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Abstract

Motivated by the empirical observation that there exists some de-
gree of predictability in asset returns, this paper investigates the theo-
retical constraints on the time variation in the risk premia of the market
portfolio in a continuous-time, finite horizon pure exchange economy.
By characterizing the equilibrium conditions as nonlinear partial dif-
ferential equations, closed-form solutions can be obtained. It is shown
that in a stationary economy, the presence of intermediate consump-
tion can have a drastic effect on the possible kinds of time-varying
behaviour of the risk premia.
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1 Introduction

The classical Gordon growth model (Gordon [11]) is one of the simplest the-
oretical models in finance. Nevertheless, it provides some basic economic
intuitions for the equilibrium relations between prices, returns and divi-
dends. First, the stock prices are high when dividends are expected to grow
rapidly or when dividends are discounted at a low rate. Furthermore, the
dividend-price ratio has a strong relationship with the prospective stock re-
turn: for a given growth rate, the higher the ratio, the higher the expected

total return.

The sizable empirical literature on market returns suggest that they
exhibit certain degree of predictability for long horizons (see, for example,
Poterba and Summers [18], Cecchetti et al. [4], Kandel and Stambaugh [17],
and Fama and French [9, 10]). However, the relaxation of the constancy
of the discount rate and/or the dividend-price ratio very often introduces

nonlinearity in the model and therefore becomes quite difficult to deal with.

One of the most contentious phenomena in the equity markets is the
mean reversion in equity prices or returns. Since expected returns are not
observable, we cannot be sure that whether the mean reversion is due to
market inefficiency, or it should be attributed to the equilibrium asset pricing
model. Nonetheless, the work of Cecchetti et al. [4] indicates that mean
reversion could be consistent with equilibrium. Other researchers have also
tried to explain mean reversion by applying habit formation models, or more

general utility functions such as the Epstein-Zin utility.

In the continuous-time setting, many researchers have attempted to deal
with this equilibrium problem by employing different approaches and as-
sumptions. For example, the price of risk can be modelled explicitly as
following a mean-reverting stochastic process (see Black [2]). However, the
way that the equilibrium behaviour is modelled ezogenously is not quite
satisfactory. A more systematic approach to analyze the problem might
be to first characterize the equilibrium conditions (mostly as partial dif-
ferential equations) that the dynamics of the market portfolio must satisfy

in equilibrium, and then look for analytic solutions to these PDEs which



are consistent with a rational economy. Along this line of research, some
progress has been made through the work of Bick [1], He and Leland [13],
Hodges and Carverhill [14], and Hodges and Selby [15]. One of the contri-
butions is that by taking advantage of the modern asset pricing theory, the
economy could now be better understood in a systematic way. Yet, since
these papers assume the representative agent maximizes her expected utility
only over the terminal wealth, there is much work to be done.

The main purpose of this paper is to investigate the theoretical con-
straints on the time variation in the risk premia of the market portfolio.
Specifically speaking, the paper follows the above stream of research and
extends the analysis one step further to the more complicated case where
the representative agent demands intertemporal consumption as well as her
terminal wealth at horizon date. The role of dividends comes to play quite
naturally within the single representative agent framework. The paper
demonstrates how we can construct a model of an exchange economy in
which security prices display mean reversion (the representative agent has
diminishing relative risk aversion). !

The remainder of this paper is organized as follows. Section 2 describes
the conventional setting of a single representative agent economy and out-
lines respectively the formulation for both the case without intermediate
consumption and with it. Section 3 provides the characterization of equi-
librium asset price processes for both cases. The main part of this paper,
section 4, then derives a set of closed form solutions for a subclass time-
homogeneous diffusion processes in a Black-Scholes economy. Numerical
examples are given in Section 5 to demonstrate the behaviour of both price

of risk and dividend yield. Section 6 concludes the article.

2 The formulation

We consider a continuous time, finite horizon, pure exchange economy of Lu-

cas [16]. The financial markets are complete and we assume that the econ-

!As the remark made by Campbell et al. [3], there is increasing interest in the idea
that risk aversion may vary over time with the state of the economy. They also address
the prospect that the time-varying risk aversion might be able to explain the large body
of evidence that excess returns on stocks and other risky assets are predictable.



omy can be described by a single representative agent. The agent trades and
acts as an expected utility maximizer and in equilibrium will optimally hold
the market portfolio (representing the aggregate wealth of the whole econ-
omy) through time. There are two long-lived financial securities available
for trading: a risky asset (the stock), and a locally riskless asset (the bond).
At time ¢, the trading price of the stock is denoted by S; and the holder of
the stock is entitled to its dividends, if the stock is dividend-paying. The
bond price is denoted by R:, and increases at the instantaneous riskless rate
of interest 7;. In equilibrium, there is one share of the stock outstanding
and the bond is in zero net supply.

