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The Relation Between Implied and Realised
Probability Density Functions

ABSTRACT

In this paper, we test the ability of risk-neutral densities (RNDs) extracted from option data to
produce correct forecasts of the true densities of the underlying assets at expiry. Implied RNDs
are estimated with both parametric and non parametric methods. A number of new testing
procedures to assess the efficiency and unbiasedness of these density forecasts are presented. The
forecasting performance of RNDs is also compared to that of return distributions simulated from
GARCH-type models. Our findings suggest that implied RNDs represent poor forecasts of the
actual densities. However their forecasting performance improves substantially after adjusting for
the risk premium.

Risk management requires measuring, monitoring and controlling risk. In the financial markets,
these activities could be enhanced by the possession of reliable forecasts of future possible states
of the world. Given that such states are probabilistic, of particular interest is the market consensus
for the probability density function of future returns.

The most logical source of such probability density functions is the options market
because options prices reflect forward-looking distributions of asset prices. Given option prices
corresponding to a sufficient range of strike prices, it is possible to infer the risk-neutral
probability density function (RND) associated with the underlying asset. There is now a
significant literature on the extraction of this density function. Even though the density function
is the risk neutral one (reflecting prices, which may include risk premia, and not just
expectations) it is an important open question as to whether the risk neutral distribution provides
useful information concerning the probabilities of future outcomes. If it does contain such
predictive information, this would allow investors to refine their investment strategies and allow
regulators to pre-emptively intervene in financial markets to avert market turbulence.

To date, most of the work in this area has concentrated on the estimation of RNDs,

hypothesised how such forecasts could be used and provided limited anecdotal evidence of their
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predictive ability. Much less attention has been devoted to the rigorous ex-post assessment of the
quality of the RNDs as forecasts of the actual density of the underlying asset at expiry. This
research considers this problem: whether or not such RNDs provide an unbiased and good
forecast of the distribution of future prices for the underlying.

We will estimate the RNDs for options on the US Dollar/ British Pound and the S&P 500
for a period from 1986 to 2001 and assess how well these forecast the actual density of the
underlying assets. The first step is the choice of an approach for the estimation of the RND and it
is not obvious which of the alternatives should be used. Bahra (1997), Jondeau and Rockinger
(1998) and Coutant, Jondeau and Rockinger (2001), among many others, have previously
compared a variety of alternative methods for RND and the general conclusion is that both non-
parametric and parametric approaches will yield sensible densities. We will not directly examine
this question, but will choose a variety of methods for RND determination, which include
approaches suggested by financial regulators. We will also examine for the first time a parametric
approach based upon a special case of the generalised hyperbolic (GH) family: the Normal
Inverse Gaussian (NIG) distribution, originally introduced by Barndorff-Nielsen (1997, 1998).
By estimating RNDs in a variety of ways, we aim to assess if our ultimate hypothesis to be tested
(the efficiency of RND forecasts) is dependent upon the choice of RND estimation, and not to
directly compare the alternative approaches. To evaluate the RND predictions through time, we
will introduce a more robust and rigorous means of testing the hypotheses of efficiency and
unbiasedness, through a variety of distributional tests that have shown more statistical power
than the standard Komolgorov-Smirnov statistic. These techniques will also be adapted to the
case where the distribution is truncated at the extremes of the range of available strikes.

We find that for both the S&P 500 and the US$/BP, the RND is neither an efficient nor
an unbiased estimator of the realised probability density function (PDF). Our results are

consistent with a number of previously published papers. Using a data set similar to ours,



Weinberg (2001) found that the RND for the S&P 500 is a biased forecast with the greatest
source of error in the mean. As with his study, we adjust the mean of the distribution to account
for the risk premium. In contrast to his results, for one method of mean adjustment (a naive
substitution of the average risk premium), the S&P 500 RND remains a biased forecast of the
realised density. We also adjust the RNDs on the basis of some specifications for the investors’
utility function. In contrast to our previous approach to mean adjustment, we are unable to reject
the assumption that implied densities constitute unbiased and efficient forecasts. This result is
consistent with Bliss and Panigirtzoglou (2001).

To provide a comparison between implied RNDs and alternative ways of producing
density forecasts for future returns of the underlying asset, quarterly distributional forecasts for
returns have been generated according to GARCH-type assumptions for the volatility process.
The higher rejection of the null hypothesis of “goodness” of the forecast, recorded for the implied
densities, compared to the historical-based distributions, reinforces our conclusion that
unadjusted RNDs do not constitute an efficient forecasting tool.

