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Abstract

‘We study a generalization of the Arc-Sine Law. In particular we provide new re-
sults about the distribution of the time spent by a BM with drift inside a band, giving
the Laplace transform of the characteristic function. If one of the extremes of the band
goes to infinity, our formula agrees with the results given in Akahori (1995) and Takacs
(1996). We apply these results to the pricing of exotic option contracts known as cor-
ridor derivatives. We then discuss the inversion problem comparing different numerical
methods.

1 Introduction

In this paper we obtain new results on a generalization of the Lévy arc-sine law. Lévy studied
the density of the time spent by a Standard Brownian Motion (SBM) below a given level.
We will provide results about the case of the Brownian Motion with drift below a given level
and inside a given band. This problem has been solved for the case of Brownian Motion with
drift below a given level by Akahori [3], Dassios [8], Takacs [23], Embrechts et al.[10]. In this
paper we derive the same expression as in [23] and simpler than that given in [3] and [8]. So
the main results are related to the case of the time spent by the Brownian motion (without
drift and with drift) inside a band.

The results have also financial applications to the pricing of corridor and hurdle options as
we illustrate in section 2. Other applications are, as suggested in Taleb [25] (page. 66-67), to
the management of a portfolio for the computation of the expected amount of time a trader
is expected to spend in the red. A similar problem for the Standard Brownian Excursion can
be found in chemistry as well and in particular in the theory of ring polymers as studied in
Jansons [15].

In next section we will illustrate the problem of the corridor derivative pricing. In order
to price such a contract we need the knowledge of the distribution function of the occupation
time. In section 3 we will give the expression for the Laplace transform of the characteristic
function of the occupation time of the Brownian Motion of the interval (—oo;!] and [/;u]. In
section 4, we discuss different inversion techniques (univariate and multidimensional) and we
provide numerical examples with a comparison with the MonteCarlo simulation method.

*AMS 1991 subject classifications: Primary: 60J95, 60H30, 90A09. Secondary: 45D05.

t Key words and phrases: Options, Black-Scholes, Feynman-Kac formula, arc-sine law, Occupation Time of
the Brownian Motion, Integral equations, Laplace transform, Numerical transform inversion.
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2 The Corridor Derivative

Corridor derivatives are exotic options paying at expiry an amount that depends on the time
spent by a reference index, usually an exchange rate or an interest rate, below a given level
or inside a band. The structure of the payoff is common to FX range floaters and boost
structures as described in Hull [14], Pechtl [20], Tucker et al.[26] and Turnbull[27]. This kind
of product is suitable for investors believing in stable markets, because with the actual low
interest rate level they allow a higher performance than investing in bonds or directly in
stocks.

In order to price the contract, we apply the well known result that in a arbitrage-free
market, according to the well known Harrison-Kreps theorem of asset pricing [13], the price
of any contract is just the expected value, under the risk-neutral measure, of the discounted
payoff of the contract. So our aim will be to find the distribution function of the occupation
time.

Let us suppose that the price of the underlying asset is described by a stochastic differ-
ential equation:

dP; = ’)"Ptdt-l-O'.PthVt,
P =1p

where 7 is the instantaneous risk free interest rate, so the dynamics of the asset price under
the martingale measure is described by a Geometric Brownian Process and In P (t) has normal
distribution with mean Inp + (r -2/ 2) t and variance ot

If we define the random variable:

t
T (t7p; L, U) = /(; 1(L<P(s)<U)ds

then, a corridor option (hurdle option if L = 0) at maturity has payoff given by max [t — K; 0] :=
(t — K)T and the price at time 0 of the contract having a residual life equal to ¢ and a strike
K < t,is given by:

e "Eqp (max[7 (t,p; L,U) — K;0]) =
et (o (s~ K)* fr (s, t.p L) ds + (t— K) Prog [r (b LU) =4]) ()

where fr (s,%,p; L,U) is the density function of the r.v. 7(¢,p; L,U) calculated at s, when
0< s < t. Note that in order to calculate the price we need to take into account the fact that
the index can always stay inside the band or below the level U (when L = 0). This explains
the presence of the term (t — K)* Pr[r (t,p; L,U) = t]. In the following we write f; (s,t,p)
to mean fr (s,t¢,p; L,U). We observe that:

= icpexn((r-22)sow(2)) <V)
=1 m(g)< (- 2)mrctn()
So we can calculate the density function of the r.v. 7 (¢,p; L,U) using the density of the
occupation time of the SBM W (), if ('r' - "2—2) /o =0, and of the BM with drift W™ (¢) :=
mt + W (t), where m = (r — 62/2) /o # 0. In both cases the barriers are fixed at the levels

1(L<P(s)<U )



l=(nL)/o and v = (InU) /o and with starting value z = (Inp) /0. We study this problem
in the following sections.

It is natural to see that we have the same problem to solve if the barriers increase expo-
nentially at rate 6 : a (t) = Le® and b(t) = Ue®. Indeed:

(zest<py<ven) = 1 (1< (r-6-2) 2e4mw(t)<a)

so the problem is equivalent to consider the occupation time for a Brownian Motion with an
adjusted drift equal to <7' —6— ”72) /o and fixed barriers as above.

We observe that if the strike price is set to zero, we have a corridor bond (hurdle bond if
L = 0) and the price can be obtained discounting the following expression:

i
Eog (T (¢,9; L,U)) = Eog [ /0 1 <ms+W (s)<u)d5 (2)

and applying the Fubini’s theorem, we obtain:

= Jo Boa (Lacmatwis)<u)) ds
= [{Prog (I <ms+W (s) <u)ds

=[5 (@ (h(z,u,8)) — @ (h(z,1,s)))ds

where @ (z) = [* (exp (——%2-) /v 271') dw is the cumulative normal distribution and h (z,1,t) =
T}? (I -z —mt).

3 The Characteristic Function of the Occupation Time of the
interval [l; u]

In order to price corridor derivatives, we are interested in the evaluation of the distribution
of the r.v.:

i
T (tsm) =T (ta T;u, ls m) = /(; 1(l<W(s)+ms<u)d5
w0 = =z

representing the amount of time spent inside the interval [/;u] up to time ¢ by a Brownian
Motion with drift m and starting at z. Special cases are obtained when the drift is zero or
when the lower barrier goes to -co.