In the rest of this section, we shall describe respectively two distinct
economic settings. First, an economy where the representative agent is
concerned with her terminal wealth only. Second, an economy where the
representative agent considers not only the terminal wealth level but also
intermediate consumption. We will refer from time to time the former case
as the wealth-only economy, and the later one as the consumption economy.
Finally, we discuss two important properties arising from the first-order con-
ditions and emphasize the significance of the path-independence result which

leads us to the fundamental PDEs as the necessary equilibrium conditions.

2.1 Without intermediate consumption

Assume that, in a pure exchange economy with no production and with
no intertemporal consumption, there exists one risky asset (the stock) and
one risklesss asset (the bond). The stock (the market portfolio) pays no
dividends and its price S follows the SDE:

dsS;

< = (S, t)dt + o(St, t)dz, (1)
i

where z is the standard Brownian motion under the objective probability
measure P and the drift x and the diffusion ¢ are deterministic functions of
S and t. Define the price of risk as the instantaneous reward per unit of risk

and denote by
,U(Sh t) — T(Sta t)

a(Sht) = O'(St,t) ) (2)




where r is the instantaneous riskless interest rate and is assumed to be a

deterministic function of S; and ¢ as well. Thus, we can then rewrite (1) as

ds,
- =[r(8t) +0(5,,1) - oSy, D) dt + o(Sy, t)d. (3)
i
Moreover, the bond price R accumulates at the riskless rate 7r:
dR,
F: = Ttdt. (4:)

Assume that the agent is endowed with a positive initial amount but
receives no intermediate income. In addition, consumption only occurs at
the agent’s investment horizon date 7. She then aims to optimally allocate
her wealth in the stock and the bond in order to maximize her expected
utility over the time-T" wealth, Wo:

max  E[U(Wr)], (5)

where U is a strictly increasing, state-independent, and continuously differ-
entiable von Neumann-Morgenstern utility function.
Denote by @ the dollar amount invested in the stock. Then the wealth

function W follows the process:
dW; = [Wt'r‘t + (I’t(/.tt = T't)] dt + ®401dz, (6)

with W = w > 0 (positive initial wealth) and W; > 0 (nonnegative wealth
constraint), for 0 < ¢t < T'.

Following Harrison and Kreps [12], it is well known that in any arbitrage-
free pricing system there exists a risk-neutral probability measure under
which the drift of the stock returns is the riskless rate 7. Hence we can let Q
denote the risk-neutral probability measure and M = dQ/dP the change of
measure from P to Q (i.e. the Radon-Nykodym derivative). The state-price
density (SPD) can then be defined as

¢
&=e Joreds . M;.

Since in equilibrium the representative agent will hold the market portfolio,
the agent’s marginal utility can be related to the SPD throught the first

order condition

oU(St)
0ST
where A is the Lagrange multiplier.

=\-¢r, (7)



2.2 With intermediate consumption

If, alternatively, we allow the presence of intermediate consumption and
assume the stock pays dividends, then the trading price of the stock, S, can
be formulated as:

dSt = [1(St,t)St — D(Sy,t)] dt + o (S, t) St dzy, (8)

where z is the standard Brownian motion under the P-measure and D is
the cash dividend paid by the stock and is assumed to be a deterministic

function of S and ¢. Similarly, (8) can be rewritten as
dS; = [(r(Ss,1) + 0(S4,1) - (S,2))S; — D(Sp, )] dt + (St t) Sydzs,  (9)

where 7, 0, and « are as defined before.

The agent’s maximization problem is now formulated as the following:

max B [ /OTe_”tUl(Ct)dt+U2(WT) , (10)

where p is the rate of time preference and U; and U are strictly increas-
ing, time additive, and state-independent von Neumann-Morgenstern utility
functions and are continuously differentiable where applicable.

