0.2714 0.9390 0.9055 0.8659
380 -0.1168 -0.1053  -0.0064 0.2679 0.2603 0.1628 0.9038 0.8791 0.8464
385 -0.2125  -0.0179  -0.1271 0.4765 0.4060 0.4337 0.9481 0.9240 0.9066
390 -0.1298 0.1793  -0.0574 0.1478 0.1119 0.2271 0.8816 0.8515 0.8349
395 0.0442 0.0290 0.0485 0.1971 0.1899 0.1391 0.9265 0.8987 0.8818
400 0.1081  -0.0458 0.0615 0.1215 0.1505 0.1504 0.7998 0.7634 0.7382
405 -0.0910 0.0466 0.0072 0.0506 0.1436 0.0843 0.5855 0.5653 0.5323
410 -0.0271 0.1721  -0.0908 0.1622 0.2008 0.1658 0.7448 0.7233 0.7027
415 0.0512 0.1020 0.1394 0.1337 0.2355 0.1117 0.6283 0.5835 0.4908
420 -0.0304 0.1938 0.0149 0.1553 0.2330 0.0922 0.9035 0.9022 0.8796
425 0.0679 0.0635 0.1261 0.0699  -0.0560 0.0231 0.9152 0.8861 0.8653
430 0.1345 -0.0252 0.0785 0.2944 0.2802 0.1483 0.9494 0.9414 0.9312
435 0.2575 0.1383 0.0727 0.2828 0.1423 0.1640 0.9515 0.9385 0.9321
440 0.1195  -0.0201 0.0679 0.2510 0.1208 0.0341 0.9594 0.9509 0.9409
Q-statistic
B-splines model GB2 model Lognormal model
Lag Lag Lag
Strike 1 2 3 1 2 3 1 2 3
370 1.237 1.692 4.052 0.307 2.135 2.138 82.602 160.869 236.600
375 0.036 2.996 3.021 9.465 11.766 15.183 38.859 75.923 110.711
380 1.759 3.201 3.206 10.267 20.030 23.878 118.460 231.335 336.715
385 3.387 3.412 4.660 17.716 30.754 45.842 71.054 139.451 206.193
390 2.495 7.286 7.781 3.647 5.749 14.471 130.599 253.181 371.757
395 0.190 0.272 0.506 3.964 7.683 9.698 87.589 170.840 251.829
400 2.010 2.372 3.030 2.835 7.208 11.597 121.542 232.874 337.548
405 0.836 1.058 1.063 0.274 2.503 3.278 36.685 71.219 102.145
410 0.126 5.252 6.688 5.027 12.773 18.082 105.400 205.345 300.186
415 0.263 1.314 3.299 1.842 7.614 8.925 40.672 76.104 101.438
420 0.153 6.424 6.461 4.511 14.719 16.326 153.469 307.354 454.426
425 0.475 0.895 2.569 0.548 0.902 0.963 93.836 182.613 268.085
430 2.586 2.678 3.572 13.785 26.347 29.889 145.135 288.760 430.190
435 6.104 7.885 8.382 7.843 9.848 12.541 91.470 181.380 271.001
440 1.715 1.764 2.327 9.012 11.115 11.285 133.482 265.553 395.784
All sample
B-splines model GB2 model Lognormal model
Lag Lag Lag
1 2 3 1 2 3 1 2 3
r -0.004 0.018 0.007 0.120 0.123 0.102 0.870 0.849 0.829
Q 0.037 0.816 0.928 35.979 73.408 99.520 1893.520 3697.783 5419.045
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Table 7: Autocorrelations of the implied volatility residuals

