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Pricing of occupation time derivatives: continuous and
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Gianluca Fusaif- University of Florence Aldo Tagliani - University of Trento

Abstract

In the present work we use different numerical methods (multidimensional inverse
Laplace transform, numerical solution of a PDE by finite diffference scheme, Montecarlo
simulation) for pricing occupation time derivatives in order to examine the effect of con-
tinuous and discrete time monitoring of the underlying asset. In particular we treat the
problem of the numerical inversion of a multidimensional Laplace transform and we show
that it can be performed very fast and with great accuracy. We conduct also an analysis
of the numerical method for the solution of the PDE with discrete monitoring and we
show that the proposed method avoids unwanted oscillations in the solution arising near
the monitoring dates due to the updating of the occupation time.

1 Introduction

In the present work we examine the pricing problem for occupation time derivatives comparing
the case of discrete and continuous time monitoring. The payoff of these contracts depends
on the time spent by an index below a given level (hurdle or switch derivatives) or inside a
band (corridor and Parisian derivatives and range notes). In particular, we examine the case
of the corridor bond, bond where the coupon is proportional to the time spent inside a given
band, and the corridor option that guarantees a minimum coupon. The structure of their
payoff is common to FX range floaters boost and step structures as described in Hull [15],
Linetsky [18], Pechtl [22], Tucker et al.[28], Turnbull[29] and Bregagnolio[5]. Chacko and Das
[8] (1997) have examined the case of the Asian corridor bond.

The focus of the article is then to examine the differences between the price of the contract
assuming continuous or, the more realistic, discrete time monitoring. Indeed the difference
between the two prices can be relevant mainly when the residual life of the option is short
or when the monitoring frequency is low (e.g. monthly). Moreover, as observed in Broadie
and Glasserman [6] for barrier options, in Heynen and Kat [14] for lookback options and in
several articles on Derivative Week, a sizable portion of real contracts specify fixed times
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for monitoring the asset and this can introduce substantial differences between discrete and
continuous monitoring.

Assuming continuous time monitoring and describing the evolution of the index by a
Geometric Brownian Motion, we can obtain a closed form solution for the density of the
occupation time below a given level and the double Laplace transform for the density function
of the time spent inside a band. We propose two numerical methods for this inversion. We
remark that this is the first work in finance where the numerical inversion of a bidimensional
Laplace transform is discussed. We can show that this inversion, at least in the case studied in
this paper, can be performed very quickly and with a great accuracy. Moreover the numerical
methods adopted are remarkably easy to understand and perform.

In the case of discrete time monitoring we could give the option price as an iterate integral
(one integral for every monitoring dates), but this method, adopted for example in [14] for
studying lookback options, can be very expensive. So we follow a Partial Differential Equation
approach & la Black and Scholes along the lines described in Wilmott et al. [11] and [30]. In
order to numerically solve the PDE, taking into account the actual performance of high-speed
computers, we draw our attention toward a proper finite difference scheme that has to satisfy
the following requirements: the numerical solution a) exists; b) is positive; ¢) converges to the
exact one as the discretization steps tend to zero; d) is free of unwanted oscillations arising at
the monitoring dates, due to the discontinuity introduced by the influx of new information.
We believe that these are minimal properties because they respect the physical nature (i.e.
financial) of the problem. For this reason, in the present work, we resort to an upwind finite-
difference scheme for the first spatial derivative and we show through a numerical analysis
that it guarantees all of these requirements independently from the discretization step and
the parameter values, i.e. all properties are satisfied unconditionally.

In the second section we describe the main contracts. In the third section we show how
to compute analytically the price for the corridor bond. In the fourth section we examine
the pricing problem for the corridor option and we show the convenience of computing the
density function of the occupation time assuming continuous time monitoring, whilst with
discrete monitoring we prefer adopt a PDE approach. In the final section we compare the
different methods. As Appendices we give the main results concerning the double Laplace
transform of the density function and its inversion and the numerical analysis of the adopted
scheme for the PDE. We discuss also, Appendix D, the so called digital corridor option, where
at the expiry the holder of the option receives a fixed amount if the occupation time of the
interval has been greater than a prefixed level.

2 The contracts

There are several forms of occupation time derivatives. The more common are the so called
hurdle (or switch or range) and corridor derivatives, Hull [15], Pechtl [22], Tucker and Wei
(28], Turnbull[29], Bregagnolio and Iori [5], Linetski [18]. Miura [19] and Akahori [2] introduce
the quantile option. Davydov and Linetsky [10] in a recent and independent work extends
the single barrier case to the double barrier step options.

Let us define z be the index level at the current time ¢, and Y (z,T,t;u,l) the time



spent by the index inside the band [l;u], in the time interval [t;T]. With continuous time
monitoring, we can write:

T
Y(:c,T,t;u,l) = / ]-(l<Xs<u)d3
Ji

where 1 x, <u) stands for the indicator function of the set [I;u]. If I = 0, we are considering
the time spent below the level u. Assuming discrete time monitoring, with n monitoring
dates ti,..., tn, where t =tp < t; < ... < t, =T, we have:

n
Y (:E,T,t;’u,,l) = Zl(l<Xt,~<u) (ti = ti—l)
=1

A corridor bond pays at time 7' the amount:

Y (z,T,t;u,l)
N*—T—t

where IV is the nominal value of the bond. The corridor option guarantees a minimum amount
N x mc at the expiry, so the payoff is given by:

Y (z,T,t;u,l) }

————:mec

N*max[ T :

In the case of the hurdle derivative, we set [ = 0.
In Appendix D we discuss the evaluation of a digital corridor option that pays at time T
the amount:

N x 1Y(:z:,T,t;u,l)>K

i.e. a fixed amount NV if the occupation time is greater than K.
In all previous cases, if the lower barrier goes to zero we have hurdle derivatives.

3 The corridor bond

In order to price the corridor bond, we can use the well known fact that in absence of arbitrage
opportunities the price is given by the expected value under the risk neutral measure of the
discounted payoff, [13]. We can easily obtain the price of the contract either with continuous
time monitoring either with discrete time monitoring.

3.1 Continuous and discrete time monitoring

The price is given by the expected value of the discounted payoff. Assuming a constant risk
free interest rate r,we obtain:

Et,:z: [e"T(T—t) * NV % W] = e_T(T_t) * %Et,:z: l:ftT 1(l<Xs<u)dS]

= e T(T-1) 4 % ft; Bty (1(l<Xs<u)) ds M
=TT w Al [ Prig (1 < X, <w)ds
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where in the second line we have used the Fubini’s theorem for changing expectation and
integral. The same result can be found in [22].

