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Abstract

We propose a numerical method for barrier options valuation assuming that the
trigger is checked at fixed times. Our method can deal with the interesting cases of
time-varying barriers and non equally spaced monitoring dates. The convergence of
the method is proved and its computational cost is found to be linear in the number
of monitoring dates and quadratic in the spatial discretization. We also discuss exten-
sively the empirical performance of the method, including the calculation of the delta
and gamma coefficients, under the GBM and CEV stochastic specifications.

1. Introduction

In this paper we propose a simple and accurate valuation method for discrete barrier op-
tions assuming that the transition density of the underlying process is known analytically..
In particular, we discuss the cases of lognormal and constant elasticity of variance price
dynamics. Barrier options are a common, extensively traded type of exotic derivatives.
Barrier options are activated (knock-ins) or terminated (knock-outs) if a specific trigger
is reached within the expiry date.

There are now several papers dealing with the pricing of barrier options and a great
number of valuation techniques have been proposed. However, in practice, barrier options
differ from those studied in the academic literature under many respects. One of the
most important is the monitoring frequency of the underlying assets. In some cases, the
discrepancy between option prices under continuous and discrete monitoring can be huge,
as shown by Heynen and Kat [29] for lookback options and by Kat and Verdonk [33] for
barrier options. With discrete monitoring the trigger is checked at fixed times and a knock-
out (knock-in) becomes more (less) expensive as the number of monitoring dates increases.
In case of no monitoring a knock-out is equivalent to a plain vanilla option. Moreover,
the convergence of the discretely monitored option price to the continuous case is known
to be extremely slow. This is indeed the main motivation for our study. In fact, many
approximations, such as trees or the continuity formula correction proposed in Broadie et
al. [13], can be easily implemented only when the underlying price follows a lognormal
process and the barriers are constant or an exponential function of time. Therefore, there
is a need of alternative numerical methods general enough to deal with different processes
and time varying barriers.

In this paper we exploit the fact that the price of a discrete barrier option can be
obtained evaluating IV one dimensional nested integrals. The iterative scheme we propose
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is based on a linear polynomial interpolation technology and suitable Newton-Cotes for-
mulae, namely, the composite trapezoidal and Simpson rules. The iterative scheme we
construct is proved to converge (see Theorem 4.1) and provides a good approximation of
the option price for each maturity and position of the underlying asset price relative to
the barriers.

To summarize, there are three main characteristics of our method. First, its generality,
given that it can be applied with little assumptions, i.e. when the conditional transition
density of the underlying process is known analytically'. The use of the conditional transi-
tion density has several implications: i) we do not incur in a time discretization error, that
is encountered when using finite difference or finite element methods, ii) we do not need to
solve linear systems as required when using implicit finite difference schemes, iii) we can
apply the method straightforwardly to fairly ”non-standard” processes and time-varying
barriers. As an example, we provide a full discussion of the CEV case and report signif-
icant differences with respect to the GBM case. We recall that the continuous formula
as well as the approximations which can be found in the literature assume a lognormal
process for the underlying. iv) The degree of accuracy of our method doesn’t depend on
the positioning of the barriers with respect to the grid nodes. As a consequence, we do
not require an increase in the number of nodes near the barriers or their clever position-
ing, as happens, for example, when using trees. Second, there is a clear advantage when
using piece-wise linear approximations instead of global interpolations, such as Hermite
or Laguerre polynomials as the computational burden of calculating the solution inside
the barriers is greatly reduced. Third, we establish the convergence of the solution and its
first derivative in the supremum norm.

The structure of the paper is as follows. In the first section we review some of the
literature on the pricing of discrete barrier options. In the second section we introduce
the model and in section three we present the numerical scheme and its main properties.
In section four we provide some numerical results for the GBM and CEV processes.

2. Review of the literature

As we remarked in the introduction, the pricing of barrier options have been almost always
discussed in the case of continuous monitoring of the underlying asset. A listing of pricing
formulae for different types of barrier options can be found in Rubinstein and Reiner [42].
A mathematically oriented discussion of the barrier option pricing problem is contained
in Rich [40]. In a nutshell, there are several approaches to barrier option pricing: a) the
probabilistic method, see Kunitomo and Ikeda [34]; b) the Laplace Transform technique,
see Pelsser [38], Sbuelz [43], Jamshidian [32], Geman and Yor [25]; c) the Black-Scholes
PDE, which can be solved using separation of variables, see Hui [30] and Hui et al. [31]
or finite difference schemes, see Boyle and Tian [10] or Zvan et al. [51], e) binomial and
trinomial trees see Boyle and Lau [9], Ritchken [41], Heynen and Kat [29], Tian [48],
f) Monte Carlo simulations with various enhancements, see Andersen and Brotherton-
Ratcliffe [2], Baldi et al. [5], Beaglehole et al. [6].

Much of the work related to the pricing of discretely monitored exotic options is based
on binomial or trinomial trees, assuming a lognormal specification for the underlying and
constant or exponentially time varying barriers. Some authors have studied the pricing
problem using approximations, numerical solutions of PDEs or numerical integration. In
the following subsections we briefly review these approaches.

'In general, when the conditional transition density is not known analitically and the distance between
the monitoring dates is not too large, an approximate solution can be obtained replacing the unknown
density with a normal density having the same first two conditional moments.



Binomial and Trinomial Trees

In general, the binomial tree framework can be easily adapted to deal with the barrier
option case. For example, when pricing down-out options, we just set all the option values
equal to the rebate if the stock price is lower than the out barrier. However, convergence
could be very slow and a high number of time steps is required before the pricing error
becomes acceptable. Moreover, as Boyle and Lau [9] correctly point out, an increase in the
number of time steps causes the relative error to decline towards zero before jumping to
a new peak (the so called ”saw-tooth pattern”). In particular, these authors remark that
the positioning of the nodes with respect to the barrier may have a considerable effect on
option prices. In case of continuous monitoring, the best outcome is obtained when a layer
of nodes falls exactly on (or just below) the barrier. In case of discrete monitoring, the
best results are obtained when the lattice is constructed so that the barrier falls exactly
in the middle of two nodes?.

An explanation of the reasons of the bad performance of the binomial scheme can be
found in Figlewski and Gao [23] pag. 317, and in Steiner et al. [45], pag. 76. These
authors contend that it is difficult to assign the correct probabilities at the rebate nodes.
Depending on the position of the barrier, the binomial distribution assigns a probability
than is either too high or too low. Then, option prices result to be underestimated or
overestimated. In fact, a small increase in the number of time steps can cause a significant
change in the probability of the option being knocked out, that is, a jump in the option
price. For this reason, Steiner et al. [45] construct a binomial tree where the option price
near the barrier is obtained as a weighted average of the rebate value and the discounted
expected value. The weight is chosen in order to get the correct probability at the rebate
nodes. Similarly, Kat and Verdonk [33] propose an approximation given by the average of
the binomial price just before and just after a jump.