If we define the characteristic function of the r.v. 7 (¢, ):

v (t,z) = (t,z;u,l,m) = Egg [e#(B)]
= fg e fr (7,8, 3 u,l,m) dT + 1 X Pro 5 [T (¢, 73 u,1) = 0] + ™ x Prog [T (¢, z;u,l) =]
(3)
using the Feynman-Kac formula, [16] pag. 366, it can be shown that v (¢,z) satisfies the
following partial differential equation (PDE):

_Ov(t,z) + 10% (t,x)
ot 2 9z

+m

o (tz) .
? z(ax 2 4 it gcocuyy (:2) =0 4)



with initial condition:
v(0,z) =1, Vz € (—o0; +00) (5)
and boundary conditions:
v(t,+o0)=1,¥t >0 (6)
Given a function of time ¢, we denote with L [-;¢ — 7] its Laplace transform with respect

to the variable time ¢, and with £71[-;y — t] the inverse Laplace transform. We have the
following result:

Theorem 1 : The characteristic function of the r.v. T (t,z;u,l,m) admits the following
representation:

v(t, z;l,u,m) = Q(t, p,z; 1, u,m) +

r

1 X Pro gefu,+o0) Oi<r;f<tms +W(s) > u>

+{ e X Pro e ( sup ms+ W (s) <wu; inf ms+W(s) > l) (7)
T \o<s<t 0<s<t

1 X Proze(—coy] <Osu2t ms+W(s) < l)
S

\ <

where:

£ 2
Q@,p,z;l,u,m) = / e+ fr (1, t, 2w, l,m) dT = €™ LT w (y, py 1w, m) 5y — ]
0

and:
w ('7, K, T3 laua m) =
([ 1eowe V2EIVILY (£,1) 1]
={ 1 ,C[y(t,O);’y]sinh(mr z__f))+[,[y(t,1);'y] sinh(a'lr Z—:i))
(I<z<u) sinh(a)
\ 1(:1:51)e_\/g(l—-m)\/’?‘c [y (ta 0) ;'7]
and:
e c
Lly@E1);t—1] = =Y 3y c(M+d)
vi(vi-%)
ml

Lly(t,0):t—n] = = +——(s(y)—d(¥))
[y (£,0) 7] ﬁ(ﬁ+%) 2¢~7((7) ¥




with:

<4 (,),) — vy—ipsinh(am) emu + eml n
Nai (mﬁsinh(avr)+ﬁ(cosh(mr)+l)) \/’7(\/’7—%) \/’7(\/’74'117"5)

& (— % (eml ——e'”“‘) (cosh(am)+1) —\/fy_—iﬁ(em“ +eml) sinh(a'n'))
vy—ipsinh(am) (7—1'#—%2-)

(®)
< g (,7) .\/'y—wsinh(a'rr) emu _ eml +
VY v/y—tpsinh(aw)+,/7(cosh(ar)—1) \/’7(\/’7—%) ﬁ(ﬁ+%)

_ (—— 3 (e"”-‘ +eml) (cosh(am)—1)++/y—ip (em“ —e"“) sinh(aTr))
VA=isinh(ar) (v-ip—22")

o —ip, — s — 2 2___ 1
am = j_céfﬂ’ = —m,; IB—'—% C—m—g (9)
Moreover we can ezpress the density function f(7,t,z;u,l,m) of the occupation time for a
generic starting point x and for 0<T<t in terms of the density function of the occupation
time when z = u and x =1 in the following way:

fr(mt,zu,l,m) =
.

t r—u

—m(z— _ w)?_m?_p)
La>uye e r 2:_(;1")36 o ") £ v fr (1,1, w) dn

- La<a<u)2mc? Znsin (’mr (.z_:%)) f e—(mT2+z\n>Ex (10)
X (e_m(:v—l)f:?':‘ &t =&, l) — (_1)n em(u—m)fT (7_ _Ei—¢, u)) de

| laspe™ z)/ oo )17)36 ST, (1) dy

3.1 Remarks

In the appendix, we solve the PDE and prove the theorem. We can make now some remarks.

1) A natural way of solving the PDE (4) could be to take the Laplace transform respect to ¢
and then obtain three second order differential equations. The continuity and differentiability
of the solution at the barriers and its boundedness at +o0, require then the determination
of four constants, generalizing the example in Karatzas and Shreve [16] pag. 273. However,
using this approach we can incur in two problems.

a) The final expression of the solution will be the Laplace transform of the characteristic
function v (¢,z) and then it will include the Laplace transform of the mass of probabilities
concentrated at 7 = Oand 7 = ¢. This fact as explained in Abate and Whitt [1] can create
problems in the numerical inversion and it is advisable to remove the atoms of probability
before the inversion. Attacking directly the PDE and using the Laplace transform only in
a successive step, we avoid this problem. Indeed we are able to identify in the expression
of the c.f. these probabilities and so we can give the Laplace transform of the function
Q(t, p, z;1,u,m) and not directly of the c.f..



b) If we want to use two univariate numerical inversions for limiting the programming
effort and to use well-tested numerical inversion routines, as discussed in the next section,
we should provide the Laplace transform of the real part and of the complex part of the
function € (¢, 1, z;1,u,m). Using our approach, this consists in solving (24) separating the
real and the complex part of the functions D (¢) and S (t) and then, taking the Laplace
transform, we obtain two linear systems of just two equations!. Instead if we take directly
the Laplace transform of (4), we should solve three systems of two differential equations each
and then the continuity and differentiability and boundedness of the solution will require the
determination of eight constants in a linear system with eight equation.

2) The characteristic function is continuous and differentiable at z = [ and z = u, because
as we will show later the PDE (4) has been solved requiring continuity and differentiability
of the solution at these points. This property will be transmitted to the price of the corridor
option.

3) Comparing expression (3) and (7), we obtain the natural results:

Proe[r (20, =10] =
1(z>u) Progz (Oislzfst ms+ W (s) > u)
0;I<z<u
1(z<1) Pro,z ( sup ms+ W (s) < l>
0<s<t

Progz [T (t, zyu,l) =t] =
1i<o<u) Prog (()ssli};t ms+ W (s) < u; Olggi;t ms+ W (s) > l)
0 z<loru<z

The expressions for these quantities can be found in equations (33), (34) and (39) in the
Appendix and can be compared with the same expressions in Borodin and Salminen (BS) [4].
4) We can show that the above expressions allow us to recover known results. In particular,
now we discuss the following cases: a) m = 0, i.e. the case of the occupation time of the
SBM of the interval [[,u], b) m = 0 and [ = —o0, i.e. the time spent below the level u by
the SBM and we obtain the Lévy arc-sine law, ¢) [ = —o0, i.e. the time spent by a BM with
drift below the upper barrier u, case studied by Akahori [3], Dassios [8] and Takacs [23].

a) If m = 0, we are considering the occupation time of the SBM of the interval [l;u].
The expression for the functions d (y) and s (), L[y (¢,0) ;¢ — ] and L[y (,1) ;2 — ]

simplify to:
d(y)=1 2/7v/—ipsinh(ar) (1 __1 )
¢ (\/’YT'iﬁSinh(ﬂ‘lr)+\/f7(cosh(a1r)+1)) ¥ y=iu
s(7) =0

. _ . __+/Asinh(aw)++/y—ip(cosh(ar)+1) 1
£ [y (t’ 0) b — 7] =L [y (t’ 1) it— 7] - (\/'y—zusinh(aw)+ﬁ(cosh(a.1r)+1)) VIVY—ip

