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1 Introduction

The valuation of corporate debt is central to theoretical and empirical work
in corporate finance. The literature on pricing of risky debt has evolved
into two main directions: the structural approach and the reduced-form
approach. As in Merton [1974], the structural approach has taken the dy-
namics of the assets of the issuing firm as given, and priced corporate bonds
as contingent claims on the assets. Merton [1974] adopts the Black and
Scholes [1973] option pricing model to the pricing of risky discount bonds.
Assuming a constant interest rate economy, Merton’s model provides an im-
portant insight into the determinants of the risk structure, and shows how
the default risk premium is affected by changes in the firm’s business risk,
debt maturity and the prevailing interest rate.

Black and Cox [1976] and Geske [1977] provide generalizations that take
into account the effects of coupon and bond indenture provisions. Geske
[1977] applies the technique for valuing compound options to the problem
of risky coupon bonds. He derives an analytical formula which consists
of multivariate normal integrals with dimensions up to the total number
of contractual payments. It is shown that with a special auto-correlation
structure, an application of an integral reduction may simplify the numerical
computations.

The application of stochastic interest rate in the valuation of corporate
debt using Merton’s framework [1974] is discussed in Shimko, Tjima, and
Van Deventer [1993]. The model of Longstaff and Schwartz [1995] is an

adaptation of the Black and Cox model to a more realistic setting. Firstly,



[1995], Jarrow, Lando, and Turnbull [1997], Lando [1995], Madan and Unal
[2000], Duffee [1999], and Duffie and Singleton [1999]. This approach pro-
vides us with a model that is close to the data, and it is always possible to
fit some version of the model. However, the fitted model may not perform
well on “out of sample” analysis.

A middle-way approach has been suggested in the literature. Cathcart
and El-Jahel [1999] propose a framework situated between structural and
reduced-form approaches, within which a default event occurs in an ex-
pected or unexpected manner when the value of a signalling process reaches
a certain lower barrier or at the first jump time of a hazard-rate process.
Although the model can generate strictly positive credit spreads for small
maturities, the simple assumption that the firm goes bankrupt immediately
when a jump in the asset value occurs for the first time needs empirical
justification. Zhou [1997] proposes a numerical model for pricing discount
bond in much the same spirit as in Longstaff and Schwartz [1995], when
the underlying asset value follows a jump diffusion process which is similar
to the stock price process in Merton [1976]. Coupon bonds are not consid-
ered in the paper. Instead of employing a jump process as a determinant of
default mechanism, Duffie and Lando [1999] study the implications of imper-
fect accounting information for modelling corporate bonds. They suppose
that bond investors cannot directly observe the issuer’s assets, and receive
only periodic and imperfect accounting reports. As a consequence of the
uncertainty in asset values, bounding short spreads away from zero can be
obtained in their model.

There is a basic incompatibility in default mechanisms between the Duffie



simplicity, we assume that a default event® can only happen on payment
dates. The firm goes into bankruptcy ezpectedly when the asset level hits
a certain lower barrier through a continuous diffusion crossing, or unezpect-
edly when its value drops precipitously below the barrier.* Consistent with
Geske [1977], Leland and Toft [1996], and Leland [1994], [1998], the default
boundary is determined endogenously by requiring the value of equity to be
at least the amount of the coupon just paid, in order to avoid bankruptcy.
As investors in corporate bonds are subject to state and local taxes, we
also comsider the effects of tax premium in an economy where jump risk is
correlated to a market portfolio.

The objectives of this paper are as follows. We show several significant
implications of the jump process for the level and the term structure of
credit spreads. For example, it is interesting to note that while the pres-
ence of jumps in asset values eliminates the undesirable qualitative feature
of credit spreads decreasing to zero at the short end, negative jumps can
have significant and persistent effects on spread levels. The jump effects
on spread levels are conspicuous for short maturities. For long maturities,
credit spreads are indistinguishable from those generated by a pure diffusion
model. However, when downward jumps are of higher volatility while the
total variance of the firm’s asset value remains the same, the effects on credit
spreads become more persistent. Other important factors include taxes and

dividends. As suggested by Elton, Gruber, Agrawal, and Mann [2000], we

3The method is flexible enough to be modified and allow bankruptcy events to happen

in any between-payment dates.
“Hence one would expect to see a marked increase in volatility of bond returns and a

sudden drop in equity prices.