Considering trinomial trees instead of binomial trees should improve the results, al-
though the increased accuracy could be offset by increased computational time, as reported
in Broadie and Detemple [12] . Moreover, also in this case, a direct application does not
eliminate the characteristic saw-tooth pattern. Ritchken [41] observes that in the Boyle-
Lau binomial lattice the number of time steps must assume specific values. A high number
of nodes is required in this case and there are not enough degrees of freedom to accommo-
date for non-constant barriers. This author suggests the use of a trinomial tree where the
number of steps is adjusted appropriately. An additional stretch parameter is modified
until a layer of nodes coincides with the barrier. However, the trinomial tree can still show
errors as large as 3.7 cents using 8000 steps, as reported in [14]. As with the binomial
tree, a very large numbers of time steps are required when the initial stock price is close
to a barrier. Moreover, this method cannot deal with non-constant or non-exponentially
time varying barriers.

Cheuk and Vorst [15] propose a shifted trinomial tree. In this case, at each monitoring
date, the barrier falls exactly in the middle of a layer of nodes. With daily monitoring
this method can become computationally intensive, since more than 50 trinomial steps
between successive monitoring dates are required in order to achieve reasonable accuracy.

Broadie et al. [14] suggest several improvements to the Ritchken [41] trinomial tree
and obtain a penny accuracy in the difficult case Sg = K =100,0 = 0.6, 7 = 0.1, T = 0.2,
N =4, 1 = 95 using 256 time steps (where N is the number of monitoring dates and [
is the barrier). This enhanced trinomial method performs well for small N or when the
number of time steps between the monitoring points increase.

Figlewski and Gao [23] propose an adaptive mesh model. Their trinomial lattice is finer
next to the barrier so that the valuation information is transmitted properly. Again, as

*Tavella and Randall [47], pagg. 194-6, give a detailed discussion of this problem.



the asset price moves near the barrier the number of time steps goes to infinity. However,
this occurs only near the boundary in the time-price space.

Approximations

Broadie et al. (BGK) [13], [14] develop a method to relate the prices of discrete and
continuous time options assuming lognormal price dynamics and constant or exponentially
time varying barriers. They obtain a simple correction to the continuous time formula. The
barrier in the continuous formula is shifted in order to correct for the fact that when the
discretely monitored process breaches the barrier, it overshoots it. This method incurs in
large pricing errors when the barrier is close to the current stock price. A similar approach
is followed by Wei [49] that suggests a procedure based on a polynomial interpolation.
Wei’s method can deal with discrete barrier options with either a flat or exponential
barrier. Compared to the correction formula proposed by BGK, this interpolation method
is to be preferred when the stock price is close to the barrier or when the monitoring
frequency is not high (e.g. weekly). On the contrary, when the barrier is not close to the
current stock price the BGK method dominates Wei’s method.

Levy and Mantion [35] use a heuristic approach. They observe that the price difference
between the continuous and discrete approximation is monotonically increasing in the ratio
of the sampling interval to the time to expiry. This error is modelled as a function of the
square root of the sampling interval. The price difference is obtained using a second-
order Taylor expansion with respect to the square root of the sampling interval and the
free parameters are chosen in order to correctly price barrier options with one and two
monitoring dates, i.e. when closed form solutions are available. They report encouraging
numerical examples when the barrier is very far away from the spot price.

Finite Difference and Finite Element Methods

A detailed treatment of discretely sampled options using a PDE approach is given in
Wilmott et al. [50] and in Tavella and Randall [47]. We remark that finite difference or
finite element methods, that do not exploit the information of the conditional transition
density when available, are always prone to time discretization error. Moreover, implicit
and semi-implicit difference schemes require the solution of a tridiagonal linear system
at every time step. Another important problem is that some care has to be taken in
using a scheme such as the Crank-Nicholson. This scheme is highly accurate, however, as
shown in Smith [44], pag. 122-124, "numerical studies indicate that very slowly decaying
finite oscillations can occur with the Crank-Nicholson method in the neighborhood of
discontinuities in the initial values”3. These oscillations are due to the very sharp gradient
occurring when the solution is periodically set to zero at the barrier and do not decay fast
enough. Although the oscillations are localized around the barrier, the resulting option
value is everywhere slightly too large. Absence of spurious obscillations in the Crank-
Nicholson scheme can require a demanding restriction on the time step size as a function
of the stock grid spacing?. Moreover, it is not always easy to find a simple expression
for the restriction on the time step when dealing with processes different from the GBM.
Therefore, we should be careful in using naive implementations of finite difference schemes.
For this reason, Zvan et al. [51] propose an accurate first-order implicit method 3 based on
a point-distributed finite volume scheme used in computational fluid dynamics which can
be used for PDE models with general algebraic constraints on the solution. Unfortunately,
this method is computationally demanding given that a reasonably fine grid is required in
order to obtain accurate prices.

*For details see Zvan and al. [51] and Fusai and Tagliani [24].

1 This restriction is a function of the volatility parameter of the underlying process.

3A first-order implicit upwind scheme is proposed in Fusai and Tagliani [24] for discretely sampled
occupation time derivatives.



Boyle and Tian [10] develop a modified explicit finite difference method for discrete
barrier options pricing.

Duan et al. [20] use a time homogeneous Markov Chain to approximate the under-
lying asset price process. Matching the discrete time step of the Markov chain with the
monitoring frequency of the barrier, this approach can easily deal with very general dis-
crete barriers. Moreover, models with time-varying volatility such as the GARCH can be
easily treated under this framework. This approach has several other advantages: a) the
spacing of the price grid can be made independent of the number of time steps b) the
transition matrix associated with the Markov chain is usually sparse, so that storage and
computation costs are reduced.

Numerical Integration

Ait-Sahalia and Lai [4] compute the price of discretely monitored barriers evaluating
one-dimensional integrals from one monitoring date to the next. In [3] the same authors
show how to deal with the case of discrete lookbacks, exploiting the duality property of
random walk. Just as in AitSahlia and Lai [3], [4], we reduce the pricing problem to a
recursion in N-steps, where IV is the number of monitoring dates.

Sullivan [46] has also proposed a scheme combining numerical integration and function
approximation. He approximates the solution at the monitoring dates using Chebyshev
polynomials and computes the integrals using Gauss-Legendre quadrature. Sullivan ob-
tains highly accurate results, but does not formally prove the convergence to the desired
multidimensional integration. Our approach is based on a similar idea. At the monitor-
ing dates we approximate the solution using a linear combination of hat functions and

then we make use of numerical integration methods to relate the coefficients of this linear
combination at different dates.

3. The model

Consider the following unidimensional risk-neutral dynamics:
dx = rxdt + o (z,t) dW;

where 7 is the constant risk-free rate and o (z,t) is the instantaneous volatility function
and assume that the process is markovian and the conditional transition density of the
process is known analytically..