!The Laplace transforms of the real and immaginary part are available on request.



and:
w (7, /‘L7 m; l7u7 m) =
(1 e—V2(z—u)/T +/7 sinh(am)++/7—ip(cosh(am)41)
(@2u) A JA—in(~A—imsinh(am)+/A(cosh(ar)+1))

sinh(am(2=2))+sinh(ar( 2=t
= 0 1cqeny G En(E0) 21y (1,1) 1

e—V2(l-z)\/7 /¥ sinh(am)++/y—ip(cosh(am)+1)
VT VAiA(v/A—TRsinh(an) +yAl(cosh(am)+1)

[ L=<

This expression does not seem to admit a simple analytical inverse, although in BS
[4], formula 1.7.4 pages 140-141, is given a very complicated expression. We remark that
Lv(t,0);t— ] =L[v(t,1);¢t — 7], a consequence of the reflection principle.

b) If we let | — —oo in the above expression, we are considering the time spent below the
level u by the SBM, so we should recover the Lévy arc-sine law. We get:

1

lim Lly(t,1);t—9] = ——r=
Jm Ly (3,1);¢— ] o

and then for =z > u:

e—\/ﬁ(m—u)ﬁ
w (7, 1, x5 1, u,m) = 1(z2u)—\/ﬁ

and inverting we obtain:

RS o =
@7~ 7my
. 1 1
Jm e (r i, 1,0) = Yemw 7 (1)
_ju==)?

1 g2 ¢
(z<u) m

where the expression for the case x < u has been found exploiting the symmetry property
7 (¢, 3w, —00,m) =t — T (¢, —z; —u, —c0, —m) , compare Takacs [23]. Expression (11) is the
well known arc-sine law, Lévy [18] and BS[4], formula 1.4.4 page 129 where is given the time
spent above the level wu.

c) If we let | — —oo, we are considering the time spent by BM with positive drift below
the level u. This case has been studied by Akahori [3], Dassios [8], although Takacs [23]
provides a simpler expression.



From equation (8), we obtain?:

W Vr—ip+5s
lim %d(y) =e *4_222E . - v2
20 A =R\ As) T -2 (12)
lim -%s(y) =e % 1 - i -
1—c0 V7 VISET \ (Vi) vamm(v-iw-2)
and then:
e—a’u.

Jdm Lly(1)5t—9] = (\/"7+%) (\/,Y_—,i"u_&)
e (Vit -3
VT (vT+ ) (V== )
— 1 a/V2
(V%) \V1 A (it )

S

N—"

T
S

so when z > u:

Q¢ p,z;l,u,m) =

_ g—m(a—u)—t p1 [(W_j;%) (e—ﬁia/c;u)\/‘ T;_\/}z_—_u)—\/-> s t]
it [ (- 3 ()

X (%— + %em;(t_o)_m(m_") Erfc ( \/—t_ + \};(_:)9) > do

where we have used the inversion formulas in Abramowitz and Stegun [2] and the convolution
property of the Laplace transform.

For z < u and | — —o0, we can again use the symmetry argument in Takacs [23], so we
then obtain that the density function of the occupation time with only one barrier is given

2The limits can appear to depend on the value of m, but we can suppose to have m > 0 without loss of
generality. Indeed the key in the determination of the density is the symmetry property in [23] that allows
us to find an expression for the density when z < u in terms of the density when = > u. So if the drift is
negative, we can suppose that z < I and we let « — oo so we consider the time spent above the level I. Then

using the symmetry property, we find the expression for z > ! as well. So the result does not depend on the
sign of m.



im fr(7,t,z;u,l,m) =
)

( —m2"' m mMA/T
L(w>u) <% ~ 2 Erfe (T )) X
z—utm(t—7)))2
= )

N + /3 /2(t—T) (13)

2
e—'LnZ_(t_T) m m~/t—T
La<w (W__{ g Brfe (“T)) x

_%ﬂwﬂﬁ e (u—z)+
x| S — e Bk (%)
\

In order to make comparable the expression above with equation (12) in Takacs [23], where
is considered the average time spent below the level z < u, it is necessary to set in Takacs
[23] @ = (u — z) /v/t and substitute m with -m+/t. We need to use as well the relationship
Erfc (z) = 2@ (—V2z).

Moreover, if we have m = 0, the above density function reduces again to (11).

3.2 The moments of the occupation time

We can use the result of Theorem 1 for computing the moments of the occupation time.
The result is based on the well known Cauchy integral formula that allows to compute the
derivative of all orders at a point for an analytic function.

The moments of a random variable can be obtained from the characteristic function deriv-
ing with respect to p and then setting p = 0, through the following well known relationship:

Eo,z [T" (¢, 2;1,u,m)] = My (2,t) =
= (_l)n o™ (t,p,x;l,u,m) +
e et (14)
+" X Pro oe(i,u) ( sup m*s+W(s) <u; inf m*s+W(s) >l)
TR\ o<s<r 0<s<t

Theorem 1 gives us an expression for the Laplace transform respect to time ¢ of the
function:

m2
Q(t, p,z;l,u,m) =e ™ 5L w(y, w3 l,u,m) ;7 — 1

and the n-th order derivatives Q(and w(™ can be computed using the Cauchy integral
formula using the expression for w. We have indeed:

Theorem 2 (Cauchy integral formula) Let w be analytic everywhere within and on a
simple closed contour C, taken in the positive sense. If ug is any point interior to C, then:

1 / w('y,,u,a:;l,u,m)d

27 Jo K= po

and in general the n-th order derivative with respect to p is given by:

n! / w(77“ax;l:u1m)d
c

(n) s =
w (77 ;1’07 m) l7 'U,, m) 27,(.7: (# _ #O)n_*_]_ /‘l‘0

w (’77 1o, T3 la u, m) =




Using this result and a numerical procedure for inverting the univariate Laplace transform,
we can compute all the moments of the random variable occupation time. In order to calculate
the value of the contour integral, we can choose as path the unitary circle with center at the
origin. Moreover, we have pg = 0. So we obtain:

! 2
(n) . = _n_ w(’)’s#’ama ,u,m)
w\™ (v,0,z;l,u,m) = 27”:/0 P du (15)
nl [T ; ;
= — w ('y, e? z: 1l u, m) e ™0 4dp
2w 0

Then the strategy for computing the moments is the following;:
1. numerically compute the integral (15);
2. numerically compute the inverse respect to 7 of the function w(™and obtain Q)

3. then compute the nth-moment using formula 14.