Assuming that the dynamic of the underlying price is described by a GBM, dX = r Xdt+
o XdW;, we obtain, taking the log of the prices:

Priz (I < Xs <u) =2 (h(z,u,s —t)) — @ (h(z,l,s — 1))

w2
where ® (z) = [*_¢-2dw and h(z,l,7) = 1= (In L — r—2) 7).
J—00 /27 a\/T z 2

In the case of discrete monitoring, similarly to the previous case, setting A = t;41 — t;,
i.e. we have a constant distance between monitoring dates, we obtain:

—T(T—-t) Yd IyT,t;uyl —
Ei o [e * IN * J—ZT_t

n
= e "(T-1) 4 % Zl (® (h(z,u,t; —t)) — @ (h(z,l,t; — 1)) A
i=

Remark: Recalling the fact that the local time at a level z for a Standard Brownian
Motion is the amount of time spent by the Brownian path in the vicinity of the point z,
compare Karatzas and Shreve (KS henceforth) [16] pag. 203, we can obtain a representation
of the occupation time in terms of integral of the local time respect to the space variable
instead as integral of the indicator function respect to time. Using the representation of the
semimartingale local time for a continuous semimartingale given in KS, page 218 formula
(7.3), we have for every Borel measurable function & : ® — [0, 00):

T +00
/t B(X)d< X >e=2 /0 R(E)Lu(E)de

where < X >, denotes the quadratic variation of the price process. In the case of GBM
d< X >s= 0%2X?2ds and then choosing k (X) = 1(1<x<u)/02X2, we obtain:

d e 7 2u®)

_ (I<€<u) _ t
| texcnds=2 [ 501 eae =2 [ Zae
0 l
Unfortunately this representation does not seem to be useful for obtaining the price of the
corridor option, because we should know the joint density law of the local times L; (&), for
I < £ < wu. Obviously, for pricing the corridor bond, we need just the expected value of L; ().
Some more results, but with reference to the Brownian motion with no drift, can be found
in Takacs [26]. Important results have been found in Carr and Jarrow [7] in the discussion
of the stop loss strategy.

4 The corridor option
In order to compute the price for the options we can follow different ways:

1. find the density function of the r.v. Y (z,T,t;u,l) and compute the expected value of
the discounted payoft;



2. write and numerically solve the PDE describing the price of the contingent claim;

3. run a MonteCarlo simulation for the dynamics of the underlying asset and compute
for every possible path the final value of the occupation time and the payoff of the
contingent claim and then average the results of different paths.

The first approach results useful assuming continuous time monitoring, whilst the second
one becomes preferable in the case of discrete time monitoring. The MonteCarlo simulation
could be preferred in the case of discrete monitoring, because in the simulation the underlying
can be checked only at discrete, albeit small, intervals. Unfortunately, there is no closed form
expression for the density function, but we are able to obtain its double Laplace transform. In
next section, we will see that from this double transform we can compute the double Laplace
transform of the corridor option price.

4.1 Continuous time monitoring

Assuming continuous time monitoring can be realistic when the residual life of the contract
is quite long or when the monitoring frequency is high (e.g. daily). In this case, it is easier to
find the density function of the occupation time, rather than to solve a PDE with two state
variables (asset price and occupation time) or to run a MonteCarlo simulation. The problem
with the PDE is that we need to augment the state space introducing a new variable, locally
risk-free, that takes into account the time spent inside the band. This fact makes the PDE a
degenerate parabolic equation (the covariance matrix is singular) and the numerical method
can suffer. The MonteCarlo method has a limit in the intrinsic discreteness of the simulation
so we do not know if the process has crossed or not the barriers and we cannot compute the
time spent inside the barriers during each step of the simulation'. For this reason it should
be preferable to use the MonteCarlo method in presence of discrete monitoring.

We observe that to find the time spent inside the band [l;u] by the GBM X;, Xo =
z, is equivalent to find the time spent inside the band [L =In(l) /o;U = In (u) /o] by the
Arithmetic Brownian Motion (ABM), starting at z=In (z) /o, with drift m = (r — 02/2) /o
and unitary diffusion coefficient. In the following, we set 7 =T — t.

Using the Feynman-Kac formula, [16] chapter 4.4, Fusai [12] has obtained an expression
for the Laplace transform with respect 7 of a function appearing in the expression of the
moments generating function v (z,7) of the r.v. Y:

R ) ®
= [T e M Pry, (Y (2, + 7,5 U, L) € dy) + 1 x Pry . [Y (2, T, t; U, L) = 0] +
+e MT=) x Pry . [Y (2,T,t;U,L) = T — t]

where we have token into account that the time spent inside the band can be equal to T' — ¢
or equal to 0. In Theorem 1 in Appendix A we give the analytical expression for the second

'For a related problem of pricing double barrier options, Baldi et al. [4] illustrate how to improve the
Montecarlo method providing approximations for the exit probability from an interval. Other important
suggestions can be found in Andersen and Brotherton-Ratcliffe [3]. We do not have investigated, if the
suggested methods can be used in the present problem.



and third terms in the expression above? and the Laplace transform of the first term:
“+o0
wy,p2) =w (v, 1,2, L,UmM) =LA (2,7);T = 7] = / e "Q(z,7)dr
0

where:

t+T1
Q (Z,T) = Q(Z7T;L7 U7 m) = / e—uy Prt,z (Y (th +Tat; U7 L) € dy)
i

We can use then the expression for w (v, , 2) for obtaining the double Laplace transform
of the corridor option price. Indeed, we observe that we can write the undiscounted price of
the corridor option with strike K and residual live 7 as:

C(r,K)=C(r,K;z,tl,u) =
Je @ = K)Preg [Y (t+7,25u,0) € dy] + (T — K)* X Progea [Y (E+7,25u,0) = 7]

and with some algebra, we obtain:

C(r,K)=
=Fio Y (t+7,2;u,0)] — K(1 —Pre 5 [Y (¢ + 7,7;u,l) = 0])
+ fOK (K—y)Pri . (Y (t+7,2,U,L) € dy)

where F; 5 [Y (t + 7, x;u,l)], the expected value of the r.v. Y (¢t + 7, z;u,l), can be obtained
by (1).

If we consider now the Laplace transform with respect to K of the third term and we
exploit the convolution property of the Laplace transform, we obtain:

L [foK (K —y)Prs, (Y (t+7,2U,L) Gdy);K—WL]
=L[K;K — p|L[Pr;, (Y (t+7,2,U,L) €dK); K — p
= %Q (t’/‘L’m;l7u7m)

%

and then C (7, K) is given by:

C(r,K)=
=E Y ({t+7,2;u,l)] - K(1—=Prz [Y (t+7,7;u,l) = 0]) + L7} &@"“—ﬁl’"—’ml;u——»K]
= B Y (t+ 7,050, 0)] = K (1= Prya Y (647,250, 1) = 0)) £ |20l ge oy,

)
So the pricing of the corridor option requires the inversion of the double Laplace transform3
of the quantity w (v, 4, z;1,u,m) /u?. We can remark that in order to calculate the Greeks of
the contract we can simply calculate the derivatives of the Laplace transform of the double
Laplace transform and invert them.