We want to price discrete barrier options in general, but, in order to make our analysis
concrete we concentrate on a double barrier knock-out option, i.e. a call option that
expires worthless if one of the two barriers has been hit at a monitoring date. Let 0 =
to <t <..<tp,<..<ty =% be the monitoring dates and [, = [ be the lower barrier
and u,, = u the upper barrier active at time t,%. Again, we are assuming constant barriers
only for aim of simplicity and notational convenience.

Denote by v (z,t,n) = v (z,t,n;,u) the price of the barrier option when ¢ > t,. Then,
v (z,t,n) satisfies the well known Black-Scholes PDE:

_Ov(z,t,n) ov(z,t,n) 1 5, 0% (z,t,n)
En +rz 5 +§a (z,1) 5

Given that the trigger condition is checked only at fixed times, we need to update the
initial condition at the monitoring dates 0 =ty < t; < ... < ty :

=rv(z,t,n)

v(z,tn,n) = v(z,th,n—1)1, ()
v(@0,0) = (@K L (o)

®Eventually, we have I = 0 or « = 400 in the case of single barrier options.



where 1;, () is the indicator function:

1 if I<z<u
ll,u($)=
0 if ¢,y

Let p(y,T;2,n) be the transition density of the process to y at time t, + 7 starting
from z at time t,. Again, without loss of generality, consider a time-homogenous process:

P, tn +7;7,t0) =p(y,7;2,0) = w (y,T; x)

Then, the solution of the above PDE is obtained recursively:

v (1;7 tn + T, TL) = 1l,’u, (.’13) /+oo w (63 75 SC) v (57 tn7n - 1) dé (31)

J =00

Using the fact that v (&, t,,n — 1) is zero outside [l, u], we have:
v(z,ty +7,n) = / w(Tz)v (€ ty,n—1)d, I<z<u (3:2)
J

The solution is given by recursive univariate integration: one integral for every mon-
itoring date. In order to exploit the recursive structure of the problem, we compute the
option price only at the monitoring dates and then at the intermediate date ¢, + 7. In
other words, we want to compute v (z,t,,n), n > 0. In the next section we develop a
numerical scheme to solve this recursive integration and detail its main properties, includ-
ing convergence and computational cost. Then, we apply our scheme to the Geometric
Brownian motion and the CEV case.

4. The numerical method

In this section we discuss five issues:

a) the approximation of the solution (option price at each monitoring date) by a linear
combination of hat functions. The results in this section can be easily generalised to
several other approximating functions;

b) the calculation of the coefficients of the linear combination which requires the re-
cursive computation of an integral, efficiently approximated using the Trapezoidal or the
Simpson rule (equations (4.19), (4.20), (4.21) and (4.22));

c) the convergence of the numerical solution and its first derivative in the supremum
norm (Theorem 4.1);

d) the calculation of the Delta coefficient, i.e. the sensitivity of the option value to
variations in the price of the underlying asset,

e) the convergence of the discrete option price to the continuous case. We show for-
mally, in the cases of GBM and CEV price dynamics (see Corollaries 1 and 2), that the
convergence is rather slow as the existing empirical evidence has already suggested.

Let us start with the basic recursive equation:

v (@t +T,m) = /uw (€, 7 2) 0 (€, by — 1) dE. (4.1)
l

with 7, = tp41 —tn, € [[,u], n=0,1,.... In case of equally spaced monitoring dates we
have 7, = 7. Hereinafter we set v, () =v (z,t,,n).



Divide [l, u] into m — 1 subintervals I}, = [zg zk+1], k = 1,2,...,m — 1 with end points
given by:

l=21m <Tom < . < Tp—iym < Tym = U (4.2)
and let h,, be the mesh of the partition {I;} k=12,.m—1- We assume that there is a C
such that: o
hm = max {|Tkm — Th—1,m| : 2 <k <m} < - (4.3)
Note that when we choose equally spaced points in (4.2), i.e. hy = (u—1)(m—1),
then C = 2(u —1).
Let L; (), i=1,2,...,m, be the hat functions given by:

x:’::;":;:m Te Ii’i <m
Lim (2) = L (x) = { ;=2=bm- gelg,i>1 (4.4)
0 otherwise

and denote with v} (z), = € [l,u], m =1,2,...,n=1,2, ... the linear interpolation:

o (@) = Y al Ly (2) (4.5)
Jj=1

and
o (@) = ([, ») @) =3 oL (@) (4.6)
j=1

where [[,,, is the interpolant operator, that is:

ol =5 (B1,m ), F=1,2,...,m. (4.7)
By construction, the interpolating function equals the initial condition at the grid points
Zjm, whilst between two grid points the initial condition comes from the linear combi-
nation of hat functions given in equation (4.6). We remark that the hat function can be
interpreted financially as a butterfly position. The financial intuition behind equation (4.5)
is straightforward. We need to find, for every monitoring date, the appropriate number of
expiring butterflies allowing to build up the value of the barrier option. The coefficients of
the linear combinations can be then be interpreted as hedging coefficients of the portfolio
of butterflies. However, this method does not provide a static hedge for the contract (the
replicating portfolio has to be rebalanced at every monitoring date since the coefficients
in the linear combination depend on j).

Note that the results presented in this Section also hold when we choose L;(z), i =

1,2,...,m to be smooth functions satisfying the following conditions:
m
Li(j,m) = 6ij, Li(x) 2 0, Y Li(z) =1,V € [I,u], (4.8)
i=1

where 6;; = 1 when ¢ = j and §; ; = 0 for 7 # j. Among these interpolating functions
we have, for instance, the B-splines of any order. In any case for computational purposes
and to maintain the financial intuition we have preferred to use hat functions. In fact, the
computation of the hat functions is well posed and the computational cost is low.



Let us consider the following recursive relation for v, that is:

W @) = /, 0 (g, 7 ) 07 (9) dy (4.9)

Using equation (4.5) we get:

m m

S aiHL @) = Y et [ wl o)L ) dy (4.10)

j=1 j=1

where the initial guess of the recursive formula is given by:

jm =20(%), j=1,2,...n. (4.11)

Lemmas 2, 3 and 4 in Appendix A show how to determine a bound to the norm of the
difference between the true value v, and its approximation v]*. Let us define

T, = sup / lw(y,Tn;2)|dy < T, n=0,1,...

1<z<u

then we have (see Lemma 4):

Cuy Cup

m

lvn — V' lloe < HT

p_

<7T"r—=

(4.12)

where Cy, is a suitable constant depending on vg. Given the time to maturity and the
m-grid, this result shows how important is the constant 7" in determining the convergence
of the method as the number of monitoring dates increases.