We have performed the first step using a Legendre quadrature formula with 100 nodes,
Press et al. [21] page 150 and following, whilst the second step has been done using two
different numerical procedures: the Euler algorithm as in Abate and Whitt [1] and the uni-
variate version of the Padé approximant method as described in Singhal and Vlach [22]. The
results of the two methods agree up to the seventh digit and the computation of each moment
requires less than one second. Takacs [24] has obtained, using a combinatorial approach, a
recurrence relationship for the moments of the occupation time of the Brownian motion with-
out drift in terms of the moments of the local time of the BM. An advantage of the method
discussed in the present context is that we can compute separately the different moments
and this fact can reduce enormously the computational time.

4 The numerical inversion

In this section we discuss the problem of the numerical inversion. From a computational
point of view it is convenient to distinguish the problem of finding the density function from
the problem of pricing the corridor option. Indeed, in the first case we like to use two single
univariate inversions, whilst in the second it is better to use a multivariate inversion.

This choice is also due to the fact that up to now, relatively little attention has been given
to inversion of multidimensional transforms, so in order to limit the programming effort a
possibility is to obtain the density function using well tested univariate inversion routines as
described in the following two steps:

1) Numerically find the inverse Laplace transform of the function (¢, i, z;1,u,m). We
have solved this problem using the Crump’s [7] method implemented in the IMSL-library
subroutine FLINV3,

2) Using the numerically computed Q2 (¢, i, z; [, u,m), find the function f; (7,t,z; U, L, m)
through a further numerical Fourier transform inversion. We have computed this inverse

3This method is ranked among the most accurate available numerical inversion techniques in the Davies
and Martin [9] comparison.



using the Fast Fourier Transform and this allows us to reduce greatly the computational
time. Moreover we obtain simultaneously the entire density function, whilst if we use a
different procedure (e.g. a bidimensional Laplace inversion) we need to repeat as many times
as the number of points at which we desire the density function. Moreover, having the entire
density function allows us to compute very complex derivative products which depend on
the occupation time. The two steps described above require separate expressions for the real
and imaginary part of the function 2 (¢, i, z;1,u, m) at which we can apply the FFT. These
expressions can be obtained from the Author on request.

In Figure 1, we represent the density function of the occupation time obtained using the
two-step univariate procedure. In Table 1 we compare the price of the corridor bond obtained
using the density coming from the double inversion described above and the analytical formula
for the corridor bond as from section 2.

[FIGURE 1 HERE]

The expected value has been calculated through a simple trapezoidal rule. In the numeri-
cal inversion, we have to choose the Fourier transform maximum frequency, so from the table
we can see that increasing it we obtain a great accuracy, but with the cost of increasing the
computational time.

Initial Price Analytical Sol. n=2048 n=1024 n=512 n=256

80 0.04609 -0.02%  0.05% 0.25% 0.72%
85 0.08149 0.00% 0.08% 0.27% 0.68%
90 0.13134 0.02% 0.10% 0.27% 0.64%
95 0.19606 0.03% 0.10% 0.26% 0.60%
100 0.27463 0.03% 0.10% 0.24% 0.54%
105 0.30959 0.08% 0.15% 0.30% 0.60%
110 0.25770 0.01% 0.07% 0.21% 0.51%
115 0.18058 0.02%  0.08% 0.23% 0.56%
120 0.12478 0.00% 0.07% 0.23% 0.59%
125 0.08509 -0.01% 0.06% 0.23% 0.61%
average time 17 170” 104” 56” 327

Table 1: Price of the corridor bond using the analytical solution and difference percentage
respect to the prices obtained integrating the density function obtained by the two step inversion
(r=0.05,0 = 0.2, L = 100, U = 110, £ = 1yr). n denotes the number of chosen points (a power of
2) in the FFT.

Using the results in Theorem 1, we can obtain the double Laplace transform of the price
of the corridor option. Indeed, we observe that we can write the undiscounted price of the
corridor option with strike K and residual live ¢ as:

t
c (t,K; .’E) = / (T - K) fr (T,t,(L‘; ualam) dr + (t - K)+ X PrO,:z:G(l,u) [T (t,a:;u, l) = t]
K
and with some simple passage, we obtain that C (¢, K;z) is given by:

Eoo [1 (¢, 23u,1)] = K (1 = Prog [7 (¢, 7;4,1) = 0]) +/K (K =) fr (7,¢, 24,1, m) dr
0

4All the calculations have been performed on a Pentium 133 machine.



where Eoz [T (t, z;u,1)] is the expected value of the r.v. 7(¢,z;u,l) and is given by (2). If
we consider now the Laplace transform with respect to K of the third term exploiting the
convolution property, we obtain:

£[ OK(K—T)fT(T,t,m;U,L,m)dT;K—>p] =
=L[K;K — p| L[fr (1,t,2;U,L,m); K — p]
= ‘,—ing (&, oy Z; Ly uym)

and then we have:

Ct K;z)=
= EO,a: [T (tsm;u7 l)] - K(l _PIO,E [T = 0]) +‘C—1 Q(Lﬂ’ﬁm;’u - K]
= Boo [1 (6,73, 1)] — K (1 — Prog [r = 0]) + £71 [ )y, ey s ¢]

So the price of the corridor option is given by the double Laplace inverse® of the quantity
w (7, 5 1, u,m) /2.

If w (7, 1) == w (v, 1, x;l,u,m) /u? is the double Laplace transform, the inverse Laplace
transform W (¢, K) is obtained applying the inversion formula in two variables:

1 2 preitjoo  peatjoo —
W(t,K)= <%) / / e e w (v, p) dydp
C: C:

1—joo  Jeg—joo

We have considered two methods for numerically computing this quantity: a) the Fourier-
series method firstly introduced for multidimensional transform inversion by Choudhury et
al. (CLW) [6], b) the Padé approximation as suggested in Singhal et al. [22].

The Fourier-series inversion procedure®, formula (2.11) in CLW [6], consists essentially
in an enhancement of the Euler algorithm in Abate and Whitt [1] based on truncating the
inversion integral and applying the trapezoidal rule. The idea consists in damping the function
to be inverted multiplying it by a two dimensional decaying exponential function and then
approximating the damped function by a periodic function constructed by aliasing. The
inversion formula is then the two-dimensional Fourier series of the periodic function. The
computation of the series can be greatly accelerated by the use of the Euler algorithm for
alternating series”. The CLW algorithm allows a simultaneous control of the aliasing error and
the round-off error coming from multiplying large numbers by small ones. CLW show indeed
that both errors can be controlled choosing in a appropriate way four different constants A,
Ag, l; and ly. For the fact that the price of the corridor option has an upper bound in the
price of the corridor bond, in our case the aliasing error can be bounded by C (e‘A1 + e‘A2),

5We can use here the expressions given in Theorem 1, once we have substituted in all expressions the
quantity v — ¢u with the quantity v + . This is due to the fact that here we are using a double Laplace
transform, whilst in Theorem 1 we have used a Fourier transform and a Laplace transform. Moreover for
numerical purposes, it is convenient to divide in (8) and (9) the numerator and the denominator by sinh (ar)
and to use the fact that tanh (am/2) = (cosh (a7) — 1) / sinh (am) = sinh (ax) / (cosh (aw) + 1)

5We remark that the Crump algorithm and the FFT used in the computation of the density function are
closely related to the Fourier-series method used in the multidimensional inversion, compare Crump [7] and
Abate and Whitt [1].