2 Theoretical Models

2.1 A Continuous Time Model with Non-Systematic Jump
Risk

Zhouw’s model [1997] is in much the same spirit as that of Longstaff and
Schwartz [1995]. The underlying process of the firm’s asset value is mod-
elled as a jump-diffusion process where the jump risk is assumed to be
diversifiable. Such an approach is analogous to the modelling of the stock
price process in Merton [1976].

Let V; be the total market value of the assets of the firm at time . Under
an equivalent martingale measure, Zhou [1997] assumes that the dynamics of

the firm’s asset value process V; follows the following jump-diffusion process:
dVy Vi = (r — Aym) dt + o dZy + m dJ, (1)
where
r is the contant spot rate of interest based on continuous componding;
o is the instantanous volatility conditional on no jumps;
Zy is a standard Brownian motion under the risk-neutral measure;

m is the random percentage change in firm value if a Poisson jump oc-
curs: 14+m is log-normally distributed, log(1+m) ~ N[yn—30%,,0%], E(m) =
m = €T —1; A\ is the intensity of the Poisson jump process J : P[dJ =

1] = Ay dt.

The process most often resembles geometric Brownian motion, but on

average Ay times per year the price jumps discretely by a random amount.



firm’s asset value process are discussed in the paper.

2.2 A Continuous Time Model with General Jump Risk

The jump diffusion processes as described by Merton [1976] and Zhou [1997]
are perhaps the simplest type of models to include jumps in asset prices. The
crucial assumption is that the jump risk is diversifiable and non-systemaitic.
This assumption is questionable, as asset prices appear to be correlated with
market movements.

In an empirical study of an economy where stock prices are assumed
to follow a jump diffusion process, Jarrow and Rosenfeld [1984] investigate
the satisfaction of assuming jumps to be diversifiable. Evidence has been
found to show that the jump component of stock’s returns has a strong
correlation with the market portfolio, that is, market portfolio appears to
contain a jump component. A similar conclusion is drawn by Kim, Oh and
Brooks [1994], who study 20 component stocks of the Major Market Index.
They find that Poisson-type jumps observed from both the index and its
component stocks constitute non-diversifiable risk. This implies that the
standard assumption in option pricing as in Merton [1976] that those jumps
are not priced may be invalid.

Relationships of common risk factors between the returns on stocks and
bonds have been investigated in Fama and French [1993], and Elton, Gru-
ber, Agrawal, and Mann [2000]. Based on the Fama-French three-factor
model [1993], Elton, Gruber, Agrawal, and Mann [2000] find that expected
default accounts for a surprisingly small fraction of the premium in credit

spreads of corporate bonds. They conclude that while state taxes explain a
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Al: Frictionless Markets.

A2: Optimally invested wealth W; follows a jump diffusion,
AWy /Wy = (ftey — Mo — C/W) dt + 0 dB, + kv da,
where ., is constant and k,, is the percentage change in wealth when
the Poisson jump happens. 1+ k,, is log-normally distributed, log(1+
kw) ~ Nlyw — %azw,aiw],E(kw) = ky = €™ — 1, and Cov[log(l +
k),log(l + ky)] = opw-
A3: The representative consumer has time-separable power utility.
(o0)
E / et (Cy) dt, U(C) = (CF —1)/(1 - R).
T
Assuming that jump risk is systematic, all asset prices and wealth jump
simultaneously, possibly by different amounts. Analogous to Bates’ model