At this stage, the main difficulty with the approximation v]}* is that it still requires: a)
the computation of the coefficients o} ,,, and b) the computation of a sequence of integrals,
one for each monitoring date. The next step is then to approximate the integral appearing
in (4.10) using a simple quadrature rule and to exploit the functional form of the approxi-
mation in order to obtain a computable sequential procedure for the coefficients of ,, and
for v

Let us consider the problem of computing the function v}*. Since L; (z;) = 0, ¢ # j,
L;(x;) =1, i = j and evaluating equation (4.10) at € = @; ;m,% = 1,2,...,m, we obtain a
linear transformatlon giving the values of a"+1 in terms of the coefficients at the previous
monitoring date n, a7,

n+1 Zaﬂ"‘/ Y, T Tim) Lj (y) dy,i=1,2,..m. (4.13)

The computation of o, requires a numerical integration. We accomplish this task using
simple schemes (the Trapezoidal and Simpson rule). This procedure allows to obtain a
simply computable expression for our approximating function v}’

Let Hy, m € R™ ™ be the following matrix:

u
(Fnm)yg = [ 0 as23m) Ls ) (414
1=1,2,..m,and j =1,2,..m and a,,, € R™ be a vector with components:

a’n,m,i = a?;m)i = ]-7 27 M (415)



We can rewrite equation (4.13) as follows:
ant1,m = Hpmanm,n=0,1,.. (4.16)

Note that when the kernel w (y, 7»; ) is independent of n, (this occurs if the monitoring
dates are equally spaced or if the transition density is time-homogenous) the matrix Hy m
is independent of n, that is Hy ,, = Hn,, and it can be computed once. We approximate the
integrals appearing in (4.14) using the trapezoidal rule and the Simpson rule. Assuming,
for simplicity, that the points in formula (4.2) are equally spaced, that is h,, = h =
(u—1)/(m — 1), consider the following matrices H. ,, € R™™, HS € R™ ™ associated
to the trapezoidal and the Simpson formula:

r

(H’Z:m)i,j = W (L., Ty Cijin) B ;== é,’ .'...',’7;17’ »
(HEm)iy =@ @Lms TniTm) 5 i=1,2,,m (4.17)
( (Hgl:m)i,m = W (Tm,m, Tn; Tim) % i=1,2,....m
and when m is even (m = 2v, v integer):
( (Him)i,2j+1 = Wi X211 ms Trii Tin) %h = t ......,77;1_ 1
(HRm); 25 = (@25,m, T Tigm) Zh i :11’ ’T_ 1
’ (4.18)
(Hﬁg,m)i,l = W (21,m, Tn; Liym) % i=1,....m
| (Ham)im = W @mms Tn; Tim) B fil, ... 7

Now we have derived a computable expression for the coefficients of the linear combi-
nation and for our approximating functions:

a;l:+1,m = Hrr{:maz,m)n = 07 17 (419)
8l 1 m=HS 0 n=0,1,.. (4.20)
a’fl)ﬂ,m = ag,m = ag,m (421)

m
ot =3 el Li(x) (4.22)

7j=1
i = a8 i Ls(2) (4.23)

7=1

Using the Lemmas proved in Appendix B, we can now prove our main result, the
convergence of the method as m — oo.

Theorem 4.1. Let v, be the function given by formula (4.1), and vn' ’T, v be given
by formulae (4.22) and (4.23) respectively. We have

Jlim o, — 07 leo =0, (4.24)
lim  |Jv, — 97|00 = 0. (4.25)

m——+0o0



Proof: We prove equation (4.24). Equation (4.25) can be proved similarly. Let v
be given by (4.9). Applying the triangle inequality in the sup norm we have:

llon = v lloo < llvn = v loo + [[07" — 077 ||co. (4.26)

Using the properties of the function L;, j =1,2,..., given in (4.8) we obtain

T
o = o8l = max |7y (an — 0%, ;) L5 )]
< sup a}im—ag’m’j|zy_‘__1 L&) (4.27)

1<j<m
< [lanm — 2y mlloo-
An application of Lemma 4 in Appendix A and Lemma 9 in Appendix B concludes
the proof. ¢

Finally, we give a formula to approximate the A coefficient, i.e. the sensitivity of the
option premium to variations in the underlying asset price.

Lemma 1. We have:

Ovp, a7Tz,m,i+1 - az,m,i—l
<E> . - +O(h), h — 0, (4.28)

and

Ovp, @5 sl — O i
P — Znm, m 1 42
((%‘)z:z,-m h +O(h), b —0, (4.29)

where O(-) is the Landau symbol.

Proof: The thesis follows taking finite central differences and using Lemma 2, Lemma 3,
Lemma 5 and Lemma 6 proved the Appendices.$

In the remainder of this section we examine the convergence of the scheme as the
number of the monitoring date increases in two concrete examples: the Gaussian case,
arising when the stock price evolves according to a GBM process and the CEV process
case.

In the Gaussian case the transition density is, see Section 5.1:

1 ——9)?/(ac?rn)
W (Y, Tn; T) = ——e¢ ), xel0,1],y € [0,1]. 4.30
In this case we can compute the constant 7, which is crucial in understanding the
convergence of the pricing formula to the continuous case as n — 400 (see equation 4.12
and Lemma 3). In particular, Corollary 1 states that as n — +oco, T, — 1, so that,

although convergence is guaranteed, it is slowed down. Numerical examples of this result
are provided in Table 2.

Corollary 1. Let w (y;T,; ) be given by (4.30) then we have

1 oo 2
s e -y _ : _
T,=1 2\/7?/2 € dy <« T=1, nhIil Tn = 1. (4.31)



Proof.

T, = sup giee [o e @ 0/(4 ) gy

0<z<1
= 1 +o0 —(m—y) /(4c2‘rn) "0 —(:z:—y)2/(4c27'n) _ [+ —(m—y)2/(4027'n)
2¢\/TTn Oiugl {‘] dy / € dy ] € dy}

< 1 L -+00 _p2 2c 7(7'11 _p +o0 _p
= =/ oi‘iil{ﬁf—oo dp= G e U= Jz I e P

-1
== 1 _ T 2(:‘/771',1 e_dep _ \/— f+00 —P dp

2 2¢c\/7Tn
=1- 2 j+oo e~ P dp,
2cy/7TTn

(4.32)
and this concludes the proof. ¢

Now consider the following Square Root kernel (see Section 5.2):

T eTTn
Y

w(y, Tn; z) = Y e—"/n(ze""er)Il (nyn\/:ve"ny) Yy € L], z € [lu], (4.33)

where v,, = 2r/ (62 (" — 1)) and I; (2) is the modified Bessel function (see [1] pag.

374-8).
Note that +,, goes to infinity as 7, goes to zero. From [1] pag. 377 formula 9.7.1 we

e I(z) = \/Sﬁ_zez (1 +0 G)) 5 8 (4.34)

From (4.33) and (4.34) we obtain the following expansion:

’LU(y,Tn;.’II) _ et 2\/\’/)’_2 —'yn(vze"ﬂ—\/—) —|—O< n) Y — OO (4.35)

Then, using the transformation:
29, (\/ xeTn — \/§>

the transition density for the variable z is given by a standard normal density. This
fact formally confirms, at least for this process, that the normal density is a reliable
approximation when n — co. Then, Corollary 2 shows two estimates for T,. The first,
(4.36), is relevant when n is fixed and m goes to infinity. The second, (4.37), is important
when we consider the convergence as n — oo for a fixed time to maturity. Note that
T» — 1 in this case and that the convergence is slowed down as in the previous case.