2In the case of only one barrier, L = —oco (I = 0), the density function admits a closed form expression
very easy to compute, compare Takacs [27], and Fusai [12] that simplify the results in Akahori [2].

3For numerical purposes, it is convenient to divide in (8) and (9) the numerator and the denominator by
sinh (am) and to use the fact that tanh (amw/2) = (cosh (aw) — 1) /sinh (ar) = sinh (ar) / (cosh (aw) + 1)



As suggested in Abate and Whitt [1], for numerically computing the inverse of the above
quantity, we have considered two different methods* in order to have a cross check on the
results. The two methods are: a) the Fourier-series method firstly introduced for multidi-
mensional transform inversion by Choudhury et al. [9], and b) the Padé approximation as
suggested in Singhal et al. [23].

We describe the two inversion methods in Appendix, whilst Tables 1-5 compare the in-
version for different strikes, index, volatility and time to maturity. We can see that the two
methods give results quite similar, sometimes up to the seventh digit. Using the Padé inver-
sion technique, the inversion is performed very quickly, requiring less than one second. As
described in Appendix, the Fourier-series method, although a little slower, has the advantage
of permitting a control of the different type of errors (aliasing, truncation and roundoff) that
can arise in the numerical inversion. In every case, both inversion techniques appear very
accurate.

[INSERT TABLES 1-5]

We remark that we believe that this is the first paper in finance to use the numerical
inversion of a multidimensional Laplace transform®. Moreover with success. The very good
performance and the easy implementation of the proposed methods® contradicts the common
idea that to perform the numerical inversion of a Laplace transform is difficult to implement
and represents ”a well known ill-conditioned problem”?. As well documented in Abate and
Whitt [1] this common misconcept arises from extrapolating the problems of some numerical
inversion to all available inversion techniques.

Finally, the following table compares the prices of the corridor option, assuming continu-
ous monitoring, obtained by the Laplace inversion and MC simulation.

index level 90 100 105 110 120
Padé 0.04630 0.12472 0.14692 0.11613 0.04573
MC 0.04635 0.12474 0.14751 0.11642 0.04607

std. error*1000 0.427 0.670 0.711 0.660 0.435
MC+AV 0.04661 0.12495 0.14728 0.11583 0.04607

std. error*1000  0.265 0.518 0.665 0.358 0.271

Table 6: Price for the corridor option with strike price K=0.2, and parameters as in table
1. The inverse Laplace transform is computed using the Padé inversion technique with
n =4 and m = 18. The MC estimate is obtained by 50000 simulations. MC+AV stands for
the MonteCarlo simulation performed with antithetic variate. In brackets we have
1000zstandard error.

“We have also tried a third method presented in Moorthy [20] that makes use of the Fourier series repre-
sentation, but the inversion was quite sensible to the choice of the parameters and so we do not report the
results here.

5At the moment this paper was completed and submitted, we learned that the same multidimensional
inversion algorithm proposed by CLW has been used by Davydov and Linetski [10].

8 All calculations have been done on a Compagq Presario Notebook P233MMX. The code for the numerical
inversion has been written in C using Microsoft Visual C++ 5.0. In the Padé inversion the poles and the
residues have been previously computed using Mathematica 3.0.

"This statement is reported in [1], pag. 7.



The Table shows that the MonteCarlo simulation, without AV, is usually accurate to the
third or fourth digit. Moreover the use of the antithetic variate does not seem to improve
substantially the estimate®. Obviously the average computing time has been greatest for the
MC simulation®.

4.2 Discrete time monitoring

In the case of discrete time monitoring, we could try to use the pricing formula for the
continuous time case in order to approximate the solution in the discrete time case, but this
approximation could work well only if the monitoring frequency is high or if the option has
a long time to expiry. So we prefer to discuss alternative approaches: a PDE method and
a MonteCarlo simulation. Another possibility is to express the option price as a multiple
iterate integral as done in Heynen and Kat [14] for lookback options: one integral for each
monitoring date, so that with monthly monitoring, we should iterate over twelve integrals
and the computational effort and the time required can be quite high.

4.2.1 The PDE approach

Along the lines in Wilmott et al. [30] and [11], we can show that the price V (z,7,y) of the
corridor option satisfies the following system of PDE’s:

0V (z,7,y) N mav (z,7,y) 2 0_2$2 0%V (z,7,y)
or oz 2 Ox?
where 7 > 0,0 < < 400 0 <y < n, where we have redefined the time ¢ in time to expiry of
the option, 7 =T —t 1% and n gives the number of monitoring dates, n = [7/A], with A the
time distance between two consecutive monitoring dates. The initial condition to be satisfied
fglts

=rV(z,7,y) (3)

V(z,0,y) = max (y — K;0) x A (4)

In the PDE’s above y is an integer number representing the number of times the index
has spent inside the band at the monitoring dates. We treat (3) as a system of PDE’s indexed
on y: between monitoring dates y is fixed, and, for each fixed y, V (z,7,y) evolves according
to (3). So we could solve different PDE simultaneously, one for each possible value of v,

8We encountered a similar problem when we have used as control variate the price of the corridor bond.
The standard error in this case increased.

91t took around 42’ to run the 50000 simulations with five different starting points for the index, and
considering simultaneously different monitoring frequencies (step by step, daily, weekly and monthly). We
used 1200 steps for year.

19 As a consequence, if the times t1, ..., t, arc the monitoring dates, now they correspond to 7; = T —t;. So
7o = 0, and when the time to expiry of the option is 7;_1 < 7 < 7; it means that we have again ¢ monitoring
dates and the residual life of the contract is 7 * A.

1 The initial condition depends on the fact that we can write:

Y N
N % max [m,mc] *A_-T—_—t*(max[Y—K,O]+K)*A

where K = (T — t) me. So the payoff can be viewed as N/ (T — t) call options on Y plus the same quantity of
bonds of nominal value K. In the following we will concentrate the attention on the quantity max [Y — K; 0]*A.



until the next monitoring date. An arbitrage argument, Wilmott et al. [30], requires that
the option price has to be continuous across the monitoring dates i.e.:

v ot = (o)
orif yt =y:
Vv (a:, T}L,y> =V (m, T Y+ 1(l<z<u)> (5)

The ”jump condition” (5) links at the monitoring dates PDE’s for different values of y:
depending on the position of the index respect to the band, there will be an exchange of
information between the different PDE’s for adjacent values of y, as illustrated in Figure 1.