Again let ®; denote the dollar amount invested in the stock at the be-
ginning of time t-period and C; the amount being consumed during time
t-period. Thus the investor’s indirect utility (or value function) can be de-
fined as:

T
T0¥,Sut) = max B[ [ e HOIU G+ TP,
) t

where J(Wr, S, T) = Us(Wr) is the boundary condition. The wealth pro-

cess follows:
dW; = [Wtrt + By(ue — 1) — (%) Ct] dt + ®;04dz, (12)
where Wy = w > 0 (positive initial wealth) and W; > 0 (nonnegative wealth
constraint), for 0 <t < T'.
Recall that in equilibrium the representative agent’s optimal strategy is

to hold the market portfolio and consume all the dividends received from



the stock investment. Hence, the first order condition of optimality for the

Hamilton-Jacobi-Bellman (HJB) equation yields:

_0U1(Cy)  8J(St, St,t)
pt — 9 9 = :
¢ TaC 83; A& (43}
where ) is the Lagrange multiplier; C; = Dy for t < T and Cr = St for
t=T.

2.3 Monotonicity property and the path independence result

By inspection of the first-order conditions (7) and (13), two important prop-
erties emerge. First, by the assumption of increasing utility functions, wealth
should be monotonically and inversely related to the marginal utility (or the
SPD). This property applies to both cases as it can be seen that from (7),
Wr = V(X &r), where V is the inverse function of the marginal utility U’,
and from (13), W; = I(\-&;), where I is the inverse function of the marginal
indirect utility J . Thus a portfolio strategy which creates state-dependent
wealth will be called an efficient strategy only if the monotonicity property
is satisfied (see Dybvig (7, 8]).

In the context of equilibrium, since the stock price S; represents the
agent’s wealth and the monotonicity property should apply, thus at each
point of time ¢ € [0, T, the process of the SPD £; must be path-independent,
regardless the stock price history (see Cox and Leland [5, 6]). It is this
result that provides us a convenient way to analyze the equilibrium asset

price dynamics in the economy. 2

3 Equilibrium conditions of the asset prices dy-
namics

In this section, we shall provide the characterization of equilibrium price
processes for both the wealth-only economy and the consumption economy.
In each case, we shall first derive a general partial differential equation for
the intertemporal relative risk aversion f with respect to S. In order for the

problem to be easier to solve, we then assume the constancy of 7 and o and

%See for example, Hodges and Carverhill [14] and He and Leland [13]. These authors
also characterize the equilibrium price processes by exploiting this property.



translate the PDE to an equivalent one in terms of the price of risk o with
respect to a new transformed variable z, where

2
wt=lnS,g-— (’I‘—%) t.

3.1 Without intermediate consumption

Theorem 1 (Equilibrium conditions: without consumption) Assume
in the economy, there ezists one non-dividend-paying risky asset (the stock)
and one riskless asset (the bond). The single representative agent allocates
her wealth optimally among these two assets continuously according to her
objective function (5) subject to the wealth process (6) and consumes her
terminal wealth at time T'. The necessary condition for the asset price dy-
namics (1) to be an equilibrium process when r, p and o are deterministic

functions of S and t is that the coefficients must satisfy the following PDE:
Lf+ fi+7sS(f —1) +00sS(Sfs+ f>— f) =0, (14)

where

_ M(Sht) _ T(Stat)
f(Stat) - (O'(St,t))z ’

1
Lf = 50°S%fss+uSfs,

and the boundary condition is

UII (ST)
U'(ST)
Proof: The main idea is to exploit the path-independence property on the

f(S7,T) = =St

state-price density. Recall that the process of £ is defined as

K ¢ Hs — Ts 1 f* Hs —Ts ?
=exp| — 'r'ds—/ (—)dz——/ (——) ds | .
& Y /) s A o sT 35 o p

Now, define a new variable Z(St,t) = Iné(S:,t). We then apply Itd's
Lemma to derive dZ and equate it with d(In&). Collecting dt and dz terms

respectively yields

I 9 _ 1(p=r\>_ 1 5.0
Zt+uSZS+2JSZSS = T 2( - =-r 20’f,
082 = -— (M_T) =—0of.
o



Note that for notational simplicity, we have suppressed the time index so
that it will not be confused with the partial derivatives.

From the second equation, we can derive Zg; = —%, Zs = —% and
Zgs = —% + S‘é Substitute Zg and Zgg into the first equation and use the
fact that u = r + o2 f to obtain

1 1 1
Zt=—r+rf+§02f2+5025f5—502f.