"The implementation of the Euler algorithm requires the selection of two parameters, m and n. The

Authors suggest n = 38 and m = 11, whilst in our case we have seen that a better choice consists in setting
n =20 and m = 20.



where C = K (1 — Progequ) [T = 0]), so that to fix a bound on this error implies to fix A; and
Az. The roundoff error depends on the quantity exp (A1/2l1 + Az/2l2) / (4l1l2tK) that is
decreasing when [; and Iy increase. There is however a trade-off between error control and
computation time, since this increases proportionally to the product of /;and I, and increasing
A; and Aj requires an increase in /; and ls. The authors suggest to use A; = Ay = 20 and
1 = I3 = 2. We remark that as explained in Abate and Whitt [1], pag. 75-76, this inversion
method is not accurate when we have a not bounded density or with very high peaks as in
our case (compare figure 1). For this reason it is more appropriate to apply this method
to the calculation of the corridor option price and avoid its use in the computation of the
density function®.

The method proposed by Singhal et al. [22] is very accurate if the function is smooth as in
our case. The idea consists in approximating the functions e* appearing in the Laplace inver-
sion formula by a Padé rational function. Then, if w (v, i) is the double Laplace transform,
the inverse Laplace transform W (¢, K) can be computed as:

1 e 215 22j
W (t, K) = m Z Z 7'11'7'23"11) (T, —K—) (16)
1

i=1 j=

where 21; and 295 are the poles of the Padé approximations to €7 and eE  and ry; and T9j
are the corresponding residues. M; and M are the degree of the denominator in the Padé
approximations. This inverse requires to choose the degree of the numerator and denominator
of the Padé approximants. From some numerical experiments, we have observed that in order
to obtain a good accuracy and avoid roundoff errors® the degree of the denominator has to be
chosen greater than 13 and not larger than 18 . The degree of the numerator has to be chosen
not greater than 4 or 5. This choice gives us an agreement to the seventh digit between the
numerical computed inverse and the analytical formula for the hurdle option. Moreover this
inversion can be performed very quickly (less than 1 second) and with a limited programming
effort, once we have computed the poles and the residues of the Padé approximants with
programs like Mathematica or Maple and we have stored them. However, respect to the
previous method, particular care has to be used, because there is no way to tell how accurate
the Padé approximant it is'C.

In table 2 we compare the three methods and the MonteCarlo simulation method, report-
ing as well the computational time and the standard error of the MonteCarlo estimate. We
remark that the MonteCarlo method suffers for the intrinsic discreteness of the simulation so
we do not know if the process has crossed or not the barriers and we cannot compute exactly
the time spent inside the barriers during each step of the simulation. The MC simulation
has been performed using 50000 simulation and using the antithetic variate technique, Boyle
[5]. We have tried also to obtain a greater reduction in the standard error using as control
variate the price of the corridor bond, but this technique performed poorly as K increases
and we do not report the results here.

We can remark how the different methods agree in general to the third digit and sometimes
more. In this respect, the Padé and the Fourier method appears the most preferable mainly

8Indeed from some numerical experiments applied to the simplest case of one barrier and zero drift, we
have seen that in order to obtain a good result we need to set I; and Iz at least equal to 7. We had the same
problem with the Padé inversion. So in the computation of the density function, the bidimensional inversion
appears inefficient compared to the two-step unidimensional inversion .
®An easy check for avoiding roundoff errors is that the sum of the residues has to be equal to 0.
1%Press et al. [21]: * It is a powerful technique, but in the end still mysterious technique”, pag. 202.



for their accuracy (up to the seventh digit) and the very low computational time that they
require. The MC method appears very time consuming.

Crump+FFT Fourier Fourier Pade MC+AV
K=0.2 n=20,m=20 n=100,m =20
z=290 0.0462793 0.0463038 0.0463038 0.0463039 0.046606; 0.265
z =95 0.0792503 0.0792444 0.0792444 0.0792445 0.078995; 0.308
z = 100 0.1247528 0.1247227 0.1247228 0.1247226 0.124951; 0.518
#= 105 0.1470881 0.1469239 0.1469239 0.1469239 0.147282; 0.665
z= 110 0.1161007 0.1161262 0.1161262 0.1161261 0.115834; 0.358
z= 115 0.0735259 0.0735554 0.0735554 0.0735555 0.073820; 0.311
2= 120 0.0456788 0.0457253 0.0457253 0.0457254 0.046075; 0.271
average CPU 170” 8” 39” <1” 337
K=04
z =90 0.0100981 0.0101457 0.0101457 0.0101459 0.010328; 0.123
z =95 0.0213042 0.0213357 0.0213358 0.0213361 0.021146; 0.175
z =100 0.0400273 0.0400375 0.0400376 0.0400375 0.040250; 0.27
z =105 0.0504331 0.0503482 0.0503483 0.0503485 0.050574; 0.376
= =110 0.0372272 0.0372753 0.0372754 0.0372753 0.037048; 0.227
z=115 0.0202404 0.0202948 0.0202948 0.0202951 0.020376; 0.176
=120 0.0107088 0.0107697 0.0107697 0.0107699 0.010868; 0.285
average CPU 170” 8” 38” <1” 337
K=0.6
z=90 0.0008576 0.0009014 0.0009014 0.0009019 0.000927; 0.030
z=095 0.0026490 0.0026893 0.0026893 0.0026899 0.002592; 0.053
z =100 0.0067578 0.0067873 0.0067874 0.0067831 0.006865; 0.092
z =105 0.0094893 0.0094617 0.0094618 0.0094619 0.009545; 0.131
o= 110 0.0062664 0.0063189 0.0063191 0.0063188 0.006258; 0.087
z= 115 0.0026123 0.0026664 0.0026664 0.0026670 0.002687; 0.056
z =120 0.0010299 0.0010822 0.0010822 0.0010826 0.001093; 0.034
average CPU 170” 8” 37 <1” 337

Table 2: Price of the corridor option with parameters r=0.05, o =0.2, L=100, U=110, t=1.
In the Crump+FFT we have used 2048 sampling points. In the Fourier method we have set 1;=1s=2
and A;=A2=20, whilst n and m are important for the use of the Euler algorithm that requires a total
of m 4+ n + 1 terms. In the Pad® approximation the degree of the denominator has been set to 18
and the degree of the numerator to 4. The poles and the residues have been preliminarly calculated
in Mathematica 3.0 with the functions Pade[], NResidue[] and NSolve[]. In the MonteCarlo column
(50000 simulations with 1200 steps and with antithetic variate) appears also the 1000xstandard error.