[1991] of systematic jump risk, we assume that under a risk-neutral meausre

the jump diffusion model (2) takes the following form

dVi/Vs = (r — Xk — §) dt + o dB; + k* dg*, (3)
where

o and ¢ are as before,
X* = XE[l + AJy/Jw) = Aexp[—Ryy + $R(1 + R)o? ],
¢* is a Poisson counter with intensity \*,

k* is the random percentage change in firm value if a Poisson jump oc-

curs: 1+k* is log-normally distributed, log(1+k*) ~ N[y*—102, 02], E(k*) =

E =€’ -1, and ¥* =77 — Royy-

13



of the firm under the risk neutral measure is of the form:

NJ
1 —
Vi=Voexp ([r — 50% = NF =}t + 0B+ Y log(1+K))), (4
J=0

where N J is the total number of Poisson jumps over time ¢, and the Poisson
jump sizes (14-k;)’s are independent and identically log-normally distributed
random variables with parameters N[y* — 102, 02]. For computational con-

venience, we turn V; into a logarithmic scale and define the drift of the

logarithm of the asset value in equation (4) by
1 .
a=r—6—502—)\*k ;

The process (3) can be rewritten in the following form.

NJ
X; = log(Vi/Vo) = ot + 0By + » _ log(1 + k).
j=0

To approximate X;, we adopt a method used by Amin [1993] to discretize
the process. The discrete time formulation is based on Cox, Ross and Ru-
binstien [1976] as the starting point. Multivariate jumps are superimposed
on the model to obtain the model with a limiting jump diffusion process.

Let T be the maturity of a coupon bond. For a fixed positive integer
n, we divide the interval [0, 7] into n subintervals of width h, = T'/n. Let
i =1,...,n. At each date ih,, the value of the approximate process X;
is shifted upward by ah, relative to the grid at time (z — 1)h,. Therefore,
the asset value at time zh, and in state j relative to date 0 is given by
V; = Vpexp(aihy, + jov/hy). Any point at time (i — 1)h, can move to
any other points at time ¢h,. As discussed in Amin [1993], there are two

types of movements as to the dynamics of changes in the asset values over
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time framework.”
Let B;(z) be the value of the risky bond at time %k, and in state s. Then
for any state k, the bond price between two consecutive payment dates is

given by the iterative formula
N . 1., . .
Bi(6) = e~ [ \*ho By [Bk+y(z+1)]+§(1—)\ ha) (Bk~1(z+1)+Bk+1(z+1)) .

The first term on the right hand side represents a fraction of the bond price
as a consequence of non-local changes in the asset prices, whereas the second
term is the expected value of two bond prices resulted from local movements
of the asset value. Here we assume that the probability of a jump in the
discrete model at any time is equal to A*h,,. We also assume that h, is so
small that multiple jumps cannot occur within the same period. At each
coupon date ¢t = thy,, the bond prices immediately before coupon payment
is given by:

By(i) = Min (Vt, coupon + Bk(i+)>.

We assume Geske’s condition [1977] that coupon payments are financed
by issues of new equity. The firm goes bankrupt only when its stock value
immediately after a coupon date is less than the total coupon payment.
Black and Cox [1976] argue that this situation will happen whenever the
value of the equity, after payment is made, is less than the value of the

payment. The argument is intuitive, in that the firm will find no takers

" Amin [1993] shows that the discrete time process converges weakly to the continuous
time process. This guarantees that the prices of European options computed from the dis-
crete time model will converge to their corresponding continuous time values under fairly
mild regularity conditions. For example the option payoff must be uniformly integrable

in h,.
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[Please Insert Figure 1 Here.]
[Please Insert Figure 2 Here.]

Figure 1 shows the corresponding term structures of credit spreads for
three jump diffusion cases and a mis-specified pure diffusion case. In the
jump diffusion cases, the total variances under the risk-neutral measure are
kept the same, and the contributions of jump components to total variance
are (i) 55% and (ii) 9% respectively.’ We assume that the mis-specified
pure diffusion process has a constant variance equal to the total variance
of the jump diffusion case. We observe that while the term structures are
similar in shape for both jump-diffusion and pure diffusion cases, the gap
between credit spreads in the two cases narrows with maturities. In the
presence of jumps, the possibility of sudden default only raises the levels of
credit spread for short maturities.!? This effect becomes more evident for
bonds with shorter maturities when jumps occur more frequently and have
higher variability. As maturity increases, the differences in credit spreads
dwindle, implying that the effect of a jump becomes less prominent for bonds
with long maturities. Similar results are shown in Figure 2, where the term
structure of credit spreads for a different face value K = 70 is plotted. The
rationale behind these results is given as follows.