Differentiate the above equation with respect to S and equate it with Zg;

to obtain

Zys = Ts(f—l)+(T+02f)fs+%JQsts+aas(st+f2—f) = Zgt = —%-

(14) then immediately follows. O

Theorem 1 states the general equilibrium conditions which the intertem-
poral relative Tisk aversion f must satisfy. We now narrow our attention to
some special cases. The first case is a Black-Scholes economy where both
the interest rate r and the volatility of the stock return o are constant.

Therefore, by letting os = 0 and rs = 0, (14) can be simplified as
Lf+fi=0, (15)

The stronge assumption of constancy of r and o enables us to obtain
a nice result known as the Burgers’ equation. The finance application of
this equation seems to first appear in Hodges and Carverhill [14] and in an
independent work of He and Leland [14]. For completeness, we recite the

result in the following theorem.

Theorem 2 (Burgers’ equation) Assume constant 7 and o and define
the transformed state variable = as vy = InS; — (r — 02/2)t. Then the price

of risk o in the wealth-only economy must evolve over time according to the

PDE:

1
oy = 50’201,51 + ocaoy. (16)



Proof: By definition, we have p—7 = 0?f =oaandz =InS— (’r — "72) t.

Thus, we can write

_ _ :1:+('r—5'-g)t
a(S,t) =a(z,t)=0-f|e 254
and its partial derivatives
a; = 0oSfs,
ogz = o(fs+5fss)S
o2
op = ofs (T‘-——)S+O’ft

Rearranging the above equations to obtain fs, fss and f; and substituting
them into (15) yields
1
ot + oaog + 50'201535 =0.
This immediately gives (16). O

Another interesting case is to assume that f is time-invariant in the sense

that f; = 0. Then we have the following proposition:

Proposition 1 For the case of fi = 0, the equilibrium condition for the

economy stated in Theorem 1 is that the following equation must be satisfied:
O (Shs+ £ = P+ (- 1] =0, an)
Or equivalently, there exists a constant K such that
o (Sfs+ > —f)+2r(f—1) =K.

Proof: By assumption, y = 7 + ¢2f and f; = 0. After some simple
manipulation, (17) can then be easily derived from (14):

0 = ﬁf+ft+7”55(f—1)+0035(5fs+f2 )
= +Z 0252fss+(r+02f)3fs+5 SIr(f = 1] —rSfs
+—5(5fs+f2—f)—
= 152 (sps+ - f)+56[( _1)+ Ls(sgs+2- o2
- o 93 2 5 89S

= 55%[ (Sfs+ 12— f)+2r(f ~1)] .0



Remark 1 In the same setting as ours, except assuming constant interest
rate, He and Leland ([13], pp. 603-604) provide a similar necessary condi-
tion for the time-invariant case, namely o%(f? + Sfs — f) = K. Therefore,
it must be pointed out that their condition strictly only holds when r = 0.

Their result can be justified if we define S as the relative asset price
(that is, the risky asset price normalised by the bond price). The drift term
p in PDE (14) should then be interpreted as the risk premium, provided
that the risk premium is a deterministic function of the relative price and
time. This is in fact the setup in Bick [1].

Without further assumptions, the PDE (14) is difficult to solve in gen-
eral. To date, several functional form solutions to the time-invariant case
ft = 0 (with constant ¢ and r = 0) can be found as examples in Bick
[1] and in He and Leland [13]. For a more general definition on time in-
dependence of the diffusion processes, Hodges and Selby [15] carried out a
time-homogeneous analysis for the case with constant volatility and constant
interest rate. They seek to find steady-state solutions to the Burgers’ equa-
tion (16) by constraining the risk premium to vary depending on the level of
the market in such a way that the functional form does not depend on time.
Interestingly, they conclude there are only two possible viable solutions and
one non-viable one for the steady state: the price of risk can be constant
or increasing in aggregate wealth, but the only steady state solution with
decreasing price of risk admits arbitrage (and is not viable).

The finding of an increasing price of risk is of course disappointing. Nev-
ertheless, it is conceivable that the presence of intermediate consumption
might be sufficient to modify this behaviour. As we shall illustrate in the
next section, it is indeed the case: with large enough intermediate consump-
tion, there exists a decreasing price of risk in the steady state which stems

from decreasing relative risk aversion of the representative agent.