We observe that in order to calculate the Greeks of the contract we can simply calculate
the derivatives of the double Laplace transform and invert them. So the numerical routines
used for finding the price can be adapted in a simple way to the calculations of the sensitivities,
whilst in the MC method the calculation of the Greeks is usually reputed to be inaccurate.
In figure 2 we present the delta of the corridor option varying strike and underlying index.

[FIGURE 2 HERE]



Greater details can be found in Fusai and Tagliani [11], where there is also a comparison
between continuous and discrete time monitoring of the underlying.

Finally, the following figures illustrate the behavior of expected value, standard deviation,
skewness and kurtosis of the occupation time. With regard to the behavior of the expected
occupation time respect to the starting level of the Brownian Motion, Figure 3, we observe
the bell-shaped form: the expected value is at the highest when we are inside the barriers and
as we move faraway it decreases. In the case of zero drift the shape is symmetric around the
mid-point of the interval. The expected fraction of time spent inside the barriers, Figure 4, is
a decreasing function of time if the index starts inside the barriers (as time passes it is more
likely to move out), otherwise it is increasing and then decreasing (as time passes it is more
likely to move in and then out again). The particular shape of the standard deviation, Figure
95, always respect to the starting point of the Brownian Motion is due to the fact that when
the index starts exactly on the barriers it continues in moving in and out of the interval: so
the standard deviation is at a maximum when we are on the barriers. The remaining figure
illustrates the behavior of the standard deviation of the fraction of time spent inside the
barriers (Figure 6).

[FIGURES 3-6 HERE]

5 Conclusions

In this paper we have studied a generalization of the Lévy arc-sine law providing an expression
for the Laplace Transform of the characteristic function. We have used the Feynman-Kac
equation and solved the related PDE. A possible extension is related to the derivation of the
joint density of the occupation time and the final level of the Brownian Motion and it can be
done easily following the same procedure. We have also discussed how to invert numerically
the double transform in order to obtain the density function and price corridor derivatives
and we have shown that using simple to implement numerical procedures the task can be
accomplished without difficulty. We have also shown how to compute the moments of the
occupation time using the Cauchy integral formula and the expression for the characteristic
function.
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A Solution of the PDE

In order to solve the PDE (4):

ov(t,z) 10%(t,z) ov (t,z) . _
o T3 @ T gg T Hlcecu (,2) =0

with initial condition:
v(0,z) =1, Vz € (—o0;+00)

and boundary conditions:
v(t,+00) =1,Vt >0

we consider the following transformation:
v (t, ) = e** PR (¢, x)
and setting o = —m and § = _ng, we get the following PDE for the function A (¢,z) :

_Oh(t,x) " la% (t,x)
ot 2 &z

with initial condition h (0,z) = e”*®. We can make a second transformation defining 2z =
(z —1) /(v —1) and introducing a new function:

y(t,2)=h@,(u-0z+1)
we get the following PDE for the function y (¢, 2):

Oy (t,2) | 20%y(t2) .
- ot + c 52 + 7’.“'1(0<z<1)y (t7 2,’) =0 (18)




where ¢? = 2(u—1_l)2', and y(0,2) = e—((u—0z+1)

In order to solve (18) we can distinguish three cases, z < 0, 0 < z < 1, and 2>1 and
require a continuous and differentiable solution at these boundary points. As consequence,
we can guarantee that the characteristic function as well is continuous and differentiable at
z =1 and at z = u. So we can solve the PDE (18) imposing Neumann boundary conditions
at z=0and at z=1:

ay(t,z) — (1) = Ay(t,z)
oz z=0— ( ) 2 z=0+ 19
ay(tlz) — U (t) — ay(t1z) ( )
oz z=1— Z |z=14

where L (t) and U (t) are unknown functions to be chosen in order to have continuity of the
solution at z = 0 and at z = 1,i.e.:

Y (ta z) lz=0- =Y (t, z)lz=0+

Y (£ 2)|,=1- = y (& 2)| o+ (20)

In the case 2 < 0 and z > 1, to solve (18) with boundary conditions (19) amounts to solve
the heat equation in a semi-infinite region with Neumann boundary condition. The solution
can be found in Zauderer [28] (page 268, eq. 5.121). In the case 0 < z < 1, considering the
new transformation g (t,2) = e~%y (¢, 2), we get that g (¢, 2) satisfies the heat equation in a
finite strip with Neumann boundary e "L (t) and e~***U (t) at z = 0 and z = 1, respectively.
The solution in this case can be found in Necati [19] (page 62, eq.2-73a). In conclusion the
function y (¢,2) can be expressed in terms of the unknown functions L (¢) and U (¢) in the
following way:

Yy (t’rz) = 4
e““u/ [G(z—1-¢8)+G(z— 1+, 1) e > Dedgy
1(z>1)
_zc2/ G(z—1,t-6)U (6)do
0
eipte—al—e_au +C2 teip,(t—-O) U(@)—-L (6 do+
N DTN A i )
O<=<D 1 yoc Zyn (t) cosnmz + Z elit—2n)tgh, cos nz
n=1 n=1
<400
e—“‘/ (G (~2 = &) + G (—z +£, )] 2t Dede+
1(z<0) %
192 / G (-2t~ 0) L (6)d8
\ 0

where:

e 42t
Varc3t
1
bn = 2 / e~ @=DEH) cog (e de
0

G(z,t) =

v (t) = /Ote(""“"’“‘”’ (-1"U (6) - L(9))

A = (nmc)?



In order to find the unknown functions U (t) and L () we now require the continuity of
the function y (¢,2) at 2 =0 and z = 1, i.e. we impose conditions (20). However it is more
convenient to transform the continuity conditions in the following way:

1i li t = I t i
z—>r?+ 4 (t, Z) T z—1>%1— ¥ ( ’ Z) z1—1>nl:l— d ( ,Z) = z]irél+ ¥ (t, Z)
i t,z) — li t = 1 t,z) — I t
z—Hl'Fy( ,Z) z—)Ig—y( ,z) z—l)Iln—y( ,Z) z—i:%l'*‘y( ’z)
and introducing the functions D (t) := U (t) — L (¢) and S (¢) := U (¢) + L (¢), we obtain:
lim y(8,2) + lim y(t,2) =
z—1+ i o z—0— ‘/_ S d gl \/E . .
— 1 T — 1
=e au+2a tEI'fC (aﬁ) +e o +2a Erfc (—%) b 202 fO WD (0) d9
lim y(¢,2) — lim y(¢,2)
z—1+ ' » z—0— i ;
_ —autsa‘t Vi —a +,,a t 2
=e 3! Erfc (aﬁ) e Erfc( \/_) —2¢ [} \/m S (0)do
]im_y(t z) + Iim y(t z2)=