[INSERT FIGURES 1 and 2]

Figure 2 illustrates the updating process that occurs after one third of year and after
four monitoring dates, assuming K = 2.4. The PDE indexed with y = 0 at the monitoring
date receives new information from the PDE indexed with y = 1 if the index is inside the
barriers, otherwise updates itself. Similarly, the PDE indexed with y = 1 (y = 2) receives
new information from the PDE indexed with y = 1 (y = 3) if the index is inside the barriers,
otherwise updates itself. The PDE with y = 3 does not need an updating because at the
expiry the option will be surely exercised (y > K), so we have an analytical expression for it
(compare eq. 8 below). The updated values for each PDE can be then used to start to solve
again separately the different PDE’s between monitoring dates.

Regarding the boundary conditions, we observe that for a GBM process, if z = 0 the
price will be forever equal to 0, and then the stock cannot spend any more time inside the
interval and the final occupation time will be equal to y. So we know with certainty the final
payoff and we obtain the condition:

V(0,7,y) =e " max(y — K;0) x A (6)
Similarly, for the case x — +o00, we will get:
V (4+00,7,y) = e " max (y — K;0) x A (7)

In conclusion, we have to solve the PDE (3), with initial condition (4) and boundary
conditions (6) and (7) and continuity condition (5) at times 7;. The computational domain
is7>0,0<z < +o0.

Let us observe that when y > [K] + 1 > K, where [K] is the greatest integer strictly
smaller than K, and when the time to maturity is 7 the option will be surely exercised, it is
like a corridor bond, and we have an analytical solution given by:

V(z,T,y)=e"" ((y —K)A—i—Z(q) (h(z,u,ix A)) — @(h(az,l,i*A)))A) (8)

i=1

w2
where ® (z) = [7  £=dw and h(z,l,7) = =L (ln (l/z) — (r — %) T). This remark allows

2w 0'\/77

us to solve only a restricted number of PDE’s instead of having to solve a PDE for each



possible value of y. For example with monthly monitoring and with a strike equal to 2.4, we
need to solve just three equations (corresponding to y = 0,1and 2) instead of thirteen and
the computational time is not prohibitivel?.

At the monitoring dates 7;, taking into account the known solution for y > K, the
updating condition can be written:

, (m’ 7_;_7y> _ 14 (x, T},y) z & [l,u]
V(.’E,T]T,y—i—l) z € [l,u]
wheny = 0,1,..,[K]-1,j=1,...,n

and:
Viz, 75, K] x ¢ [l,u]
V(m,’rj,[K]) = ( )
V(:I:,Tj_,[K]+1> z € [l,u]

with j=1,...,n.

When the time to maturity is 7, i.e. there are again n monitoring times, the expression
1% (a:,T]T, (K] + 1) is given by (8). When we have again j monitoring dates,j =n—1,n—2,
.-y 2, 1, the analytical solution is always given by (8), once we have set 7 = 7,y = [K] + 1,
n = j. When 7¢ = 0 the option is expired and we apply the initial condition max (y — k; 0)xA.

We remark that the change of information between PDE’s implies that, for the nature of
the updating of the occupation time, we are introducing a ”discontinuity” in the new initial
condition to be used at every monitoring date as well illustrated in figure (2). This fact could
generate unwanted spurious oscillations in the numerical solution if a scheme is adopted
without paying attention to the nature of the problem. For example a Crank-Nicholson
scheme is usually the preferred one, just because it is reputed unconditionally stable and its
local precision is maximal for PDE’s of the parabolic type. But if adopted in the present
context, this natural choice forgets the nature of the problem. Indeed as shown in Smith
(24], pag. 122-124, ”"numerical studies indicate that very slowly decaying finite oscillations
can occur with the Crank-Nicholson method in the neighborhood of discontinuities in the
initial values...”. So for our problem it is necessary to devote some attention in choosing
the numerical scheme because to adopt a Crank-Nicholson scheme without a preliminary
analysis could be very dangerous!3. In effect doing a numerical analysis similar to that one
in Appendix C, it is easily proved that the absence of spurious obscillations in the Crank-

2To solve numerically the PDE with monthly monitoring took around 1°05” for 1000 different index levels
and 300 discretization steps respect to 7 and K=12*0.2=2.4. If we increase the strike price, we need solve
more PDE: e.g. if K=12%0.4=4.8, the time required becomes 1'50”. If we increase the monitoring frequency,
also the computational time increases: e.g. with daily monitoring, K=0.2 and 150 discretization steps respect
to 7, it took more than 2h30’. But in this case it is more convenient to approximate the solution using the
continuous time formula. The code for the numerical solution of the PDE has been written in Fortran.

"¥We know of only a paper by Zvan and al. [31] documenting the limits of a Crank-Nicholson scheme when
applied to the pricing of barrier options.
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Nicholson scheme requires the following relationship between spatial and time step:

AT 1

L —
(A$)2 = 0-2

and depending on the values of the volatility, this restriction can become very demanding. For
example if we choose Az =0.01 and o = 0.2, we have that A7 <0.0025 (i.e. 400 time steps
between two monitoring dates), whilst if Az =0.001 then we need to require AT <0.000025
(i.e. 40000 time steps) and higher accuracy can be obtained only with a very small time step.
For this reason, we would like to use a proper numerical method that guarantees the
respect of some minimal conditions very natural from the financial point of view: a) the
solution exists, b) it is positive, c) it converges to the exact one as the discretization steps
tend to zero, d) it is free of unwanted oscillations arising at the prefixed updating dates, due
to exchange of information between PDE’s. In particular in Appendix C we describe a proper
numerical scheme that can be used in the present case. Through a detailed numerical analysis,
we can show that all above requirements are satisfied unconditionally and in particular the
oscillations due to discontinuities in the updating process are eliminated very quickly and
do not perturb the numerical solution. The cost to be paid is a lower accuracy than in the
Crank-Nicholson: for the proposed scheme the order of convergence is o (AT, Az).

4.2.2 The MonteCarlo simulation

The advantage of using MonteCarlo simulation is its practicality, in the sense that is easy to
understand and applicable without effort to different problems and assuming more general
processes for the underlying. Moreover in the case of discrete monitoring the bias due to
the underestimation of the maximum and overestimation of the minimum does not appear,
because the simulation can be devised to match the actual observation dates. But as remarked
in Andersen and Brotherton-Ratcliffe [3] simulation could become prohibitively lengthy if
there are too many monitoring dates, although this problem is common to the PDE approach
as well. Moreover, when the dimensionality of the problem (number of state variables) is low
as in the present case, a finite-difference method can be preferable because more accurate.
But the real advantage of using a PDE approach is that we can solve simultaneously for
different initial index levels (1000 points in the numerical examples) and we can calculate
quite easily and with great accuracy the Greeks of the contract. In particular the numerical
solution can be of support in calculating an hedging strategy that in the case of exotic options
appear very important, whilst in the case of the MonteCarlo simulation this is not possible.
For example in the present case, particular care has to be devoted to the calculation of the
gamma near the barriers, because it presents a jump.