Corollary 2. Let w (y;Tn,2), y € [l,u], x € [l,u] be given by (4.33) then we have

T < Y2ue™™ (u —1), (4.36)
and when 7, — 0 (v,, — 0):

7 i 1 /\/ﬁ(\/:z:erfn—\/_) d / _zgd (4 37)
n = = e — VA 2
ﬁ —00 me"’n—

1 1 1 [VTia(VzeT=VI)
\/77{\/2%6"”\/_ S (VaeT— i)

2

e “dz



Proof. The proof of equation (4.36) is a consequence of definition (A.3) and the
following property of the modified Bessel function of the first kind (see [1] pag. 375
formula 9.6.3 and pag. 362 formula 9.1.62):

|1 (2rv/5e) | = |e75.1 (27, /EETgeE

< }e"igfyn\/:ce"nye%"V“TT"y (4.38)

where ¢ is the imaginary unit and Ji(z) is the Bessel function of the first kind. Using
(4.38) and arguing as in Corollary 1, we obtain (4.37).

5. Numerical results

In this section we illustrate numerically some of properties discussed in the previous sec-
tion. In particular, we show: a) the convergence of the method when the number m of grid
points increases, b) the behavior of the scheme versus the challenging problem presented
in Broadie et al. [13], ¢) an estimate of the rate of convergence and of the computational
cost of the method, d) the behavior of the delta and gamma coefficients of the discrete
barrier option with respect to the continuous time case and their convergence as the grid
spacing increases, €) a comparison with other numerical schemes proposed in the literature

in the case of GBM, f) a comparison between option barrier prices under the GBM and
CEYV specifications.

5.1. Geometric Brownian Motion

Assume that the underlying asset price is driven by a GBM process (dz; = ra:dt + oz dW,
with zo the initial stock price) and denote by v (z, ¢, n) the price of the option for ¢ > t,.
Given xp = x, we can use the standard transformation (see Wilmott et al. [50] pag. 98):

v (z,t,n) = Pty (2,t,n)
where: In(z/l) - In(k/]) \
“= ln(u/l); = ln(u/l);'uzr_a /2
H 2 o H a’c?
az—ﬁln(u/l);c = m;ﬂ=am — T

and obtain the following recursive representation for the function g (z,t, n):

[ip(z—&,t—12;0,0) g (£, tn,n — 1) dE n=12..
g(z,t,n) =
J3 (2 = &,t — t4;0,0) e (1em@/DE _ /DRy g =0

where p (2,t) = p(z,t;0,0) is the heat (Gaussian) kernel:

1 2
22/ (22t
p(z’ t) B 2/(02te ( )

The single barrier case can be treated taking a very large u (in the case of upper barrier)
or [ near zero.

First of all, we show the convergence of the method when the number m of the grid
points (see equation (4.2)) increases. Figures 1a) and 1b) show the price of a double knock-
out call versus the number m of grid points. The current price of the underlying asset
is set at 100,109,109.9,109.99, the time to maturity is 0.1 years (five weeks), N = 125,



the risk-free rate r is 0.1 per annum, the instantaneous volatility ¢ is 0.2, the strike price
is K = 100, the lower barrier is [ = 95 and the upper barrier is v = 110. Figures
1c) and 1d) show the price of a down and out call option when the spot price is set at
100,96,95.1,95.01, T = 0.2, n = 50, r = 0.1, ¢ = 0.6, [ = 95, u = 4o0. Pricing this
call is a challenging problem due to the value of the volatility coefficient and the position
of the spot price with respect to the barrier. Figure 1d shows that the convergence of
the method is not affected by the relative position of the barrier. Moreover, we observe
that the method can be applied to price single barrier down and out or up and out calls
simply choosing u sufficiently large or ! sufficiently small (in Figures 1c and 1d we have
set © = 1000). Note that the method gives an accurate approximation with m > 500 for
both quadrature rules (Simpson and Trapezoidal rule). This is also confirmed in Table 1
where, using the Simpson quadrature, we obtain a 5 digits accuracy with m = 200.

We have also investigated how the accuracy of the method changes using the Simpson
or the Trapezoidal rule. For example, Figure 2 shows the results we obtained for the
challenging problem described in Section 1, that is with ¢ = 0.6 and zp= 100. Figures
2a), 2b) show the behavior of the method when we use the Trapezoidal rule (solid line)
and the Simpson rule (dotted line). We can see that the use of Simpson rule slightly
improves the convergence of the method. Figures 2¢), 2d) show the difference (absolute:
IV m — VE nlloo, relative: [[v5,, — VE lloo/|IVh mlleo) between the solutions obtained
applying the different quadrature rules versus m. Note that the relative differences is less
than 1074

Figure 3 gives an estimate of the rate of the convergence of the method when we use the

trapezoidal rule (circles) and the Simpson rule (stars). In particular we plot the following
ratios’: T s
_ ”Vn,2m - VHOO _ ”Vn,2m - VHOO

B ”Vg,m = V|l T “Vr‘?,m — V|l ’

(5-2)

versus the number of grid points m, where v is the price of a double knock out call with
zo =100, T = 0.5, r = 0.1, 0 = 0.2, K =100, Il = 95, v = 120 and n» = 5. Using the
Simpson rule when m is not too large seems to provide better results.

Figure 4 shows the price of a double knock-in call for several monitoring dates with
20 =100, T =0.2, r = 0.05, 0 = 0.2, K =100, { = 90, v = 110. We use m = 1200 to get
the results. The figure shows that the price of the continuously monitored barrier option
is a poor approximation of the price of the discrete monitoring barrier option even when
the number of monitoring dates is large.

Regarding the computational cost of the method, we observe that to get the solution at
the n-th monitoring date for each value of z € (I, u] requires O (nmz) function evaluations
(matrix H3 ,, HT,) plus O (nm?) elementary operations (see formulae (4.19) and (4.20)).
Therefore the total cost is of O (nm?) elementary operations when n — 0o, m — co. Table
1 shows the computational cost for a barrier option with zp =0, T'= 0.5, n = 25, 7 = 0.1,
o =02, K =100, =95, u = 110. In particular this table shows the time required by
the method measured in seconds, when we use the Trapezoidal rule®. Note that when m
is multiplied by a factor of two the time is multiplied by a factor of four. This behavior
confirms the estimate of the computational cost given above. Notice that with the Simpson

scheme we obtain a 5 digits accuracy with m = 200. This computation requires only 0.16
seconds.

[INSERT TABLE 1]

"This ratio appears to be important in estimating the error, as from equation (4.27).
8The time is measured running a routine coded in Fortran on a Pentium II 600MH PC.



Table 2 shows the convergence of the discretely monitored barrier option price to the

corresponding continuously monitored option price, that is, the convergence of the method
as n — 0o.