Recall that the total variance per unit time remains constant in all cases.

When the maturity is small, the diffusion volatility in the pure diffusion

9The total variance is o2 + \* (cr;‘; + (- %o‘,%)2>, where the first and second terms

are due to the diffusion and jump components respectively.
10 Analytically, we can prove that there is a positive instantaneous default hazard at

time 0, which is equal to A\* times probability of default in case of a jump.
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resemblance in shape to the corresponding risk-neutral ones shows that the
empirical property of fat-tailness in asset return can also be observed in the
real world.

Note that our comparison analysis is based on the assumption of con-
stant total variance, measured in the risk-neutral world. There is a point
of paramount importance in our credit-spread analysis. In case of non-
systematic jumps, the total variances of the jump-diffusion process in the
real and risk-neutral world are the same. This implies that the theoretical
levels of credit spread due to default risk can be estimated by the observable
parameters in the real world. However, if the jump risk is systematic, esti-
mation of spread levels becomes subtle. This is particularly the case if the
jumps in the asset value process and market portfolio are negative, that is
v, Yw < 0. Under this assumption, it is trivial to see that the total variance
measured in the risk-neutral world is higher than the one observed in the real
world, because of 7* < v < 0 and A* > A. Jumps in the risk-neutral world
tend to be more influential as they become more negative. This is also true
in times of economic recession where investors become more averse to risk.
The implication is that in presence of systematic jumps the theoretical levels
of spread cannot be computed by using the observable parameters without
making specific assumptions about risk aversion and market portfolio. In
fact, without knowledge of the risk aversion and market portfolio the jumps
would not be priced correctly, and so there is a tendency to underestimate
the spread levels.

By comparing with empirical properties of credit spread, it is evident

that the spread levels generated in Figures 1 and 2 do not quite resemble
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Since state tax is deductible from income for the purpose of federal tax,
state tax is reduced by the federal tax rate. Hence, the effective tax rate is
of the form:

="l =7g);

where 75 is a state tax, and 7, is the federal tax rate. We assume 7 = 4.875%
by following the arguments in Elton, Gruber, Agrawal, and Mann [2000] that
we choose 7, = 7.5% as the mid-point of maximum marginal state taxes,
and 7, = 35% as the maximum federal tax rate. It is easy to modify the
model in the last section to fit with this tax factor. As in the last section,
we assume that default can only happen on coupon payment dates. There
are two cases where bond price will be affected. On each coupon payment
date, if default does not happen, then the actual bond value is the original
bond value less the total amount of tax on the interest payment. If the bond
defaults, then the bond price becomes the residual asset value plus the tax
refund due to a capital loss. We take the after-tax coupon rate to be 5%.

[Please Insert Figure 4 Here.]

[Please Insert Figure 5 Here.]

The tax effects on spread levels are shown in Figure 4 and 5. Figure 5
shows that the term structures of credit spread of two risky bonds'? with
different face values and their spread component generated by pure tax ef-
fects. Note that the pure tax level is the same in both cases.!® As expected,

tax effects contribute to considerable portion of total spread levels. The

12We assume that they are issued by two identical firms.
13Gpread levels are computed when the firm’s asset value is large relative to the amount

of debt.
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stock price immediately after a coupon date is at least worth the coupon
payment. Bankruptcy boundary is determined at the asset level where stock
price is equal to the coupon payment. In case such a default is imminent,
total debt value increases slightly because of the refund of capital loss in
the event of bankruptcy. As a consequence, the rise in effective tax rate
raises the bankruptcy barrier. Furthermore, as the firm’s value drops to a
low level, tax shelter for coupon payments will not be fully realized.!®> The
result suggests that a decrease in the federal tax rate may precipitate earlier
default of low-grade bonds.