Autocorrelations

September 1992 contract

B-splines model GB2 model Lognormal model
Lag Lag Lag
Strike 1 2 3 1 2 3 1 2 3
370 0.3102 0.0082 -0.0783 -0.0253  -0.0311 0.1023 0.9358 0.9087 0.9011
375 0.0862 -0.2958  -0.1458 0.4005 0.3128 0.3500 0.9208 0.8888 0.8634
380 0.0053  -0.0263 0.0021 0.2522 0.2601 0.2645 0.9390 0.9084 0.8785
385 -0.2189 0.0408 0.2037 0.5140 0.5052 0.4197 0.9193 0.8984 0.8710
390 0.0385 -0.0010 -0.0986 0.3003 0.3003 0.2160 0.9067 0.8906 0.8719
395 -0.1347  -0.1229  -0.0028 0.2482 0.3503 0.1322 0.9099 0.8867 0.8354
400 0.0111 0.1865  -0.0984 0.1832 0.1454 0.1593 0.8862 0.8465 0.8109
405 0.2728 0.1690 0.1770 0.1024 0.3491 0.1648 0.7511 0.7137 0.6868
410 0.2295 0.1993 0.1319 0.0955 -0.0130 -0.1666 0.4513 0.3547 0.2223
415 -0.0969 0.1356  -0.0373 0.1258 0.1064  -0.0901 0.5724 0.4913 0.2939
420 0.0705 0.1224 0.0704 0.0948 0.0275 0.0471 0.7118 0.6633 0.6216
425 -0.1767 0.0851 0.1053 0.2697 0.1300 0.1914 0.8910 0.8590 0.8242
430 0.1325 0.1011 0.1610 0.2771 0.1721 0.1257 0.9059 0.8829 0.8599
435 0.1674 0.0981 0.0462 0.2811 0.5277 0.1302 0.9479 0.9288 0.9137
440 0.0441 0.0405  -0.0893 0.1148 0.1619 0.0331 0.9525 0.9498 0.9335
Q-statistic
B-splines model GB2 model Lognormal model
Lag Lag Lag
Strike 1 2 3 1 2 3 1 2 3
370 5.971 5.976 6.370 0.047 0.120 0.917 64.847 126.867 188.753
375 0.290 3.812 4.693 6.109 9.947 14.906 33.137 64.920 95.825
380 0.003 0.073 0.073 6.810 14.119 21.758 96.133 186.960 272.736
385 3.834 3.969 7.380 21.938 43.400 58.406 70.172 138.059 202.684
390 0.189 0.189 1.444 12.628 25.349 31.979 115.938 228.626 337.421
395 1.688 3.110 3.111 6.099 18.382 20.151 81.982 160.676 231.274
400 0.017 4.819 6.165 4.899 8.007 11.765 116.245 223.046 321.748
405 7.594 10.537 13.802 1.102 14.027 16.939 60.385 115438 166.923
410 7.481 13.164 15.671 1.358 1.384 5.578 30.346 49.227 56.693
415 1.005 2.994 3.145 1.710 2.944 3.837 36.371 63.423 73.196
420 0.707 2.851 3.565 1.330 1.442 1.775 76.525 143.419 202.580
425 3.246 4.006 5.184 8.003 9.880 13.989 88.147 170.851 247.713
430 2.354 3.735 7.265 11.134 15.461 17.786 122.301 239.266 351.007
435 2.691 3.626 3.835 7.747 35.338 37.037 88.988 175.324 259.774
440 0.243 0.449 1.463 1.739 5.227 5.374 122.500 245.253  364.741
All sample
B-splines model GB2 model Lognormal model
Lag Lag Lag
1 2 3 1 2 3 1 2 3
r 0.019 0.029 0.014 0.159 0.194 0.087 0.871 0.846 0.818
Q 0.804 2.594 3.008 56.754 141.212  158.327 1717.866 3339.868 4857.427
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Table 8: Autocorrelations of the implied volatility residuals