3.2 With intermediate consumption

Now we are to characterize the equilibrium conditions for the economy with
intermediate consumption. For notational convenience, we shall define §

as the dividend yield by 6(St,t) = D(S;,t)/S;. The next two theorems

10



generalize on equations (14) and (16) to include dividends. The approach is

similar to that used before.

Theorem 3 (Equilibrium conditions: with consumption) Assume in
the economy, there exists one dividend-paying stock and one riskless bond.
The representative agent allocates her wealth optimally among the two assets
continuously according to her objective function (10) subject to the wealth
process (12) and consumes the dividends paid by the stock investment. The
necessary condition for the asset price dynamics (8) to be an equilibrium
process when v, u, § and o are deterministic functions of S and t is that the
coefficients must satisfy the following PDE:

Lf+ fi+08sSf+rsS(f—1)+00sS(Sfs+ f2—f)=0, (18)

where

_ p(Sut) ~ r(Sut)
f(St:t) - (O’(St,t))Q )

1
Lf = §U2S2fSS + (u —6)Sfs,

and the boundary condition

U, (St)
Uy(St)

f(STaT) =-=S

Proof: This is simply a rederivation of Theorem 1 with the presence of in-
termediate consumption (dividends). Again define a new variable Z (S, t) =
In&(St,t). We apply Ité's Lemma to derive dZ(S;,t) and equate it with
d(In¢). Collecting dt and dz terms respectively yields

1 5.0 o 1fp=r\? 1,
Zt-l-(uS D)Zs+2GSZSS = T 2( p ) = —r 20’f,
08Zs = —("_T)z—af.
g

Following the same technique in the proof of Theorem 1 and apply § = %,
(18) can then be easily obtained. O

11



Theorem 4 Assumer and o are constant and define the transformed state
variable z as ; = InS; — (r — 02/2)t. Then the price of risk a in the

consumption economy must evolve over time according to the PDE:

1
o = Eazam + oaa; — day + 0z (19)

Proof: Apply rs =0 and og = 0 to (18) and rearrange to obtain
1
ft+50252fss+u3f5—55f5+555f =0. (20)
By definition, of = ¢ and z =In S — (r — %02) t. Thus, (19) immediately
follows by substituting ¢S fs = ay, dsS = d,; and

1 1 1
ft+ Eazszfss + uSfs = - (at + ooy + §a2am>

into (20). O

4 The time-homogeneous case in a Black-Scholes
economy

In this section, we study a particularly important case of the time homoge-
neous economy. We seek to find the steady-state solutions to the PDE (19)
in order to see how the price of risk and the dividend (consumption) vary
depending on the market level in such a way that the functional forms are
independent of time.

We start with two functions, the price of risk a and the dividend yield
d, which together satisfy the PDE (19). By homogeneity in time, we mean

that o and J can be specified as the following forms
a(z,7) = y(u), (21)
0(z,7) = g(u), whereu=z+ 0, (22)

for some functions y and g and constant 6.

Performing the partial differentiations to obtain oy = —0y’, ay = v,
Qzz =Y , and 0; = y and then substituting them together with (21) and
(22) into (19), the PDE will then be reduced to an ODE:

1 1 1 n ¥ !
—0y +oyy + 502y —gy +gy=0. (23)

12



(23) is not easy to solve in general as it involves two functions y and g
but only one state variable z (i.e. the economy is underspecified). Of course
we can view (23) as an ODE in y given a g function, but then the question
will be how we should choose g. Since g could be a function of a rather
arbitrary form, a more plausible question might be to ask whether there are
cases which permit closed form solutions.

One simple way to deal with the problem is to assume that the joint
behaviour of y and g (through —gy + ¢’y terms) will only change the coef-

ficients of the y' and yyl terms. In other words, we assume
-9y +9y=—pPoy +pioyy (24)

for some constants py and p;. This assumption conveniently leads (23) to a

simplified form:
I ! 1 n
—(0+po)y +o(l+p)yy + 50" =0. (25)

Note that the presence of the diffusion coefficient o in (24) is necessary in
order for the equation (23) to be independent of the time metric. 3

Consequently, we can rewrite (24) as

! lJ 1

g y y
= = —po—~+p10—. 26
<y> y? Y (26)

Integrating (26) once gives

g =po+pioylny + pay, (27)

for some constants pg, p1 and ps.