— DM ET=E | 9 [ (- 9)D(9)d9+z h=2n) e (1 4+ (=1)")

n=1

—+o0 t

+22 3 (1 + (-1 / eGH=2)6=0) ) () df
n=1 0

im y (¢,2) — lim y(¢,2) =

z—)I{l— y+( ’ z) z-—)I(I)l"f' Y ( ’ Z) 5

=2) (1= (1)) g e E05(0)do + ) elumig, (-1 - 1)
n=1 n=1

The determination of the functions D (t) and S (¢) requires to solve respect to them the
following integral equations:

( g—autio®t e (%_@) + e—d+39° Brfe (—%-@) —2c2 f(f \/#WD (6) do =
DeET=ET 1 96 [ et D (6) O + D i (14 (1)) + (22)

n=1

+0o t
223 (14 (-1)") / (i1=2)t=0) D () df
n=1 Y

\

( e—au+%a2t Erfc (.‘%) — e_al+%a2t Erfc (_%/_@) - 262 f(;' \/ﬁ (0) df =

2022(1_( 1 )f e(zu An)(t— 9)5(9)d0+2e(“‘ A,,)t¢ (( 1) ) (23)

n=1

We remark that these integral equations involve separately the functions S (¢) and D ().
We solve them using the Laplace transform. We call s (y) and d() the Laplace transforms,
with respect to the time variable ¢, of the functions S (¢) and D (¢):

s(y) : =£[S(t);t—>fy]=/0te_7t,5'(t)dt



d(y) : =£[D(t);t—>fy]=/0te_“’tD(t)dt

Laplace transforming (22) and (23), we obtain two linear equations to be solved separately

for each function s(y) and d(v):

( e ou e~ _ 22 d —
W(\/"Y+7"')+W(W—7“5) Vi

1 e—al__g—oau

o0
1 (1+(=n"
¢ a(u—l + w22 Z n(+a. )¢”’+
s n=1
0o
2 14+(-1)"
+d(r) o UHEH
n=1
r e—au e—al

-2 _5(y) =
f(fv) g Ve

() 2 YOS ¢ Z‘—n%%‘rlz

\ n=1

(24)

Using the following summation series formula in Gradshteyn and Ryzhik[12], page 40 as

formula 1.445.1:
i nsin (nz)  wsinh[a (7w — )]

=2 : )
‘= n?+a® 2 sinhfan] 0 <z <2m
formula 1.445.2:
(o .0]
cos(nz) wcoshla(m—z)] 1
= — - —;0 <2
Z n?+a? 2a sinh][a7] gzt <E=AT

n=1

formula 1.445.3:

o n
(=1)"cos(nz) 7 cosh[ax] 1
- —w<z<
Z n24+a2  2asinhfan] 242’ TSa=T
and formula 1.445.4:
Z (-1)"nsin(nz) _ wsinh[az] o
= n?+a? ~ 2sinh[an]’ i i
where am = /(7 — i) /c?, we obtain:
e—au n e—al __ 1 1 cosh(am(1—z))+cosh(anz) e—(u—Dz+1) g —
{ vilvieg) | V(i) C0 T Vi
h(am)+1
¢ (% + \/'y:-l—zp mssingzzzr) ) d (’7)
g _ e __ 1 1 cosh(amz)—cosh(an(1—z)) e—a((u—lz+l) g —
f(\/—+7f!_) ﬁ(ﬁ_vaa) fO +v/Y—ip sinh(a) T =
T8 -\/_ + \/'71 I Cosslillglugzr) g (7)

(25)

(26)

(27)

(28)

(29)



We observe:

1 1 cosh(am(1—z))+cosh(anz) —a((u—l)m+l) _
0 V/Y—ipsinh(ar) dr =
_ (\/_'—(e_“"+e_“') smh(avr)+7§(e“""—e""l)(cosh(a’/r)+l))

VA= sinh(ar) (y-ip—2 )
1 1 cosh(amz)—cosh(anw(1—=z)) e—((u—D)z+1) g —

0 v/Y—ipsinh(am)
(\/_(e_m‘—e""‘l) smh(a.7r)+\/_(e”o‘“+e_°‘l)(cosh(a.7r) 1))

vy—ip sinh(aw) ( —ip— —)

so substituting these expressions in (29) and solving respect to the quantities cd () /1/7 and
cs () //7 we obtain (8) in Theorem 1.

From equation (21), we get as well the Laplace transform of the function y (¢,2) when
z =0 and when z = 1. Then the expressions for the characteristic function when z = [ and
when z = u, are:

m2

v(tu) = ™ Eiy (1) (30)
me

v (t,1) e ™"ty (¢,0)

Il

A.1 Solution of the PDE with Dirichlet boundary condition

In order to find the expression for the function v (¢,z) for a generic value of z, we can now
solve the PDE (4) in three different regions (z <[, ! < z < u and u < z) using as Dirichlet
boundary conditions at z = [ and z = u the known values in (30). This, after the same
transformation as before, amounts to solve:

Oy (t, 2 52 .
_ yét ) 2 yag ) +Z,U:1(0<z<1)y (t, z) =0 (31)

+

2

where ¢ = 2(u—1_l)2', and y(0,2) = e~((u=0z+D) " in three different regions using Dirichlet

boundary conditions at z = 0 and at z =1 the known values of y (¢,0) and y (¢,1).
A1l Casex<land z>u

In this case, we have the heat equation with Dirichlet boundary conditions and the solution
can be found in Zauderer [28], page. 265, eq. 5.105:

) (t7 QJ) =
2 2
( -+00 e—i%'!__g— _ e_ﬁ-"_—_;ti{)_ e_a(C+u)dC+
0 V2t V2t
1(:z:>u) 2
+ fy e S e (0) do
$
(1-z-¢)% (1—z+¢)2
+o0 | eT T e = —a(l—C¢
0 I:e V2t = V2rt ] € ( )d<+
1z« a2
= (=6 ool
\ +ft (1 mz)e(t = al ﬁep (9) de



and then:
v (t,x) = e®®+Ply (t,2)
4

am+ﬂt +00 e (m_té:C)z e (2_12‘?_02 -—-a(u+c)
1(z>u) )2
Leale—u) [t @=we T pt-6) . p) qp
| fo \/m ‘J( ) (32)
2 2
aztft [+oo e e o I
) s [ Tor— ~ | @ TdC+
(m<l) 1—z)2
—a(l—z) rt (I—z)e 20(-6) _
\ +emet-a) frlgle 2 /—gﬂ(t_,,)s P=0p(6)do

where ¢ (t) and p (t) are the known values of the characteristic function at z = v and =z =1:
q(t) == v (t,u) and q (¢) = v (¢,1).