December 1992 contract

Autocorrelations

B-splines model GB2 model Lognormal model
Lag Lag Lag
Strike 1 2 3 1 2 3 1 2 3
370 0.0466 -0.2861 -0.0314 0.0855  -0.1862 0.0974 0.9510 0.9238 0.9211
375 0.0655 0.1758 -0.1736 0.3680 0.3422 0.2746 0.9605 0.9194 0.8785
380 0.0265 0.0998 0.0124 -0.0329 0.0384 0.0016 0.9439 0.9324 0.9138
385 -0.0402 0.2681 0.0388 0.0458 0.1972 0.2734 0.9353 0.9247 0.9064
390 -0.0199  -0.2725 0.0729 0.0763  -0.0660 0.1228 0.9239 0.8940 0.8869
395 -0.2060 -0.2213 0.0663 0.0937 0.1552 0.2110 0.9023 0.8743 0.8497
400 -0.1213  -0.1714 0.2813 0.0476 0.0307 0.2464 0.8310 0.7950 0.7749
405 -0.1111  -0.0057 0.0604 0.1683 0.2287 0.2291 0.8134 0.7491 0.7128
410 0.0094 -0.1563 0.0283 0.0295 -0.0438 0.0584 0.5678 0.5053 0.4234
415 -0.1397 0.1867  -0.0245 0.0639 0.1771 0.0659 0.6248 0.5337 0.4690
420 0.0254 -0.0248 -0.1339 0.0817  -0.0549 0.0033 0.5982 0.4852 0.4447
425 -0.0745 0.0840 0.0507 -0.0224  -0.0070 0.0126 0.8564 0.7647 0.7049
430 0.0620 -0.0708 -0.0293 -0.0532  -0.1564 -0.0072 0.8804 0.8533 0.8551
435 -0.0909 0.0818 0.0051 0.0946 0.2651 0.0469 0.9413 0.9312 0.9133
440 -0.0987 0.0624  -0.0727 0.0332 0.0527 0.0776 0.9438 0.9388 0.9369
Q-statistic
B-splines model GB2 model Lognormal model
Lag Lag Lag
Strike 1 2 3 1 2 3 1 2 3
370 0.219 8.578 8.679 0.906 5.240 6.437 113.986 222.434 331.146
375 0.168 1.412 2.662 5.428 10.256 13.456 36.977 71.827 104.581
380 0.109 1.665 1.689 0.191 0.451 0.452 159.478 315.998 467.201
385 0.128 5.884 6.006 0.170 3.361 9.579 72.634 144544 214542
390 0.069 13.063 13.999 1.095 1.920 4.786 160.493 311.575 461.105
395 4.158 9.012 9.452 0.860 3.248 7.707 81.446 158.716 232.481
400 2.958 8.897 24.962 0.478 0.678 13.613 147.098 282.371 411.521
405 1.346 1.349 1.754 3.145 9.005 14.945 73.461 136.360 193.848
410 0.018 5.049 5.214 0.187 0.601 1.340 69.651 125.057 164.147
415 2.107 5.910 5.976 0.457 4.004 4.499 43.733 75.943 101.048
420 0.137 0.268 4.106 1.449 2.107 2.109 79.451 131.953 176.265
425 0.582 1.330 1.606 0.052 0.057 0.074 79.968 144.331 199.561
430 0.799 1.846 2.026 0.610 5.893 5.905 173.631 337.501 502.803
435 0.901 1.636 1.639 0.922 8.235 8.466 99.261 197.310 292.520
440 1.977 2.772 3.857 0.235 0.833 2.134 199.524 397.874 596.316
All sample
B-splines model GB2 model Lognormal model
Lag Lag Lag
1 2 3 1 2 3 1 2 3
r -0.013 -0.023 0.008 0.035 0.010 0.065 0.868 0.839 0.820
Q 0.452 1.859 2.015 3.396 3.651 15.211 2123.890 4109.928 6007.315
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Table 9: Autocorrelations of the implied probability series innovations