We are aware that (27) is a rather arbitrary subclass of the infinitely
many possible dividend yield functions. Nevertheless, this function possesses
some nice properties. In spite of being specified under strong assumptions,
it offers good analytical tractability and seems rich enough to allow various
interesting types of behaviour to arise in the economy. It will enable us to
gain some insights into the possible interplay between the behaviour of the

price of risk and consumption in a stationary economy.

3See Hodges and Carverhill [14] for more details.

13



Returning to the problem of solving y, we first integrate (25) once to
obtain
1 2 ! g ]
30y = 0+ po)y — 5(1 +p1)y” + constant (28)
and then discuss the solutions case by case. Since some of the derivations are
rather lengthy and complex, we shall provide the functional form solution
immediately for each case. Readers who would like to have a quick overview
may then skip the detailed derivations and refer to Figure 1 for the graphical

illustration of those functions accordingly.

Case 1 When 0 = —pg and p1 = —1, the price of risk has a linear form

solution:

a(z, ) = k1(z + 071) + ko, (29)

where k1 and ko are constants. Provided ko > 0, « can be constant if k; = 0,

or decreasing (increasing) if k1 <0 (k > 0).
Proof: In this case, (28) reduces to

1 2 !
50 y = constant.

1
=g~ / *dy = / du.
2 constant

It integrates to a linear form solution

Rearrange to obtain

y = kiu + ko,

for some constants k1 and kp. This in turn gives (29). An unfortunate
limitation of this case is that except for k1 = 0, @ may go negative for large

or small z values (depending on the sign of k;). O

Case 2 When 0 # —po and p1 # —1, provided cy is real, the price of risk y

has a general solution of the form

(cate1)es™+te;—cy

es(W) 11 fOT ) € (Cl —C2,C1 + C2)
y= . (30)
(CZHQ:@)_-{CQ_CI for y ¢ (c1—coc1+ )

14



where
_ 0 + po _ 9
c1 = cA+p))’ c2 = x4/d+cq, (31)

s(u) =k+ 2(1+p1) S22, and K is a constant. For y to be positive, ¢; must be
positive and greater than cy if we take the positive value of co. When ca = 0,
y 15 constant and equal to c1. Otherwise, y has a travelling wave solution

from the first equation of (30) which is viable, and has a hyperbolic solution

of the form
o

= 2
oAUz, 7] =+ (1+p1)(z+67)’ (32)
from the second equation of (30) which admits arbitrage:
Proof: In this case, we can rearrange (28) to obtain
o
l+p1/ My y? /du (33)

o(1+p1)

where d is a constant. Integrating (33) yields

o I ”y-{-cz—cl
2(1+p1)ea Yy —c3—c1

0 + po
=B rde=tydt
T sl +m) 2 E

Thus, provided ¢z is real and not complex, we obtain a general solution of

] =u + constant,

where

the form
s(u) —
(cz+clgf(u) +”1L°1 2 for y€(c1—cac1+co)
y= (34)
s(u) -
(c2+612§u)_’;c2 L for y ¢ (c1—coc1+co)

where s(u) =k + &?—Bu and k is a constant. While the first equation in
(34) may result in hyperbolic tangent functions consistent with equilibrium,
the second equation in general entails trigonometric functions which could
not possibly be supported by any reasonable utility function of an economic
agent. More specificallly, the price of risk y has an unacceptable sigularity
at s(u) = 0 for the second equation, except when c; = 0 but k& # 0 which

gives the trivial solution of a constant price of risk

8 +po
- = ——— 35
y=a 1 ) (35)

15



In other words, when c # 0, the second equation of (34) prevents the state

variable z from reaching the point

T ke 0
=———07.
2(1 +p1)62

Another special case is to let £ = 0 and take the limit as ¢y tends to

zero. The solution will then be

ag
=c1 + _
Y ! (l +p1)u

which gives

a(z,7) =c + (36)

o
(1+p1)(z+67)°

It is obvious to see that « is decreasing (increasing) in z when p; > —1
(p1 < —1). Unfortunately, (36) has a singularity at p; = —1 and/or z =
—07. In other words, this model permits arbitrage in the economy.

The more interesting case is the stable travelling wave solution obtained
from the first equation. By inspection of (35), it can be seen that if we
assume a positive risk premium, then ¢; > 0 would be required. That is, we

have rulled out the possibility of § = —pg so

sign(8 + po) = sign(1 + p1).