The paper is organised as follows. The next section provides a brief review of the related
literature. This is followed by an examination of alternative methods of determining RNDs and
the presentation of methodologies chosen for testing their forecasting performance. We then
present the data sets used, results of the alternative methods of RND estimation and the results of
the forecast tests. A section is then dedicated to the comparison with the historical-based density

forecasts. The paper finishes with conclusions and suggestions for further research.

I. Related Literature

Initially, much of the research on the informational content of option prices concentrated on the
ability of implied volatility to predict the future realised volatility (for the time horizon of the

option’s life). The initial research examined common stock options (Latané and Rendleman



(1976), Trippi (1977), Chiras and Manaster (1978) and Beckers (1981)). Later, more emphasis
was placed on stock index options and options on futures. Examples of such research include
Canina and Figlewski (1993), Day and Lewis (1988,1992), Harvey and Whaley (1992) and
Christensen and Prabhala (1998). Most of these studies examined the S&P 100 stock index.
Options on the S&P 500 index futures were considered by Park and Sears (1985). The
conclusions of these studies are contradictory. Canina and Figlewski (1993) finds that for the
S&P 100 market, the implied volatility contained little information for predicting future realised
volatility. On the other hand, Christensen and Prabhala (1998) concluded exactly the opposite.

For options on other financial assets, the findings have also been contradictory. For the
German Government Bond market, Neuhaus (1995) reached similar conclusions as Canina and
Figlewski (1993). While for options on currency futures, Jorion (1995) concluded that implied
volatility does have substantial predictive power. Nevertheless, most studies have found that the
implied volatility is an upwardly biased estimate of the realised volatility.

However, the existence of implied volatility smiles complicates these tests. Given that
different implied volatilities are observed at different strikes, it is not obvious which one should
be selected as the forecast. In most of these studies, the at-the-money implied volatility is selected
and the smile structure is ignored. Many authors have found evidence for convex patterns of
implied volatilities as a function of strike prices (in a wide variety of markets). These include
Shastri and Tandon (1986), Kemna (1989), Xu and Taylor (1995) and Heynen, Kemna and Vorst
(1994). Furthermore, such patterns have changed after periods of unusual market turbulence.
Rubinstein (1994) examined options on the S&P 500 index and found that prior to the 1987 stock
market crash the implied volatilities displayed a symmetrical pattern relative to the price of the
underlying asset. After the 1987 crash, the pattern changed with the prices of lower strike price
options increasing substantially relative to higher strike price options. This result has been

interpreted as an expectation of more mass in the lower half of the expected probability density.



Such a pattern has been coined the “volatility skew”. Dumas, Fleming and Whaley (1998)
confirm this finding and find other time dependent divergences in the implied volatility patterns.

Given that such patterns exist, a number of approaches have Been proposed to correct for
this effect. One such approach is parametric: to derive an analytic option pricing model which
extends the approach of Black and Scholes (1973). A number of authors have proposed that
option prices can be seen as the sum of a Black-Scholes price plus adjustment terms which
depend on the higher moments of the underlying security stochastic process. Specifically, Jarrow
and Rudd (1982) used a generalised Edgeworth expansion, Corrado and Su (1996, 1997) applied
a Gram-Charlier expansion, while Madan and Milne (1994), and Abken, Madan and Ramamurtie
(1996) employed a Hermite polynomial expansion. Recently, Abadir and Rockinger (1997)
proposed a Kummer's function adjustment to the normal density function. These approaches
require additional unobservable parameters (for the higher moments) to price the options.

Related parametric approaches propose alternative functional forms for option prices.
One of the first papers that examined the (RND) distributions implied by option prices was Bates
(1991), who assumed a jump model parameterised using a Least Squares Method. In a similar
vein, Rubinstein (1994), Derman and Kani (1994) and Dupire (1994) take as given the market
prices of options and find the density function that is consistent with those prices. These methods
propose alternative forms: Dupire (1993) and Derman and Kani (1994) assume diffusion
processes, while Rubinstein (1994) suggests the use of a binomial framework. All three papers
assume that the volatility is a deterministic function of time and the strike price. However, tests
by Dumas, Fleming and Whaley (1998) reject the existence of such a deterministic relationship
and this line of research has now been called into question.

Since that time, a number of alternative functional forms for the RND have been
proposed. Ritchey (1990), Bahra (1997), Melick and Thomas (1997), Séderlind and Svensson

(1997), Gemmill and Saflekos (2000) have suggested a mixture of lognormals. Sherrick, Garcia



and Tirupattur (1996) have modelled RNDs with a three parameters Burr distribution. Aparicio
and Hodges (1998) have used a Generalised Beta.