March 1992 contract

Autocorrelations

B-splines model GB2 model Lognormal model
Strike Lag Lag Lag
Interval 1 2 3 1 2 3 1 2 3
360-350 -0.4185 0.0539  -0.0797 -0.3155 0.1191  -0.1051 -0.0951 0.0656  -0.0778
370-360 -0.5160 0.2434  -0.1621 -0.2287 -0.0019  -0.1041 0.0075 0.0365 -0.0829
380-370 -0.3355  -0.1625 0.0157 0.0593 -0.0223 -0.0659 -0.0136  -0.0049 -0.0212
390-380 -0.3790  -0.0998 0.1169 0.0408 -0.0055 -0.0418 -0.2410  -0.0457 -0.0570
400-390 -0.3037  -0.1597 0.0105 -0.0853 0.0154  -0.1150 -0.1328 0.0536  -0.0969
410-400 -0.4004 0.0617 0.1214 0.0679 0.2585 0.0635 0.0620 0.1240 0.3174
420-410 -0.3976  -0.0860 0.1741 0.1654 -0.0721 -0.0613 -0.2708 -0.0425 -0.0349
430-420 -0.3940  -0.0099  -0.0857 -0.1425  -0.0208  -0.1353 -0.4050  -0.0374  -0.0213
Q-statistic
B-splines model GB2 model Lognormal model
Strike Lag Lag Lag
Interval 1 2 3 1 2 3 1 2 3
360-350 7.894 8.028 8.330 4.686 5.370 5.916 0.426 0.633 0.932
370-360 16.523 20.263 21.952 3.298 3.298 4.005 0.003 0.083 0.505
380-370 10.023 12.403 12.426 0.314 0.358 0.754 0.016 0.019 0.060
390-380 15.808 16.914 18.448 0.185 0.189 0.386 6.567 6.804 7.178
400-390 12.267 15.684 15.699 0.975 1.007 2.807 2.328 2.710 3.969
410-400 22.443 22.980 25.074 0.655 10.213 10.794 0.547 2.747 17.267
420-410 20.395 21.356 25.331 3.5657 4.238 4.735 9.683 9.923 10.087
430-420 17.856 17.867 18.727 2.355 2.406 4.569 19.361 19.527 19.582
All sample
B-splines model GB2 model Lognormal model
Lag Lag Lag
1 2 3 1 2 3 1 2 3
r -0.387 -0.032 0.044 -0.009 0.046 -0.060 -0.252 -0.008 -0.008
Q 120.109  120.939 122.498 0.059 1.761 4.712 51.408 51.465 51.511
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Table 10: Autocorrelations of the implied probability series innovations

June 1992 contract

Autocorrelations

B-splines model GB2 model Lognormal model
Strike Lag Lag Lag
Interval 1 2 3 1 2 3 1 2 3
360-350 -0.3808 -0.1625 0.0501 -0.0278  -0.2139 0.0395 -0.0742  -0.1470  -0.0857
370-360 -0.3972 0.0192  -0.1871 -0.0887 -0.0484 -0.0510 -0.0837 -0.2795 -0.0190
380-370 -0.5062 0.1221  -0.1283 -0.1013  -0.0330 -0.0198 -0.4327  -0.0862 0.2101
390-380 -0.3428  -0.2508 0.1907 -0.3662 0.0082 0.2952 0.0573 -0.1114  -0.0232
400-390 -0.4362 -0.1706 0.2413 -0.4861 0.1072 0.0332 -0.1826  -0.2777 0.0037
410-400 -0.3153  -0.1576 0.0479 0.0501  -0.0721  -0.0025 0.0197 0.2167 0.0176
420-410 -0.4824 0.0903  -0.0544 -0.0692 -0.1138 0.1917 -0.1458  -0.1092 0.0540
430-420 -0.4605 0.0149  -0.0432 -0.2823 0.0270  -0.0348 -0.2745 0.1130  -0.1313
Q-statistic
B-splines model GB2 model Lognormal model
Strike Lag Lag Lag
Interval 1 2 3 1 2 3 1 2 3
360-350 8.707 10.320 10.477 0.051 3.124 3.230 0.369 1.840 2.348

370-360 10.107 10.131 12.450
380-370 22.560 23.889 25.372
390-380 12.576 19.376 23.343
400-390 28.739 33.165 42.077
410-400 17.401 21.776 22.183
420-410 39.570 40.964 41.474
430-420 30.967 30.999 31.276

0.566 0.738 0.930
0.749 0.830 0.859
13.546 13.552 22.544
38.278 40.152 40.332
0.471 1.453 1.455
0.876 3.261 10.062
12.437 12.552 12.743