Provided that cg is positive, ¢; must be greater than ¢y and we obtain two
4

alternative scenarios:
1. (6 > —po and p; > —1) The solution y is increasing and is bounded

below and above

Yy —c —c, when T — —o0
(37)
y—c1+ce, when 1 — +oo

It is worthnoting that the travelling wave solution (increasing in )
Hodges and Selby [15] obtained is a special case in this scenario with

po = p1 =0 (i.e. no consumption).

“Note that taking a negative ¢z will not change the properties of the solutions.
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2. (0 < —po and p; < —1) The solution y is decreasing and is bounded
below and above

y—+c+cy, when T — —o0
(38)
Yy —c1 —co, when z — +oo

Note that this is the case we are most interested in, and it can not be

obtained without intermediate consumption. °

Case 3 When 0 # —po and p1 = —1, the price of risk y has a solution of

an exponential form:

y=em+ 1, (39)
where .
2
mu) = j + 20400,

g

and j and L are constants and L > 0. y is decreasing (increasing) in z if
6 < —po (0> —po).

Proof: In this case, (28) reduces to
1 9 1
S0y = (6 + po)y + constant.

Rearrange to obtain

o i ans ~ |
= [ du.
2(60 +po) / y+ constant

This integrates to
o2

50+ p0) In(y+7)=u+re, foryé€ (—ry,+o0) (40)

where 71 and 79 are constants. The solution is then an exponential one

y=em" 4+ I, (41)
5Tt is also interesting to derive a y function which depends on S only. This can be

a

achieved by letting § = — (r — 72) so that the resulting y can be expressed as

(62 +C1)B-SA +c1—c2
= f —
B SAT1  fory € (c1 —ez,e1 + c2),

)

where A = m and B is a positive real. Again provided § < —po and p1 < —1, we

can obtain a decreasing y.
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where
2(6 + po)

m(u) =j+ 3
g

u,

and j and L are constants. Obviously, (41) is unbounded above and has a
lower bound L. Thus, a positive price of risk requires L > 0 in (41) and

r1 < 01in (40). Finally, y is decreasing (increasing) in z if @ < —pg (0 > —po)

as y, = 204po) 9:77"’)67”(”).

5 Numerical examples

In this section, we illustrate the analytical findings presented in Sections
4 using an empirically plausible parameterization of the process for stock
indices and the process for dividend yields. Section 5.1 first demonstrates
and also summarizes the attainable patterns for the price of risk, and then

Section 5.2 presents the numerical results for the chosen model.

5.1 The behaviour of the price of risk

Figure 1 gives typical plots for the cases analyzed in Section 4. Panel I
shows the linear form solutions, Panel IT shows the travelling wave solutions,
Panel III shows the exponential form solutions, and finally Panel IV shows
the hyperbolic form solutions with singularity. The solid lines represent
the patterns which can be obtained only from the consumption economy,
while the dashed lines represent the patterns which can also be achieved
from the wealth-only economy. Note the added flexibility which comes from
including intermediate consumption. Additionally, the Panel IV case should

be excluded since it admits arbitrage.

5.2 The behaviour of dividend yield

As is well known that in the exchange economy of Lucas, consumption equals
dividend. Therefore, it seems desirable on empirical ground that the divi-
dend yields should be (1) decreasing in the state of economy, (2) increasing
in the price of risk, and (3) decreasing in the asset price (supposedly sticky).

In addition, an increase in dividends should imply an increase in prices.
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Panel II1 l ”

Panel IV >

Figure 1: Behaviour of the price of risk: Illustrative plots. These graphs
are plotted based on the analytical solutions of the homogeneous case in
Section 4. The solid lines represent the patterns which can be obtained only
from the economy with intermediate consumption, while the dashed lines

represent the patterns which can also be achieved from the terminal wealth
economy.