Using some algebra and comparing with BS [4] (formula 1.2.4 page 198), we can remark
that when = > u:

+00 (z—u—0)? (z=ut+¢)?
— ﬂt e 2t _ e 2t a(m—u—c)d _
—€ 0 V2nt V2wt & C -

=1- [% Erfc (m—\«;—z%mt) + e~2m2(z_u) Erfc ("’_\’;;_tmt)] (33)

= Prg ze(u,+00) 0i<1;i; ,ms+ Wi(s) >u

where we have used the fact that 3 = —m?/2and o = —m. Similarly, when z < [ it can be
shown with some algebra and using formula 1.1.4 page 197 in BS [4] that:

_(=z-¢)? _(—z+¢)?
2t e 2t

ezt f0+°° e = - e—a(l—C)dg =
=1- [% Erfc (l_\”/%mt) - 62m(21_z) Erfc (l_\”/%mt)] (34)

= Pro ze(—oo,) 0s<u;<)t ms+ W (s) < l)
_s_

In order to find the expression for €2 (¢, i, z;u,l,m) in Theorem 1, we can use equation
(30) and substituting it in (32), we obtain:

2
T —U
az+pt (T (z—u)e_ -(2_(1'?%)-

1(:1;>u)e 0 _%r\/_TT)ay (9, 1) dag

Qt, p,ziu,l,m) =

2
az+pt ft (l—m)e_%f—_f)gf
0 Van(t-0)°
and then if we consider the Laplace transform of the integrals we obtain the expression for
w (7, 4, z; 1, w,m) in Theorem 1.
We now show how to find the density function of the occupation time given in equation
(10) in Theorem 1. Using in (32) the fact that:

q(t) = v (t,u;l,u) = [§ e f, (6,,u)df -
p(®) =v(t5lu) = [ferf (0,t,1)df

1(m<l)e Y (91 0) o



we can observe that, for z > u, we have:

T —1 2
a(z—u) ft (z—u)e 2(—7)

om(t—1)° eﬁ(t_T) g(r)dr =

21r(t——'r)3

cv T
— ea(m~U)/ uu_t‘; eBt—T) (/ e £, (6,7,u)df | dr
0

moes [ | [ 5T g, (0 i | o

27r(t—'r)3

and then:
vt el u) =

=1 X Prg ze(u,4+00) < ini;t ms+ W (s) > 'u,>

t
a(z—u) (z—u)e” 2C-7) 2t— Sl
e / 0 (/ \2r(—-1)? fr(0,7,u) d’T) df

and so comparing with (3) the density function of the occupation when z > u can be expressed
in terms of the density function when z = w. Similarly, for z < I, we obtain:

v(t,z;l,u) =
=1 X Proge(—ooy) ( sup ms+ W (s) < l) -

27 (t— 7)3

+eeli-a) / ik tﬁ—‘z)e = Pt £, (0,7,1) d’r) do

Comparing these expressions with (3) the density function of the occupation when z < I
can be expressed in terms of the density function when z = I.

A.1l2 Casel<z<u
In this case the PDE (4) becomes:

Qv (t,z)  10%(t,z) Bv(tz) . _
ot T3 g T gy T (ta)=0 (36)

and has to be solved in the finite region I < z < u, with boundary conditions:

v(tu) = q()
v(t,1) = p(?)
and initial condition:
v(0,z) =1

If we consider the transformation y (t,2) = e~((=DztD)—kty (¢ (4 —1) 2+ 1), we get for
the function y (¢, 2) the heat equation in a finite region 0 < z < 1,:

Oy (t,2) | 20%(t,2)
5 +c? 5, =0 (37)




with boundary conditions:

y(t,1) =e " Fq(t); y(t,0) = e Hp(¢)

and initial condition y (0, 2z) = e~*((=H2+1)_ The solution can be found in Necati [19] (page
62, eq.2-73a). Then the expression for characteristic function is given by:

vt xz) =

. o2 =
eHte fol I:Z e~ sin (nxrz) sin (nw&)] e~ @Ew-D+)ge 1

n=1
+eo@tht an (t) sin (mr (i—j))
n=1
where:

t

wn (£) = 2nmc? / e (t=0) [emalhap (5) — (—1)" e~y ()] ds (38)
0

Using the properties of the theta function, compare Kevorkian [17] at page 25-26, and

comparing with the expression in BS [4] (formula 1.15.4, page. 211) we obtain:

1 oo
9—mE— %t / |:Z e=(m)*t gin (nm2) sin (7€)

0 n=1

em(s(u—l)+l)d§ —

(39)
= Pro oc(iu) (02%: ms+ W (s) < u; Oisgi;t ms+ W (s) > l)

In order to find the expression for Q (¢,z;u,l,m) when z € (I,u) in Theorem 1, we can
use equation (30) and substituting it in (38), we obtain:

¢
wa (8) = 2nme® [ &0y 5,0) = (1) (s, )] ds
0
and then:
Q& p, zyu,l,m) =
= e tht Z 2nmc? sin (mr (ﬁ—j)) J3 e=On=i)t=5) (y (5,0) — (=1)"y (s,1)) ds
n=1

If we consider the Laplace transform of the series we get:
w (f),’ I‘L,m; l7u7 m) =
= Hz Y Ay sin (nr () (LW (6,0)3t > - (-)" LIy (5 5t — 1)) ds
n=1 e
and using the summation formulas (25) and (26) we obtain the expression in Theorem 1.
We now show how to find the density function of the occupation time given in equation

(10) in Theorem 1. Substituting in expression (38) the functions ¢ (t) and p () as given in
(35), we have:

eaz+kt,wn (t) —

i
— —2717{'62/ e(k:—(mrc)2)(t—s)x
0

X |:(—1)n e (u—2) / e f, (8,s,u) — =D / e f.(8,s,1) de} ds
0 0



With a change of variable, (( =t—s,v=t+7—s=¢&+7), and using the fact that
k= —a?/2 +iu, we get:

t o2
= —2n7rcz/ e_(7+(mc)2)£x
" 0

X / . [(~1)"e—olu—a)eibf (9 — ¢, — & u) — e Vef (0 — ¢t —¢, 1)] dod¢

t
= 2nmc? / el x
0

o2
. fog e—(7+(n7rc)2)5 (ea(m—l)fT O—¢t—¢&1) —(=1)" e—a(u—z)fT 0—¢t—¢, u)) dedo
So for a generic starting point z € (I,u) we have:

vzl u) =

= " Pro ze(,u) (Os<u12t ms + W (s) <u; inf ms+W(s) > l) +
_8— - =

t i > : o— e . "‘—22+n27r202 (3
+/Oe’“9 I:ngl%z'ichsm(nﬂ'(u—_%))/oe ( ) X
X (ea(z—l)fT O—-¢t—-¢&0)— (-1 e“"(u—-“b‘)j‘,r CEIRTES u)) d§] do

and so we recognize in the square brackets inside the integral the density function of the
occupation when ! < z < u, as shown in Theorem 1.
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