0.512 6.304 6.331
18.357 19.093 23.516
0.378 1.818 1.881
5.234 17.423 17.425
0.073 8.856 8.914
3.888 6.081 6.622
11.157 13.059 15.649

All sample
B-splines model GB2 model Lognormal model
Lag Lag Lag
1 2 3 1 2 3 1 2 3
r -0.417 -0.054 0.017 -0.193 -0.014 0.049 -0.150 -0.014 -0.009
Q 163.711  166.402  166.667 36.555 36.743 39.093 22.612 22.821 22.894
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Table 11: Autocorrelations of the implied probability series innovations

September 1992 contract

Autocorrelations

B-splines model GB2 model Lognormal model
Strike Lag Lag Lag
Interval 1 2 3 1 2 3 1 2 3
360-350 0.0067 -0.3557 -0.1338 -0.2103  -0.1107 0.2213 -0.0041 0.2004 0.0451
370-360 -0.2512  -0.1908  -0.0080 -0.2799  -0.0406 -0.0154 -0.2506 -0.0128  -0.0345
380-370 -0.4800 0.2404  -0.2359 -0.0836 -0.2466  -0.0547 -0.0182  -0.1411  -0.0956
390-380 -0.5175 0.0781 0.0197 -0.0775 -0.1641  -0.1303 -0.1045  -0.1746 0.0170
400-390 -0.5095 0.0435 -0.0167 0.0062 -0.0087 -0.1030 0.2204 0.0280 -0.1577
410-400 -0.4080 0.1182 -0.1744 0.0151  -0.0564 -0.1376 -0.0071  -0.2171  -0.1646
420-410 -0.2627 -0.1070  -0.0393 0.2036 0.0243  -0.0421 0.0781 0.2738 0.1410
430-420 -0.3544  -0.1637 0.0334 0.1469  -0.1898  -0.1811 0.2198  -0.0740  -0.1579
Q-statistic
B-splines model GB2 model Lognormal model
Strike Lag Lag Lag
Interval 1 2 3 1 2 3 1 2 3
360-350 0.001 3.217 3.697 1.068 1.379 2.694 0.000 1.021 1.076
370-360 1.586 2.547 2.549 1.892 1.934 1.940 1.579 1.583 1.616
380-370 14.525 18.231 21.862 0.441 4.340 4.536 0.021 1.297 1.894
390-380 26.251 26.856 26.894 0.613 3.391 5.158 1.071 4.093 4122
400-390 33.228 33.473 33.509 0.005 0.015 1.459 6.414 6.519 9.854
410-400 23.306 25.278 29.600 0.033 0.504 3.328 0.007 6.800 10.732
420-410 9.874 11.524 11.748 6.178 6.267 6.535 0.891 11.918 14.864
430-420 17.588 21.367 21.525 3.151 8.450 13.309 7.053 7.858 11.549
All sample
B-splines model GB2 model Lognormal model
Lag Lag Lag
1 2 3 1 2 3 1 2 3
r -0.404 -0.015 -0.041 0.110 -0.074 -0.115 0.085 -0.045 -0.086
Q 120.708  120.867  122.131 9.325 13.578 23.793 5.491 7.040 12.704
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Table 12: Autocorrelations of the implied probability series innovations