Finally, the effect of dividends is shown in Figure 7, where we plot the
term structures of credit spread under a jump diffusion process for different
values of dividend payout rate § = 7% and 5%. It is evident that a small
change in dividend rates can have significant and persistent effects on spread
levels.

[Please Insert Figure 6 Here.]

[Please Insert Figure 7 Here.]

6 Conclusion

This paper has compared the structural framework of bond pricing models
under a jump diffusion process with those under a pure diffusion process.

We have developed a tractable, discrete time model for the valuation of

®Under U.S. tax codes, to benefit fully with tax shelter the firm must have earnings
before interest and taxes that is not less than total coupon payments. When default is
imminent, it is quite possible that profits will be less than the coupon payout and tax

savings will not be fully realized. See Leland [1994].
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spreads become more persistent.

Other important factors include taxes and dividends. State taxes have
been ignored in almost all modelling of defaultable bonds. As a further
contribution, this paper has introduced the important factor of tax into
the model. As motivated by Elton, Gruber, Agrawal, and Mann [2000], we
have shown that taxes do have significant and persistent effects for bonds
with long maturities. In fact, credit spread increases with effective tax rate
on coupon payments. Tax effects appear to be the second most important
factor for spread levels, as documented in Elton, Gruber, Agrawal, and
Mann [2000]. We have also found that while downward jumps in firm value
increase the probability of default, the bankruptcy boundary does not seem
to be affected.

We have also investigated the effects of state and federal taxes on default
mechanism. Assuming the distribution of state taxes remains unchanged,
we have shown that a decrease in the federal tax rate may precipitate ear-
lier default of low-grade bonds. Finally, we have found that dividend payout
rates can have significant and persistent effects on spread levels. With de-
ployment of the additional factors of taxes and dividends, the jump-diffusion
model has been shown to be more flexible than the pure diffusion ones in
fitting empirical spreads. It remains to be seen whether it is sufficiently

flexible and sufficiently easy to fit for it to be useful in empirical work.
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Figure 2: Term structures of credit spreads under a jump diffusion
process. This figure shows the term structures of credit spreads of a 5% coupon
bond when the underlying process follows a jump diffusion process with the same
total variance but different jump components. (i) A* = 0.3: (thick solid line); (ii)
A* = 0.05: (thin solid line). The corresponding term structure (dashed line) under
a pure diffusion process with a constant variance equal to the total variance of the
jump diffusion case is shown for comparison. Parameter values: o = 0.08, § = 0.07,
o =02, c=0.05Vp =100, K =70, o5 = 0.25, v* = —0.1, and & = —9.5%,

except stated otherwise. Total variance per unit time remains constant in all cases.
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Figure 4: Term structure of credit spread under a jump diffusion
process for face values K =50 with tax effects. This figure shows the
term structure of credit spreads (solid line) of a 5% (after-taz rate) coupon bond
when the underlying process follows a jump diffusion process. The level of credit
spread without taking tax effects into account is shown in dashed line. Parameter
values: 79 = 0.08, § = 0.07, ¢ = 0.2, after-tax ¢ = 0.05, Vp = 100, \* = 0.05,
or = 0.25, v* = —0.1, and ¥ = —9.5%. Total variance per unit time remains

constant in all cases.
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Figure 6: Default boundaries under a jump diffusion process for
different values of 7 = 4.875% and 5.25%. This figure shows the default
boundaries of a 5-year 5% (after-taz rate) coupon bonds with different values of
7:(i) 7 = 4.875% (solid line), (ii) 7 = 5.25% (dashed line), when the underlying
process follows a jump diffusion process. Parameter values: rq = 0.08, § = 0.07,
o = 0.2, after-tax rate ¢ = 0.05, 7 = 4.875%, Vp, = 100, K = 70, A\* = 0.05,
o = 0.25.
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