Table 7 compares the results from the MonteCarlo simulation (with and without control
variate) and the numerical solution of the PDE, assuming monthly monitoring. The MC
estimate has a higher standard error in this case than it did for continuous monitoring (Table
6), even though the latter could not match the observation dates. Moreover also in this case,
the use of the Antithetic Variate reduces the standard error, but it appears to give a more
biased estimate respect to the numerical solution of the PDE. Also the use of the corridor
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bond as Control Variate was not useful in reducing the standard error and we do not report
the relative results.

indez level | PDE (monthly) MC MC+AV
90 0.05235 0.05328;(0.482)  0.05355;(0.298)
100 0.12120 0.12161;(0.697 )  0.12207;(0.541)
105 0.13281 0.13404;( 0.726)  0.13351;(0.659)
110 0.11328 0.11387;(0.687)  0.11316;(0.387)
120 0.05160 0.05218;(0.487)  0.05234;( 0.304)

Table 7: Price for the corridor option with strike price K=0.2, and parameters as in table
6. In the PDE we have used 1000 discretization steps w.r.to x and 300 respect to T. The
MC estimate is obtained by 50000 simulations.

5 A comparison between discrete and continuous monitoring

In this section we compare the results coming from the inversion of the Laplace transform,
with the numerical solution of the PDE.

From table 8 and figure 3 we can appreciate the difference between the price with con-
tinuous (inverse Laplace) and discrete time monitoring (PDE). If we consider the index level
varying in the interval 85-125, we can see that the percentage difference between continuous
and monthly monitoring can go from +10% to -11%, depending on the position of the index
respect to the barriers. This difference is reduced a lot if we compare daily and continuous
monitoring.

In every case the price of the contract with continuous time monitoring is the highest
(lowest) when the index is inside (outside) the band!4. This fact is due to the nature of the
contract: if the index is inside the band, and we assume continuous time monitoring, then
the passage of the time will increase the value of the contract until the moment in which the
index crosses the barriers. Instead if we assume discrete time monitoring, we cannot exploit
completely the passage of time: we register the position of the index only at discrete dates
and if they are quite distant (e.g. a month), it is possible that the index in the meantime
has moved outside the band and so the occupation time cannot increase. In this case the
time between two monitoring dates can be entirely lost if the index moves outside the band.
Viceversa if we are outside the band, and between two monitoring dates the index moves
inside the band the occupation time increases by the distance A : the contract earns the
entire time distance between monitoring dates. Instead with continuous time monitoring we
lose every instant until the process crosses the barriers. So the continuous time formula will
overvalue (undervalue) the discrete time formula when the index is inside (outside) the band.
Then it will be important to distinguish between discrete and continuous monitoring time.

In figure 4 and table 9 we illustrate the effect of the monitoring frequency on the delta
of the contract: in this case we can see that higher the monitoring frequency, higher the
absolute value of the delta. So the monitoring frequency assumes importance for replicating
the contract, mainly when the index level is near the barriers.

" This result depends also on the value of the drift of the process, so that the overvaluation (undervaluation)
does not occur exactly at the extremes of the band.
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[INSERT FIGURES 3-4]

We also investigated if it is useful to shift the barriers in the continuous time formula in
order to get an accurate price for the case of discrete monitoring. This is for example the
idea in Broadie and al. [6]: they examine the pricing problem for several kinds of barrier
and lookback options and they show that shifting in an opportune way the barrier in the
continuous formula they can get an accurate price for the case of discrete time monitoring.
Basically the idea we pursued was to find the lower barrier that equates the price of the
corridor bond with discrete and continuous time monitoring and then use it as input in the
double Laplace transform for obtaining an approximate price for the discrete corridor option.
The percentage difference between the numerical solution of the PDE and the price obtained
by this procedure was reduced for example from 11% to around the 3% when the index level
was around 90, but in general this procedure was not completely satisfactory. So more work
has to be done in this case.

6 Conclusion

In the present paper we have examined the effect of the monitoring frequency on the price and
the delta of corridor derivatives, using either a numerical solution of a PDE either the double
inverse Laplace transform. We have shown that the two methods can be fruitfully coupled.
Indeed as the monitoring frequency increases, it can be too expensive to solve the PDE and so
it becomes more convenient to approximate the solution using the inverse Laplace transform:
the difference between the prices and deltas with daily and continuous monitoring is very
small. Viceversa for low monitoring frequency we can use the numerical solution of the PDE.
In both cases, as check test we can always use MonteCarlo simulation, but it is much more
expensive relatively to the time required and the standard variance reduction techniques do
not seem work very well. It remains to be investigated if we can approximate the discrete
time formula using the much more efficient continuous time formula using a shift argument
similar to that used in Broadie et al.[6].
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A The double Laplace transform of the density law
If we define the moment generating function (mgf) v (z,7) of the r.v. Y

v(z,7) =v(z,T50,m,U, L) = By, [e7#Y BHHTEUL)] (9)
= [T e Pr,, (Y (2, + 7,5 U, L) € dy) +1 x Pr, . [Y (2, T, t; U, L) = 0] +

+e #T0 x Py, [Y (2,T,;U,L) = T — ¢]

it can be shown that, using the Feynman-Kac formula (Karatzas and Shreve [16] chapter
4.4), the function v (2, 7) satisfies the following PDE:

v (t,z) 18%(t,z)  v(t,2)
- +§ 2 +m £ —Ml(L<z<U)U(taz)=0 (10)

with initial condition:
v(2,0) =1, Vz € (—o0; +00) (11)
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and boundary conditions:
v (to0,7) =1,V7T >0 (12)

The above PDE can be solved taking the Laplace transform with respect to time and solving
the second differential equation requiring continuity and differentiability of the solution at the
points L and U and boundedness of the solution at +co. This requires to solve a lincar system
with four equations and four unknowns. A more efficient way for obtaininig the solution is
presented in Fusai [12].