December 1992 contract

Autocorrelations

B-splines model GB2 model Lognormal model
Strike Lag Lag Lag
Interval 1 2 3 1 2 3 1 2 3
380-370 -0.3750  -0.2427 0.1208 -0.3091 0.0028 0.0581 -0.2559 0.1423  -0.1055
390-380 -0.3213  -0.3204 0.1324 -0.1908  -0.0052 0.1002 0.0120 -0.1118 0.0085
400-390 -0.4801 -0.0131  -0.0298 -0.1523 0.0396 0.0004 -0.1021 0.0563 -0.1318
410-400 -0.5474 0.1154  -0.1183 -0.1600 0.0468 -0.0234 -0.0470 0.1752  -0.1103
420-410 -0.3761  -0.0540 0.0780 -0.1699 0.1272  -0.1170 -0.0026 0.2172 0.0560
430-420 -0.3987 0.0113  -0.1432 -0.1593 0.1672  -0.0717 0.1662 -0.0897 -0.0971
440-430 -0.3732 0.1133 0.0259 -0.1951 0.2339  -0.0316 0.2913 0.1796  -0.0792
450-440 -0.3810 -0.0846 -0.0174 -0.2254  -0.0199 0.0691 -0.1030 0.0727 0.0148
460-450 -0.4846 0.0698  -0.0667 -0.0690  -0.0703  -0.0443 0.1480  -0.1462  -0.1386
Q-statistic
B-splines model GB2 model Lognormal model
Strike Lag Lag Lag
Interval 1 2 3 1 2 3 1 2 3
380-370 15.614 22.215 23.865 10.705 10.706 11.090 7.337 9.627 10.897
390-380 14.866 29.760 32.321 5.245 5.248 6.716 0.021 1.847 1.858
400-390 41.491 41.522 41.683 4.223 4.510 4510 1.866 2.436 5.581
410-400 60.525 63.229 66.085 5.246 5.698 5.812 0.449 6.712 9.209
420-410 29.425 30.036 31.313 6.181 9.660 12.616 0.001 10.000 10.668
430-420 34.025 34.053 38.486 5.256 11.075 12.149 5.991 7.747 9.812
440-430 29.814 32.575 32.720 8.104 19.815 20.031 18.579 25.680 27.068
450-440 28.308 29.710 29.769 10.268 10.348 11.324 2.102 3.155 3.199
460-450 38.990 39.804 40.552 0.804 1.644 1.980 3.700 7.336 10.623
All sample
B-splines model GB2 model Lognormal model
Lag Lag Lag
1 2 3 1 2 3 1 2 3
r -0.414 -0.010 -0.018 -0.178 0.090 -0.018 0.132 0.095 -0.065
Q 275.963 276.130 276.675 51.553 64.745 65.249 28.545 43.335 50.217
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Table 13: Random walk Lo & MacKinlay Test for the implied probability series

innovations
March 1992 contract
B-splines model GB2 model Lognormal model
Strike Lag Lag Lag
Interval 2 3 4 2 3 4 2 3 4
360-350 -10.929 -10.100 -10.229 -12.452 -8.678 -8.096 -5.762 -4.841 -5.831
370-360 -22.740 -16.860 -16.696 -10.782 -10.049 -10.768 0.377 1.599 -0.078
380-370 -19.963 -23.235  -23.030 3.233 2.509 1.100 -1.309 -1.833 -2.556
390-380 -31.401 -32.783 -28.599 3.121 2.804 1.627 -14.925 -15.857 -16.749
400-390 -31.922  -36.554 -35.366 -7.173 -6.411 -8.467 -10.123 -8.467 -9.785
410-400 -45.294  -39.070 -31.392 2.680 11.171 14.134 0.546 2.506 7.769
420-410 -46.626  -45.982  -37.299 9.998 6.338 3.314 -8.686 -9.382 -10.016
430-420 -36.709  -34.657  -34.675 -11.714  -11.377  -13.577 -12.544  -13.122  -13.517
June 1992 contract
B-splines model GB2 model Lognormal model
Strike Lag Lag Lag
Interval 2 3 4 2 3 4 2 3 4
360-350 -19.964 -21.838 -20.189 -2.031 -8.664 -9.079 -4.959 -8.372  -10.165
370-360 -21.607 -19.552  -20.727 -7.675 -8.429 -9.068 -8.473 -15.365 -16.599
380-370 -37.319  -30.623  -29.947 -14.375 -13.459 -11.246 -11.437 -12.241  -10.625
390-380 -33.896 -41.536 -35.815 -16.929 -16.494 -11.214 4143 0.090 -1.534
400-390 -43.631  -48.615 -40.565 -37.503 -32.032 -28.108 -12.096 -19.180 -19.874
410-400 -49.233 -56.153  -52.788 2.619 -0.308 -1.375 -1.294 5.168 6.508
420-410 -61.584 -52.499  -49.630 -7.942 12478 -9.618 -13.401 -15.360 -14.224
430-420 -45.766  -41.501  -39.363 -23.3563  -19.614 -17.995 -19.443  -13.626  -13.463
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Figure 1: S&P 500 Index Future implied risk-neutral density function
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Figure 2: S&P 500 Index Future implied risk-neutral density function