[INSERT TABLE 2]

Table 2 confirms two results. First, we can see that the computational cost increases
linearly in the number of monitoring dates. In fact, if we multiply the number of monitoring
dates by 2, the time is multiplied by the same factor. Second, the convergence to the
continuous time solution is slower as the number of monitoring dates increases. This
behavior is justified by Lemma 3 and Corollary 1. In fact the reduction factor T), goes to
one when n — 00, that is ||vn41 — V)% || decreases slowly, since we have:

[ont1 = vptlloo < Tallvn — v7'lloo % [lvn — 77 |lco, @8 1 — oo (5.3)

This result confirms the importance of an accurate procedure for pricing discretely
monitored options. Moreover, the significant discrepancies between discrete and contin-
uous formulas are registered also for the Greeks. For example, we have a delta of -0.025
and a gamma of -0.0475 for 10 reset dates and a delta of -0.0871 and a gamma of -0.0408
for 500 reset dates?. Clearly it would be dangerous to use a continuous time formula to
delta-hedge a position.

In Table 3 we have compared the results obtained using our method with other ap-
proaches, such as the Markov Chain (MCh) method of Duan et al. [20], the Monte Carlo
(MC) simulation method, the tree method (Tree) of Cheuk and Vorst [15], the trinomial
tree (TT) of Broadie et al. [14]. In Table 4 we compare our results with those reported
in Ait-Sahalia and Lai [3] and in Broadie et al. [14]. We remark that, in order to achieve
a reasonable accuracy, the recursive method proposed in [3] requires a grid spacing of
0.001 or 0.0005 meaning at least 1000 or 2000 function evaluations at every monitoring
date. The trinomial tree in [13] requires at least 80000 time steps and about an hour of
computation per option price to obtain a four-digits accuracy .

[INSERT TABLE 3]
[INSERT TABLE 4]

In Table 5 we empirically illustrate the convergence of the scheme when computing
the delta and the gamma as the grid spacing increases with the underlying price near the

barrier and high volatility. A four decimal digits accuracy can be achieved with only 500
grid nodes!?.

5.2. The CEV process

Most of the research on barrier options assumes that the underlying asset follows a simple
GBM. However, it is well known that this model has several drawbacks, for example
the smile effect. The CEV model, introduced by Cox and Ross [18] and analysed in
more detail in Cox [16], is often used among practitioners to mitigate the smile effect.
The instantaneous volatility of the underlying asset is linked to the price level, which

9 Parameters used: spot price = 100, strike = 100, [ = 100, u = 110,r = 0.1, ¢ = 0.1, T = 0.5. The
grid spacing is m = 1200.

"°The convergence of the scheme for single barrier options results to be slower. For example using
the same parameters as in Table 5 and setting v = 1000 we have a delta of 1.7573405, 1.7632039 and
1.7646095 for respectively 500, 1000 and 2000 grid points. For the gamma we have: 0.0075949, 0.0067042
and 0.0064945. Then an accetable accuracy can be obtained with 1000 grid points.



is consistent with the empirical leverage effect, a feature that Fisher Black noted as an
empirical characteristic of stock prices: stock volatility has a negative correlation with
variations in the asset price. In this case the dynamics of the underlying price dynamics
is given by:

dz = radt + oz 2dW,

where 0 < A < 2. When A = 2, we obtain the lognormal model. This process has been
recently applied to the pricing of barrier options!!, but only in the case of continuous
monitoring. Therefore, as already seen in the GBM case, we can expect consistent price
discrepancies with respect to the case of discrete monitoring.

The transition density of the process,which can be expressed in terms of a noncentral
chi-squared distribution has been obtained using different procedures in Cox [16], Emanuel
and MacBeth [21], Goldenberg [26] and Davydov and Linestky [19]. The pricing of barrier
options with continuous monitoring and A = 1 has been studied by Lo et al. [36] and is
strictly related to the interest rate model of Cox et al. [17] which is based on the process
studied in Feller [22].

As in Lo et al., we consider the simplest case, when A = 1. In this case the process is

known as the square-root process and the (time-homogenous) transition density is given
by:

_ 2r Tt A :Ee'rt r
£, 0) = ¢ FErD (<) L4 Vet
p (y7 :'E’ 0) € 0_2 (ert _ 1) y 1 0_2 (eTt _ 1) € ’l‘y

where I; is the modified Bessel function of the first kind. If we set:

(=)
T’v_l’q’_(r%’(t)

ﬁz—%;T(t)=

then the random variable 4e~"y/ (07 (t)) has a non-central chi-squared density with four
degrees of freedom and noncentrality parameter ~.

In Table 6 we compare the prices of the discrete barrier under the GBM and CEV
specifications for different monitoring dates and different strike prices. In order to make
the prices of the two models comparable, the volatility parameter for the GBM has been
set equal to the implied volatility obtained using as prices for the plain vanilla calls those
given by the CEV model. This table shows that the relative difference between the prices
computed with the two models can be greater than 10% !2. This significant difference is
confirmed when calculating the Delta and the Gamma. Using the same parameters we
have obtained a delta (gamma) of 0.5779 (-0.0269) for the CEV process and a delta of
0.4692 (-0.0381) for the BS process (a 23.17% (-29.40%) difference).

[INSERT TABLE 6]

6. Conclusions and suggestions for further research

In this paper we have proposed a computationally simple method to price discrete barrier
options. The idea is to approximate the price function by a linear combination of hat
functions at every monitoring date. The coefficients of this linear combination can be easily
obtained by recursion. Our approach can deal with time-varying barriers and can be used

1See for example Boyle and Tian [11] that price barrier options using a trinomial tree, Davydov and
Linestky [19] using a Laplace transform approach and Lo and al. [36] using eigenfunction expansion.

2Using the same parameters as in Table 6 and increasing the time to maturity to 1 year, the percentage
difference becomes superior to the 20%.



when the transition density of the underlying process is known analytically.. The accuracy
and the computational cost of the scheme are not sensitive to the distance between the
underlying asset price and the barrier. Moreover, the method allows the computation of
accurate Greeks.. Finally, we have treated the GBM and CEV case in great detail. We
believe that our method could be successfully applied to price Bermudian options and
other path dependent exotic securities such as Asians and Lookbacks. Other extensions
to multidimensional processes also deserve some attention.
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A. Appendix A

In this Appendix we give some Lemmas in order to establish the convergence of the scheme.
In particular Lemma 2 and Lemma 3 state that when we can compute analytically the
integrals appearing in (4.10), the convergence of v/ to v, is guaranteed.

Lemma 2. Let vy be a Lipschitz continuous function on [, u], twice continuously differ-
entiable on [l, u] except at a finite number of points, then we have:

Con

llvo = 15" llo < — (A1)
and o
o1 = of"lloo < —3 (A.2)

where Cy, is a positive constant depending on vyq.