In Theorem 1 below, given a function G (7), we denote with g (y) its Laplace transform
with respect to the variable 7 =T — ¢:

g =L[G(T);T7 =] =/0.Te_’7TG(T)dT

and with £71 [g (v) ;v — 7] its inverse Laplace transform. We have:

Theorem 1 :The Laplace transform (moment generating function) of the density law of the
occupation time of the interval [L; U] by the ABM has the following representation:

v(z,7) =Q(2z,7; L,U,m)+

(

1 X Pro ze[U,+o0) Oini mxs—+W(s) > U)
SSST

+{ eH" x Proery) ( sup mx*xs+ W (s) < U;Oi<nf<tm *s+W(s) > L) (13)
<s<

0<s<T

1 X Prg z¢(—co,L] ( sup m*s+ W (s) < L)

\ 0<s<T
where:
P1o z€[U,400) <0ér31£Tm *s+Wi(s) > U> =
=1- [% Erfc (z_f;;—TmT> + e_zméz_u) Erfc (2_32"—:”)] ;
Pro.er,v) ( sup mx*s+ W (s) <U; inf m=x*s+ W (s) >L) =
' ' 0<s<T 0<s<t
m?2 1 >
=2 ™27 / I:Z e=(enm’" sin (nmz) sin (nn€) | e™EU-L)+L)ge,
0 |n=1
Proze(~c0,1) ( sup m*s+ W (s) < L) =
0<s<t
L—z—m7 2m(L—2) L—z+mTt
= 1[4t (L) + 2= Bt (e
and:

Q(z,7;L,Um) = fOT e M Pr;, (y(z,7,0;,U,L) € dy)
2

=e ™ 2L [w(y,z L,U,m);7]
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with:

w (7,2, L,Um) =

([ 1su)eVEEUWVIL[A (1) 59
={ Tty L[A(7);] sinh (ar ( SIL)B Ji[;a(T)n] sinh(ar(Z=%))
{ L<nye V2EVIL(B (1) ;7]
LIA(T);T =] =ﬁ(‘i}+:%—2§;(8(7)+d(’r))
LIB(T);T == F(J%%)+2%(8(7)—d(v))

%d (y) = : V+usinh(am) e—aU + e—oL +
v (V¥ F#sinh(am)+/7(cosh(am)+1)) \/’7(\/"—)’"'%) \/’7(\/’37*%)
+ (% (e~eL—e2U)(cosh(am)+1)—/Fu(e~oV +eok) sinh(a;rr)>
\/"Wsinh(aW)(vﬂ—"—;)
)= e A @D ( = e_aL )
i A(va+ f) vA(va-

L\/_ -“U+e‘°‘L)(cosh(a7r) 1)+\/’YT( e e_aL)Smh(a'”)
VAFhsinh(am) (y+u—5 )

— _ ___m_ 2= 1
am = ”c = —m; ,6 5 ) c m‘

The above result can be obtained

B The numerical inversion

In this section, we describe the idea underlying the two algorithms adopted for the numerical
inversion of the double Laplace transform. As remarked in Choudhury et al. [9] little attention
has been given to inversion of multidimensional transforms and moreover nothing at all regard
their application in finance.

B.1 The Fourier series method

The inversion formula proposed in the Choudhury et al. (henceforth CLW) [9] is a multidi-
mensional version of the algorithm in Abate and Whitt [1], with an enhancement in order
to control simultaneously the aliasing and the round-off errors. The authors damp the given
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function multiplying by a two dimensional decaying exponential function and then approx-
imate the damped function by a periodic function constructed by aliasing. The two expo-
nential parameters allow to control the aliasing error in the approximation by the periodic
function. The inversion formula is then the two dimensional Fourier series of the periodic
function. Moreover expressing the two dimensional series as an alternating series nested
within a second alternating series CLW can apply the Euler transformation to compute the

infinite series from finitely many terms. If f (s1,s2) is the double Laplace transform of the
function f (¢1,%2), their inversion formula is given by:

A A
7 (0, ta) = )
1,82) = T At

lo 40 .
~ zk]7r ~ ) .
Ay Az § : § : _1\k - A Ay ikjm _ ikw
X f <2l1t1’ 212t2) +2 ( 1) Re |:e 2 f (2[1(‘,1 » 2lato talo to +

kl—lk—O

li 4o lo

ij +1k T\ ~ .. .. s s
_ J AL ihm T _Ap _ ikgm _ dkw

23 (1P Re | 303 (-1 (R F (o — o i et |

J1=135=0 k1=1 k=0
+2le Z+°° 1) Re e—(”")} A _ipm _ dphm Ay

2l1t1 l1ty t1 7 2lato
31—1] 0

lo
‘L]]ﬂ' lk]ﬂ' ~ i .. - p
—\T A 1T ihim _Ag ik | ikw
+ Z Z( 1) € ! ) f <2llt1 Lty t1 7 2late + tala + t2

k1=1k=0

and .
f(t,te) =f (t1,t2) + €

CLW are able to show that, if the |f (¢1,%2)| < C for some constant C' and for all ¢;and
12, then the aliasing error € can be bounded as

|E[ <C (e‘Al + e_A2)

and then with A; and Az we can control the aliasing error. This is en effect our case,
because for large times the discounting factor will have prevalence on the linear increase of
the occupation time and then theoretically we could find the constant C. In the numerical
examples we have set A; = Ay = 20.

In the inversion formula above we can remark the presence of infinite sums of the form
Y heo (—1)’g ag, where ay, is real or complex. In this case we can apply the Euler transforma-
tion and approximate the infinite sum by:

E(m,n) = Sp+ Z <7Z) GG ik

S = an (-1)*an

So the Euler transformation requires the computation of just m +n+1 terms in the sum and
then the final sum is extrapolated by the m + 1 extraterms n,...,n +m. CLW state that, in
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their experience, using the Euler summation technique with n = 38 and m = 11 can reduce
to 10712 or lower the truncation error coming from using a finite number of terms. In the
inversion, we have verified that we can obtain an accurate answer with n = 20 and m = 20
terms, i.e. a total of just 41 terms. Although we have implemented the inversion in C using
Microsoft Visual C++, we remark that the Euler algorithm can be found in Mathematica
version 3.0 in the package NumericalMath‘NLimit‘.

The parameters [; and ls can be used in order to control the roundoff error, due to multi-
plying large numbers by small ones. In particular the quantity exp (A1 /201 + Aa/2l2) / (4t1tal1ls)
can be large and we can decrease it increasing l;and lg, although this fact increases the
computational time that is proportional to the product l;l. The authors suggest that the
roundoff and the aliasing errors can be set about of the same order of magnitude and that

for two-dimensional inversion I; = Iy = 2 is adequate. In effect this choice worked well in our
problem.

B.2 The Padé inversion method

This method, proposed by Singhal and al. (henceforth SVV) [23], seems to have been for
some time the only known inversion technique for the numerical inversion of multidimensional
Laplace transforms. Fortunately its implementation is very easy and moreover the compu-
tational time required for the inversion has resulted to be less than 1”. Its success depends
strongly on the smoothness property of the original function.