We can show that our model can successfully generate the above prop-
erties. For instance, taking the decreasing travelling wave solution for the
price of risk, we can postulate the dividend yield § so that it is increasing in
the price of risk y, for y € (¢1 — ¢z, ¢1 + ¢2) and is bounded below and above:

Cl1 —C
N —e——

—1| <8 <py—pioler + c2).
P ]_ < po—pio(cr + c2)

po + pro(c1 — ¢2) [1

The restrictions imposed on the parameters pg, p1 and py are that

c1—c¢
Po = Omin —pr0(c1 —c2) [111 01 T CZ - 1] . (42)
y4I < _17 (43)
p2 = -—pioln(cr +c2) — pio, (44)

where 0pyin > 0 is the minimum value of the dividend yield. Recall that
when p; > —1, the price of risk (30) is in an increasing form (37). Thus,
the interpretation behind the restriction on p; is that the dividend must be
large enough to be able to flip the increasing pattern to a decreasing one.
We have explored the behaviour of the model using plausible parameter
values for the case in which the price of risk takes the decreasing travelling
wave form. The parameter values are summarized in Table 2. Figure 2 shows
how the price of risk varies over time with respect to the state of economy z,
for an investment horizon of 50 years. Figure 3 demonstrates the behaviour
of the dividend yield with respect to the price of risk y, the state of economy
z, and the stock index S, respectively. Note that the dividend yield stays
within a sensible range from 1.5 to 5.85%, and that it is inversely related to

the market level.

6 Concluding remarks

There seems a general agreement among financial economists that there is
some predictability in stock market index returns. It remains, however,
something of a puzzle as to whether it is to do with pricing anomalies or
whether it reflects the nature of the risk premia within the underlying econ-

omy.
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Table 1: Summary of the parameterization. These parameter values are
used to calculate the travelling wave price of risk and the corresponding
dividend yield for a time horizon of 50 years.

| Notation | Value |

T 0.06
o 0.15
So 10
T 2.3026

k 0

0 0.0465
c1 0.425
co 0.25

Omin 0.015

Do -0.0528
p1 -1.0995
D2 0.1001

— 1=0
— = =25 7

0.1

Figure 2: The price of risk: An example. These plots are calculated from the
travelling wave solution using the parameter values listed in Table 1. The
total investment horizon is 50 years. 7 is the remaining time to terminal
date.
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Figure 3: The dividend yield: An example. These plots are calculated based
on the travelling wave solution for the price of risk and the corresponding
dividend yield function using the parameter values listed in Table 1. The

total investment horizon is 50 years227 is the remaining time to terminal
date.



Our paper can be viewed as an attempt to approach this puzzle by of-
fering an alternative model of the asset price dynamics and showing that
the time variation in asset expected returns (often postulated by some em-
piricists) could be consistent with equilibrium asset pricing models. As
demonstrated in the previous section, we have explored the possibility of
a decreasing price of risk in the state of economy. It can be shown that
this amounts to some degree of mean reversion in the expected returns and
the agent displays a decreasing relative risk aversion. The model there-
fore indicates the potential that the resulting time-varying price of risk and
time-varying risk aversion can better explain the time-varying equity risk
premium.

In addition, even though it has not been the focus of this paper, it is not
difficult to show how the representative agent’s utility can be backed out in
our model. ¢ Needless to say, the assumptions of constant interest rate and
constant volatility which our time-homogeneous solutions were based on are
quite strong. It would seem natural to relax these assumptions and extend
to models which can handle stochastic volatility and/or stochastic interest
rate. Nevertheless, it is important and instructive to analyze the nature of
the behaviour which is possible within this framework and a representative

agent equilibrium.

5To see this, we only need to write down the definition for the intertemporal relative
risk aversion as

_a(Sut) _ o Jss(Se, Si,t)
fotl = c St Js(St, St t) (45)
Or, in terms of z,
f((Bt,t) =1 sz(mt,t) — _Mz(iﬂcyt) — C!(.'Et,t) ) (46)

Iz M(zs,t) o

For any given time t < T, it is clear that (46) is simply an expression of ordinary
differential equations. Thus, provided the functional form of the price of risk is known, we
can integrate over z to recover the supporting utility J;. Or equivalently we can back out
M which in turn gives the state-price density function of the economy. More specifically,
the last equality of (46) is equivalent to

7] _a(z,t)
—

9, In[M(z¢,t)] = 47)

Therefore, by integration, it follows that M can be written as a function up to some
constant A:

FolCg, 6] = A - e (-% /z' a(n,t)dn) .

zo
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Finally, although the empirical issues are beyond the scope of this paper,
it would be nice to see how we can devise some kind of procedures so that
the model can be empirically estimated/tested. Both areas will be challenge

resourcefulness of future research.
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