Proof. The proof is a consequence of [27] pag. 18, Def 1.4.10 remark 1.4.11. and some
properties of the function L;(z), i =1,2,....4¢

Lemma 3. Let w(y,Tn; ), ¢ € [l,u], y € [I,u] satisfy the following assumption:

T, = sup / |lw (y, Tn;2) |dy < T, n=0,1,..., (A.3)
J1

I<z<u
where T' is a positive constant, and let v, be the solution of (4.1) with vg assigned and v*
be the solution of (4.9) and (4.11). Then we have:
lons1 — v 1lloo < T Tellvo — o8 lleo < T lv0 — 0llon (A.4)
s=0

Proof: Subtracting equation (4.9) from (4.1) we obtain:

U1 (&) — 03 () = [ 0y, 2) (n ) — o7 @) dy,z € [bu]  (A)

and using the supremum norm in (A.5), we obtain:

U
st — 07 lloo < llom — 07%loo sup /l o (4, 7n; 2) |dy < Tallom —v™loo (A6)

<e<u

The thesis follows by recursion on n from (A.6).4

Lemma 4. Let v,, v]* be as in Lemma 3 and vy as in Lemma 2 then we have
Cu ¢ gnCon

n
llvn — vi'lleo < I—IlTp_,,:;£ <1
p:

(A7)

m

Proof: It is a straightforward consequence of Lemmas 3 and 24



B. Appendix B

Using expressions of the quadrature formulae, we prove the following Lemmas, where we
use the matrix norm induced by the vector infinity norm, i.e., the maximum absolute row
sum. The implications of these Lemmas is the result in Theorem 4.1 in the main test.

Lemma 5. Let

n Ow
D} = sup sup |5 (y,Tn;®) (B.1)
I<a<u I<y=<u | O
then we have: 5
h
VB~ B oo < (u— 1) (B.2)
and
| Hnm — Hyymlloo < (u— l) (D4 +4D3/h) (B.3)

180
Proof: It follows from the quadrature rule applied to w (-, 7p; ) L; (-) .4

Lemma 6. Letal,, ., a;§+1’m, aj,,, and a§ ,,, as in equations (4.19), (4.20), (4.21). Then
we have:

2n,m = a7 mlloo < llagmlloo | Y 1Hn—jim — Ha—jmlloo H 1 Hx sm“OOH”Hn simlloo
Lj:l s=j+1
(B.4)
and:
[ n
||an,m_a§,m”oo < llag,mlloo Z“Hn—j,m _']m”OO H [} sm||00H||Hn symlloo
_j=1 s=j+1
(B.5)

Proof: We have:

i T T T
anm — &y = Hp—18n-1,m — Hn—lan—l,m —Hpyma + Hpcim@_1m (B.6)

and using the vector maximum norm, we have:

l12n.m — a5 mlloo < 1 Hn—1,m — Hy_y mlloollan_1 mlloo + 1 Hn—1mllcollan—1,m = a5_1 s loo

(B.7)
Equation (B.7) implies:
lanm — a7l < IHn—1m — Hy_y mlloollan_1 mlloo (B.8)
+”Hn—1,mHoo||Hn—2,m”oo”an 2,m — An—2 m”oo
| Hn-1,mlloo | Hn—2,m — He 2m”00||a~n 2,mlloo
Using (B.8), (B.7) and (4.19) we have:
n j—1
l2n,m = a5 mlloo < D 1Hn—jm — Hr_j mlloollan—jmllco | [ 1Hn—tmlloo (B.9)
j =1

where [[7_] is 1if j — 1 < 1.



Finally, using (4.19) into (B.9) we obtain:

n n—j—1 7j—1
T
lanm = anmllco < | D 1 Hnjm — Hi_jmlleo [[ 1Hamlloo [ [ 1Hn—smllco | lla0mllco
j=1 s=0 s=1

(B.10)
Arguing analogously, we obtain (B.5).4

Corollary 3. Let 7, = 7, n = 0,1,... and Hpm = Hpn, Hg:m = HE, H;Zm = HE,
n=20,1,..., then we have:

n
[an,m — a% mlloo < l120,mllool| Hm — Hlloo > N H A5 | Hon[25 7 (B.11)
j=1
and .
l[anm — a5 nlloo < l|a0,mlloo | Hm — Halloo > | Ha |2 || Hom |25 (B.12)
=1

Proof: It is a direct consequence of Lemma 6. ¢

Lemma 7. Let T;, be the constant defined in (A.3) and let Hy ,, be the matrix in (4.14).
We haveVn=1,2,...andVm=1,2,.... :

|Hpmmlles € ITn < T (B.13)
Proof: We have:
m uw
[Hnmlleo = max /l w (Y, Tn; Tim) Lj (y) dy| < (B.14)
sism .

IA

mo oy u m
Z/l [w (Y, Tn; Ti,m) Lj () dyl :/l w (¥, T Tim) dyl > Lj (y) dy
=1 -

=1
Since Y 7" Lj (y)=1, Lj (y) 2 0 Vy € [0,1], j = 1,...,m the thesis follows.4¢

Lemma 8. Let w (y,Tn; %;m)be a positive function (this is always satisfied being w a
transition density). Let T, and D% be the constant defined in (A.3), (B.1) respectively, let
HT . and Hf m be the matrices defined in formulae (4.17) and (4.18), when D} < o0,
n=1,2,..., we have:

[F2cp o . ES 8 (B.15)
and

52 s € Trsn=1,2; .. (B.16)

Proof: We give the proof for H,{m.

m
T _ T
[ Hpmlloo = 1r5%agﬁzg|(Hn’m)i’j
=

m
_ T
= max > (H7.),
s
. " . (u ) 2
< lim sup |w (y, Tn; ®sm) |dy + h*Dj
m—+00 1<<m | Ji

(u_l) nooq: 2 __
< Tn+-75=Df lim K=T, (B.17)

—1
12

where we have used the fact that h = (v — 1) / (m — 1). This concludes the proof.4¢



Lemma 9. Let n be fixed. Then:

m [|ap,m —ak,llo =10 (B.18)
m—0o0
and
Hm_[|anm — a5 mllec =0 (B.19)
m—0oQ

Proof. The proof is a consequence of Lemma 6, Lemma 7 and Lemma 8 taking into
account that ||a, m|lc < ||volleo (see (4.11)).4



Table 1. Computational cost of the trapezium quadrature increasing the number of
nodes m on the grid-spacing. The first column gives the number of nodes in the dis-
cretization, the second column the computational time (in seconds) required to estimate
the price, the third and fourth column the estimated price using Trapezium and Simp-
son approximation respectively. Parameters: spot price=100, strike =100, /=95, ©=110,
r=0.1, 0=0.2, T'=0.5, n=25.

m Time Trapez.  Simpson

100 07 0469 0.162841 0.162972

200 0716  0.162950 0.162987

400 0”77  0.162978  0.162987

500 1732 0.162981 0.162986
1000 5728  0.162985 0.162987
1200 7764  0.162986 0.162987
1500 12708 0.162986 0.1629896
2000 21780 0.162987 0.162987
2400 31770 0.162987 0.162987