This technique starts from the inversion formula in the complex plane. If f (s1,s2) is the
double Laplace transform, the inverse Laplace transform f (¢1,%2) is obtained applying the
inversion formula in two variables:

c1+joo  rea+joo ; i
f(t1,t2) = (27( ) . / e’1"1e%2'2 f (s1,89) ds1dss
c1—joo Jea—joo

where c¢; and c are the right-most singularities. Substituting sgty = wg, k = 1,2, we have:

¢y +joo  reptjoo ~ (w; wy
Wl g2
Flty;t2) = t I (27]_]) j / e? f <t1 ) dwidws (16)

1_.700 cy—Jjoo
Then SVV approximate the exponential function e** by a Padé rational function:
ng

Z (ng +my — i)! (nzk)’w;C

=0

eWk = wnk,mk (wk) = m

k 5 .
2) (=1)° (n + my — )},
=
where ni < myg in order that the function:

}: (1:11 ) 1:22) '(/)nl,ml (wl) "pnz,mg (w2)
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has two more poles than zeros in each variable. Then

my r
ki
w = —
,‘pnhmk ( k) i§=1 Wh — Whs

where wy; are the poles of the approximation and r; are the corresponding residues. Substi-
tuting ¥, , (wi) for e¥* in (16), we get an approximation f (t1,t2) to f (t1,t2):

2 o m1 mo
- 1 1 Srkiee °2+J°° 2 wl wy T3 T2;
t1,t2) = — (—'—) / dw1dws
1 (tts) tite \ 2mj E ” "ty Z;wl_wli;w2_w2i

c;—joo 0 —j00

Interchanging the sums with the integrals, using the residue calculus and closing the path
in the right half plane we get the final formula:

i ~ w w:
1z 27
11,1 E E T1:T
f(172 tltg 1:724 ( 17'52)

=1 i=1

The inversion reduces to a double summation and requires just m; x mq function evalu-
ations. This inversion formula can be easily programmed once we have calculated the poles
and the residues of the Padé approximant. This can be done very easily in Mathematica
version 3.0 using the function Pade[] for computing the approximant, the function NSolve(]
to find the poles and the function NResidue|] to find the corresponding residues, as illustrated
here below, where we give the Mathematica 3.0 code for computing the poles and the residues
of the Padé approximant. It requires the use of the packages NResidue and Pade.

<< NumericalMath‘NResidue‘;

<< Calculus‘Pade’;

poles[nk_ ,mk_] := x/.NSolve[Denominator(Pade[Exp[x], {x, 0, nk, mk}]] == 0,x]

resnk_,mk_,i_] := NResidue[Pade[Exp[x], {x, 0, nk, mk}], {x, poles[nk, mk]([i]] }]

Once we have calculated poles and residues'® we can store them and perform the nu-
merical inversion very quickly'®. Regarding the choice of the degree of the numerator and
denominator, we have seen that if my > 20 we can incur in roundoff errors because the
residues and the poles can assume very large values. A check test is to verify that the sum
of the residues is zero. For our problem a good choice was to set ng equal to 4 and my = 18.

C The finite difference scheme

Our main system of PDE’s (3)

o2
Vi +rzVy + 5 — 2V =1V (17)

'5This is quite time consuming if the degree of the denominator is high.
However, the computation of poles and residues can be done easily in C or Fortran as well, using double
precision arithmetic.
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with continuity condition across the sampling dates 7;,

14 <x, Tj,@/) =V (az,TJT,y + 1(l<z<u)> (18)

and initial conditionV(z,0,y) = max(y—K; 0)*A is solved by a proper finite difference scheme
in order to satisfy the requirements specified in the main text, i.e.: existence, positivity,
convergence to the exact one and absence of spurious oscillations.

From a computational point of view the change of variable

1
1+

X =

which maps the z-interval [0, +o00) onto the X-interval [0,1] avoids assuming a finite arbi-
trarily large computational domain. We get the more convenient boundary value and initial
conditions problem:

~F o+ |r (X2 - X) +0°X (1 - X)*| 8% + S X2(1 - X)* T —rV =0

(19)
V(7,0) =V(1,1) = e " max(y — K,0), V(0,X) = max(y — K, 0)

Equally spaced points 7, = nA7, n = 1,...,M;, X; = jAX, j = 1,..., Mx have been
chosen, with steps size A7, AX respectively. M, - Mx grid points are so obtained.
e The first derivative %—‘T/ is discretized by a first order backward-difference scheme;
e the first derivative g—; has been treated by a first-order upwind scheme, as the convec-
tion term coefficient can take both negative and positive values;

.. 2 .
e for the second derivative %a centered-difference formula has been chosen.

a) The difference equation is as follows.
If 7(X? — X;) + 02 X;(1 — X;)% > 0, then:

ypti_yn yntl_yndl
—E o (X2 - X5) + X1 - X)) AR

1 22 oo Vi —2v vt n+1 (20)

otherwise if r(X]? - X;)+0%X;(1 - X;)? < 0:

ypti_yn yrtl_yntl

- AT R [,r.(‘XvJ2 —'_‘_‘IX.J) ++?2XJ4(_} - X])Q] AX - + (21)
VI =2V Ty

-l-%JQXJ?(l = Xj)2 It (AJX)z = an+1 =0

Here j = 1,...,Mx, X; = X(jAX), V' = V(nAr7,jAX), represents the approximate
solution at the point (nA7,jAX), Vi =V, ., = e~™AT max(y — K, 0).

A set of M- uncoupled Mx-order linear systems are so obtained. Each system AV, 11 = by,
n = 0,..., M, contains the grid points having a 7 = 7,41 constant value. Some interesting
features of each A matrix are the following:

21



A is tridiagonal (with diagonal positive components and off diagonal non positive
components), nonsymmetric, irreducible (its associated graph is strongly connected),
strictly diagonally dominant;

by, is non negative and contains both the approximate values of the solution previously
calculated at the time 7, and the boundary conditions at the time 7,11. Therefore:

e A is nonsingular having eigenvalues with positive real parts (from Gerschgorin’s Theo-
rem);

A is an M-matrix (compare Ortega [21], p. 110);
o A71 > 0 strictly.

b) Then Vi41 = A7'b, is positive. Thus the numerical solution in all grid points is
positive.

c) For what concerns the convergence we resort to the following Laz’s equivalence theorem
(compare Smith [24]): Given a properly posed linear initial-value problem and a linear finite
difference approximation to it that satisfies the consistency condition, stability is the necessary
and sufficient condition for convergence.

1. Consistency

Now we rewrite (19) into operational form L(V') = 0, where V indicates the exact solution.
Let V}* the approximate solution at the point (nA7, jJAX) and T7* the local truncation error.
Expand each term VT}I, V”‘HL V""’1 by Taylor’s series about (nAT,jAX). The principal
part of the local truncatwn error

7 = L(V (nAT,jAX)) +

2
AT [—rav é—g-%TV + (r(XJ2 - X;)+02X;(1 - Xj)z) L (22)
8%V (r(X2-X;)+02X;(1-X;)?) s2v
+30°X7(1 - X;)* 50552 ] tAX S e

is obtained. Being V solution of the differential equation, then L(V;n) = 0 holds. In the
hypothesis that %‘é, 66:—6‘;, g—j{vg, %{7 are bounded then as (A7, AX) — 0 we have 7' — 0,
so that the numerical scheme given by (20) and (21) is consistent with (19).