90 days to maturity
03/06/92

0.016

0.014 |

0.012 |

0.008 |-

0.006 |

0.004 |-

0.002 |

Lognorm al
GB2

Moneyness (X/F-1)

51




Table 14: Random walk Lo & MacKinlay Test for the implied probability series

innovations
September 1992
B-splines model GB2 model Lognormal model
Strike Lag Lag Lag
Interval 2 3 4 2 3 4 2 3 4
360-350 -0.407 -3.145 -4.655 -2.622 -3.183 -2.420 -0.079 1.760 2.351
370-360 -5.402 -6.617 -6.663 -4.368 -4.614 -4.751 -5.973 -6.354 -6.754
380-370 -15.397  -11.177  -11.940 -3.172 -7.384 -9.080 -2.709 -7.716  -10.761
390-380 -34.618 -29.840 -26.750 -5.470 -10.449 -14.033 -7.489  -11.463 -11.348
400-390 -45.040 -40.457 -37.994 0.473 -0.097 -3.422 12.341 11.863 8.252
410-400 -46.954  -37.474  -38.740 0.932 -1.083 -4.670 -0.559 -5.055 -8.412
420-410 -30.484  -34.490 -34.306 8.989 8.447 6.791 0.165 6.606 9.741
430-420 -36.217  -40.845  -39.007 7.489 0.795 -4.593 15.968 11.089 5.400
December 1992
B-splines model GB2 model Lognormal model
Strike Lag Lag Lag
Interval 2 3 4 2 3 4 2 3 4
380-370 -26.087 -32.694 -31.063 -18.330 -16.670 -14.463 -12.784 -8.520 -8.385
390-380 -31.916  -44573  -41.956 -18.894 -17.551 -13.425 1.415 -5.215 -6.418
400-390 -71.505 -66.979 -63.095 -22.021  -16.902 -14.318 -13.299 -8.677 -11.195
410-400 -82.115  -68.799 -66.646 -25.645 -18.869 -16.664 -5.319 3.263 2.157
420-410 -55.326  -55.420  -49.183 -20.041  -10.898 -11.222 -0.492 7.662 10.559
430-420 -66.941  -60.323  -61.452 -17.751 -9.411 -9.119 10.234 6.523 2.904
440-430 -62.681  -50.389  -42.852 -26.935  -11.026 -7.736 17.265 20.518 18.642
450-440 -54.280 -56.907 -55.825 -25.568 -24.337  -20.360 -8.749 -5.240 -3.696
460-450 -50.593  -44.897  -43.819 -7.292  -10.604  -12.715 14.600 7.016 0.299
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Figure 3: S&P 500 Index Future implied risk-neutral density functions
30 days to maturity
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Figure 4: Skewness of the implied probabilities distributions
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Figure 5: Excess kurtosis of the implied probabilities distributions
June and September 1987 contracts
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Figure 6: Skewness of the implied probabilities distributions
March, June, September and December 1992 contracts
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Figure 7: Excess kurtosis of the implied probabilities distributions
March, June, September and December 1992 contracts
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Figure 9: S&P 500 Index Future truncated risk-neutral density function
CME June 1992 contract
11" of June 1992
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Figure 12: Pre-crash implied volatilities
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Figure 13: Post-crash implied volatilities
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Figure 14: Pre-crash implied density functions
B-spline approximation approach
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Figure 15: Post-crash implied density functions
B-spline approximation approach
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Figure 16: Future Index time series
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Figure 17: Probability density time series for the strike interval 410-420
B-splines estimation method
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