Table 2. Convergence of the estimated price to the continuous monitoring solution. In
the first column we have the number of monitoring dates, in the second the computational
time (in seconds) required and in the third and fourth column the estimated prices using
Trapezium and Simpson approximation. Parameters: spot price=100, strike =95, =90,
u=110, 7=0.05, 0=0.2, T=1, m =1200, continuous monitoring solution= 0.043002

n Time Trapez.  Simpson
50 14723 0.163939 0.163941
100 27746  0.118936  0.118938
150 40”75  0.101691 0.101692
300 80752  0.081674 0.081677
600 160705 0.069166 0.0691695

1200 319718 0.061126  0.06111
4800 1333”37 0.05226  0.05226
12000 3324742 0.04924  0.049254




Table 3. Comparisons of the proposed scheme with the Markov Chain method (MCh)
using the results reported in [20], Montecarlo simulation (MC), and Tree method using
the results reported in [14]. Parameters: spot price=100, strike =100, r=0.10, 0=0.2,
T=0.5. The MCh grid has 1001 points. The MC method has been conducted using the
exact solution and with 10000 simulations and a time step equal to the distance between

monitoring dates. In the Trap and Simpson method the grid spacing has been set using
m = 1200.

l v n  MCh (1001) MC (10000) Tree Trap. Simpson
95 110 125 0.0756 0.0752 0.0758 0.0757  0.0757
95 125 125 2.4802 2.4822 24823 2.4818 24818
95 150 125 5.7998 5.7919 5.7999 5.7991  5.7993
95 110 25 0.1630 0.1633 0.1594 0.1630 0.1630
95 125 25 3.0058 3.0160 2.9895 3.0060 3.0061
95 150 25 6.2990 6.2757 6.2849 6.2990 6.2990
95 oo 125 6.1679 6.1662 6.1692 6.1657 6.1687
995 oo 125 1.9618 1.9580 1.9624 1.9579  1.9628
999 oo 125 1.5138 1.5104 1.5116 1.5082  1.5123

95 oo 25 6.6307 6.6370 6.6181 6.6305 6.6317
995 o0 25 3.3552 3.3494 3.3122 3.3588  3.3564
99.9 oo 25 3.0095 3.0118 2.9626 3.0084  3.0098




Table 4. Comparisons of the proposed scheme with the recursive integration method
(RI) in (3] where a grid with 2000 nodes has been used, the continuity correction based on
shifting the barrier level in [14] and the trinomial tree in [13]. In the table we consider a
single barrier down-out call option for different levels of [ and different monitoring dates.
Parameters: spot price=100, strike =100, u=00,r=0.10, 6=0.3, T=0.2. The grid spacing
for the Trapezium and Simpson method is m = 1200.

l
99
97
95
89
99
97
95
89

IR
Ny Roooo3

25

RI
4.4848
5.1628
5.6667
6.2763
2.8036
4.1064
5.0719
6.2003

Cont. Corr.

4.050
5.028
5.646
6.284
2.673
4.113
5.084
6.210

Trinom

4.489
5.167
5.671
6.281
2.812
4.115
5.081
6.21

Trap.
4.4891
5.1672
5.67098
6.2808
2.8114
4.1146
5.0805
6.2099

Simpson
4.4894
5.1675
5.6712
6.2809
2.8128

4.11598
5.0815
6.2101




Table 5a. Delta and Gamma for discrete Barrier Options in the BS model for different
monitoring dates using the Simpson scheme (the Trapezium gives the same results to the
fourth digit). Parameters: spot price=100, strike =100, /=100, u=110,r=0.1, 6=0.1,

T=0.5. The grid spacing is m = 1200.

n  DeltaSP GammaSP

10 -0.025 -0.0475

50  -0.0678 -0.0438
100 -0.0766 -0.0426
150 -0.0802 -0.042
200 -0.0823 -0.0417
300 -0.0847 -0.0413
400 -0.0862 -0.041
500 -0.0871 -0.0408

Table 5b. Convergence of the scheme in the computation of Delta and Gamma for
discrete double Barrier Options in the BS model as the grid spacing increases using the
Trapezium and the Simpson scheme. Parameters: strike = 100, spot price = 100, [=95,

u=130 r=0.1, 0=0.6, T=0.2, monitoring dates = 50.

m Deltalr GammaTr DeltaSP GammaSP
200 0.1226076 -0.0035806 0.1226398 -0.0035830
250 0.1226369 -0.0035796 0.1226574 -0.0035812
500 0.1226375 -0.0035871 0.1226428 -0.0035875
1000 0.1226325 -0.0035904 0.1226338 -0.0035905
1200 0.1226278 -0.0035918 0.1226287 -0.0035919
1500 0.1226300 -0.0035914 0.1226306 -0.0035915
2000 0.1226310 -0.0035909 0.1226313 -0.0035909
2400 0.1226332 -0.0035908 0.1226335 -0.0035908




Table 6. Prices for discrete Barrier Options in the CEV and BS model for dif-
ferent monitoring dates using the Simpson scheme. Parameters: spot price=20, [=15,
u=30,r=0.1, ccpy=v0.12% 20, T = 0.5, m = 1200. The percentage difference has been
calculated using the price in the BS worlds as reference. In order to make comparable the
two models, the volatility parameter in the BS model has been set equal to the implied
volatility calculated using the BS formula given the prices for plain vanilla call options in
the CEV model (some authors set 6%g = 0% py,/S. In the present case then it should be
ops = V0.12 = 0.34641 approximately the volatility we get for at-the-money volatility).

n  Strike Simpson CEV  ogs Simpson BS % Difference
1 15 4.9812 0.3721 4.579 8.78%
1 17.5 3.1319 0.3583 2.8773 8.85%
1 20 1.7218 0.3466 1.572 9.53%
1 22.5 0.7929 0.3365 0.7149 10.91%
1 25 0.278 0.3277 0.2459 13.05%
10 15 4.67 0.3721 4.1376 12.87%
10 17.5 2.9543 0.3583 2.6338 12.17%
10 20 1.6064 0.3466 1.4238 12.82%
10 22.5 0.718 0.3365 0.6275 14.42%
10 25 0.2372 0.3277 0.2032 16.73%
20 15 4.5705 0.3721 4.0076 14.05%
20 17.5 2.8922 0.3583 2.5567 13.12%
20 20 1.5651 0.3466 1.3754 13.79%
20 22.5 0.6911 0.3365 0.5983 15.51%
20 25 0.2224 0.3277 0.1885 17.98%
50 15 4.4648 0.3721 3.8726 15.29%
50 17.5 2.8255 0.3583 2.4761 14.11%
50 20 1.521 0.3466 1.3251 14.78%
50 22.5 0.6628 0.3365 0.5682 16.65%
50 25 0.2071 0.3277 0.1734 19.43%
100 15 4.4046 0.3721 3.7971 16.00%
100 17.5 2.7875 0.3583 2.4309 14.67%
100 20 1.496 0.3466 1.297 15.34%
100 225 0.6469 0.3365 0.5515 17.30%
100 25 0.1985 0.3277 0.1651 20.23%
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Figure 3: Rate of convergence of the Trapezoidal and Simpson versus the number m of grid points
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