9. Stability

Writing (20) and (21) into matrix form at the value 7 = 7,41 = (n + 1) AT we obtain:

AVpr1 =Vp+C (23)

where A = [a;;] is a tridiagonal diagonally dominant matrix, with a;; — Z;V;[Zl | aij |=14+7rAT,

1 = 1,..., Mg, whilst the vector C includes the boundary conditions. From Gerschgorin
theorem the eigenvalues \;(A) satisfy A\;(A) > 1+ rA7 and then
1
0 < Ni(A™ — <1 24
(A™)< 1 +?”AT 24)
Thus the scheme is unconditionally stable and then the convergence, via Lax’s equivalence
theorem, is proved.
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c) The matrix A is tridiagonal, diagonally dominant, with all its off-diagonal entries
strictly negative. Then A is similar to a real symmetric tridiagonal matrix DAD™! with
non-zero off-diagonal entries (Ortega, p. 113), so that all the eigenvalues \;(A) are real. Here
D is a diagonal matrix.

The characteristic polynomial Py, (\) associated to DAD™! admits M, real and distinct
zeros (Stoer, p.43) so that A admits M, real distinct eigenvalues. Hence the M, eigenvectors
vs of A are linearly independent and can be used as a basis for the M, dimensional space of

the vector Vg of initial values. In other words, V can be expressed as Vp = E;Vfl c;jv; where
the c; are constant. From (23) we have
n—1 :
Vo =AY Vaa+A I C=.=(A)"h+A7IC YT (A7
=0
n Me n—1 i My ! " n—1 p
= (A7) L ey +ATIO L (A7) = 2 ¢ (A7) 0+ ATIC 1 (A7) (25)
j=1 3=0 j=1 3=0
M, n—1 .
= Z cj/\;-‘vj +A-lC Z (A_I)J
3=1 3=0

Taking into account (24) then the numerical scheme (20),(21) is Lo-stable (Smith, p.121)
and unwanted finite oscillations in the numerical solution are rapidly dampened.
In summarizing, the scheme satisfies all the requirements V(A7, Az).

D The digital corridor option

In this section we discuss the pricing of the digital corridor option that pays a cash amount
if the occupation time at the expiry of the option is greater than a fixed level K :

payof fiyr = 1(Y(t+T,x;u,l)>K)

We remark on the importance of this contract as basic element in the construction of the
corridor option, in exactly the same manner as the digital option for the plain vanilla options.
Indeed the corridor option with residual life 7, can be expressed as sum of corridor digital
options with ascending strikes:

(S
corropt; (K) = Z digcorropt; (I_{ +nAK ) AK

n=0

where [] stands for the integer part. In the limit, we have:

T

corropt; < K ) = /_ digcorropt, (K) dK
K
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In order to price this contract we need to discount the following quantity!”:

Et,:z: [1(Y(t+7,z;u,l)>K)] = Prt,;,; [Y (t +T,T;U, l) > K]
= fftjr Prio [Y (t+7,2;5u,l) € dy] + Prio [Y (t+ 7, z5u,1) = 7]
=1—Pry, [V (t+7,25u,1) = 0] — [XPry, [Y (t+7,2;u,1) € dy]

In this expression, the only problem can come from the integral term, because all the
other quantities have a known closed form expression. If we consider the Laplace trans-
form with respect of K of this quantity, this transform is given by the Laplace transform of
Pri 5 [Y (t + 7,2;u,l) € dy] divided by p and then the undiscounted price is given by:

=1—Pr [V (t+7,2;u,l) =0 — £ M‘ﬂl;u—d{]

=1-Pryg[Y (t+7,25u,1) = 0] — £ [lpalom) ), K,fy—>t]
so in order to price this option we need to compute the double Laplace inverse of the quantity
w (7, 1, z;l,u,m) /p. The numerical routines adopted for the inversion in the case of the
corridor option can then be modified very quickly to cope with this pricing problem. In the
following table we compare the prices obtained using the two different numerical procedures
and we can verify that the accuracy is very high and the computational time very low. The
parameters are U = 110, L = 100, = 0.05,0 = 0.2, 7 = 1yr.

Index Level Fourier Padé

90 0.286586  0.286588

95 0.425404  0.425388

100 0.582029 0.582005

105 0.646513 0.646487

110 0.5421136  0.542088

115 0.387798 0.387776

120 0.269909 0.269911
Average CPU 3.85” 0.25”

Regarding the discrete time monitoring case we remark that we can apply the same
procedure adopted for the corridor option, i.e. solving the PDE (3), but now the initial
condition is given by:

14 (SL‘, 0, y) = 1(y>K) (26)

and the boundary conditions:
14 (0’ T, y) = e_TTl(y>K) (27)
V(+00,7,9) = e lgsk) (28)

In this case y is an integer number representing the number of times the index has spent
inside the band at the monitoring dates. We observe that when y > [K] + 1 > K, where [K]

""In the following we use the fact that 1= Pry [Yitr = 0] + Prez [Yier = 7] + _[f("'f Pri . [Yiqr €dy] +
foK Pr:z [Yi4r € dy].

24



is the greatest integer strictly smaller than K, and when the time to maturity is 7 the option
will be surely exercised, and we have an analytical solution given by V (z,7,y) =e™"".

We remark that for this kind of contract the discontinuities are introduced not only at the
monitoring dates, but at the initial date as well and the numerical scheme described above
is then a correct one for the problem at hand.

In the following table we report the price of this contract in presence of continuous and
discrete time monitoring. In the discrete time case, the value of Ky has been set equal to
K4 = [K.*n] where [] is the integer part, n the number of monitoring dates and K the
fixed level (as ratio to the residual life) used in the continuous time formula. In this way if
K. = 0.2 and with monthly monitoring, we have Ky = [0.2 % 12] = [2.4] = 2. The remaining
parameters are the same as in the previous table.

Index Level Monthly Continuous %Difference

90 0.267553  0.286588 -6.64%
95 0.400571  0.425388 -5.83%
100 0.519848  0.582005 -10.68%
105 0.553547  0.646487 -14.38%
110 0.481742  0.542088 -11.13%
115 0.361531  0.387776 -6.77%
120 0.250799  0.269911 -7.08%

In this case the price of the option in the discrete time monitoring appears to be system-
atically lower than in the corresponding continuous case. The likely reason is in the discrete
distribution of the occupation time in the case of discrete monitoring, which concentrates the
masses of probability in 0, A,2A.
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