The third method, which is non-parametric and is attributed to Shimko (1991, 1993),
relies on the fact that the risk-neutral density function is equal to the second derivative of the
option price relative to the strike price. Breeden and Litzenberger (1978) were the first to
demonstrate this. Assuming some functional form @, for call option prices, C, differentiating
this form twice with respect to the strike prices, K, will provide the relationship between the risk

neutral probability density and the smile surface:
0*C(K,T)
oK*

This approach requires a continuum of observable option prices. Since these do not exist in

¢ (K)= M
practice, Shimko suggests interpolating the prices of market-traded options and then deriving the
risk-neutral density function from these interpolated values. Shimko (1993) suggests the use of a
least squares method to fit a quadratic function to the volatility smile. This approach can be

expressed as:

S(K,t)=a@)+B,)K+B,t)K* +¢ )
where K is the strike price, T is point in time at which the implied volatility smile is estimated,
and the coefficients of the regression measure the intercept of the regression, the first and second
order effects can be interpreted as capturing higher moments of the distributional function ( 3, for
the skewness and [3, for the kurtosis).

Examples of non-parametric estimations of the RNDs can be found in Shimko (1993),
Ait-Sahalia and Lo (1998), Aparicio and Hodges (1998), Malz (1997), Campa, Chang and Reider

(1998). Jackwerth (1999) provides a review and a comparative analysis of the different

approaches, concluding that the results are not too dissimilar.



To date most of the published work on RNDs has concentrated on estimation issues
whereas much less emphasis has been placed on the formal assessment of the goodness of such
estimates. The most common instruments used to test for the accuracy of fit are the pricing errors,
computed as difference between the observed option prices and the option prices obtained from
the estimated implied RNDs, or alternatively, as difference between the observed and the
estimated implied volatility. These residuals are then averaged to compute aggregate indicators
which place more weight on larger errors than on smaller ones, such as the mean squared error
(MSE), the mean squared percentage error (MSPE) and the root mean squared error (RMSE).
Orthogonality tests have also been performed to check for predictability or/and existence of
patterns in the pricing errors.

The analysis of the forecast errors is usually accompanied by the computation of
summary statistics for the implied risk-neutral densities. The summary statistics conventionally
adopted are both traditional and robust measures of 1) location; 2) dispersion; 3) asymmetry; 4)
fat-tailness; 5) various tail percentiles. The average values and the distributions for these statistics
are then contrasted for alternative models. Most of the authors agree in finding similar values for
the first two moments across various models and large discrepancies in the higher moments of the
distributions, which seems to suggest that measures of skewness and kurtosis are highly model-
dependent and, therefore, quite unstable.

Some work on the robustness and stability of the estimates of the implied probability
density functions and their summary statistics has been done by Bliss and Panigirtzoglou (2002)
and Cooper (1999). Aparicio and Hodges (1998) have also investigated the time series properties
of RNDs. However, very little attention has been devoted by the existing literature to the ex-post
assessment of the quality of the entire RNDs as forecasts of the actual density of the underlying

asset at expiry.



Most research in this area has concentrated on the ability of RNDs to predict single
events. The most popular events to be examined are stock market crashes (see Bates (1991),
Gemmill (1996), Malz (1996), Jackwerth and Rubinstein (1996), Melick and Thomas (1997),
Gemmill and Saflekos (2000). Other studies have considered more general economic news (Bahra
(1997)), British general elections (Gemmill and Saflekos (2000)), announcements of interest rate
changes by the Federal Reserve (McManus (1999)).

As with the literature on the information content of implied volatility, the findings are
contradictory. Most papers, which have examined stock market turbulences, reject the hypotheses
that they were predicted by options prices. Bates (1991) concluded that options on the S&P 500
did not predict the 1987 stock market crash. Gemmill (1996) reached similar conclusions for
options on the FTSE 100. Bates (2000) further reports that since the 1987 crash, the RND of the
S&P 500 has consistently over-estimated left tail events. He concludes that investors retain fears
of a future stock market crash even though this has failed to occur. For options prices to be
consistent with crash risk, events similar in order and magnitude to the 1987 stock market crash
would have to occur every two to three years. Gemmill and Saflekos (2000) concludes that RNDs
are not able to predict future market turbulence but react to it. Essentially RNDs are backward
and not forward looking. Using a different methodology, Shiratsuka (2001) also found that the
implied PDFs for the Japanese stock market did not “extract useful information automatically
from the shape of an implied probability distribution” (page 18). He concludes that any
application to regulators (for the conduct of monetary policy) of the implied PDF approach is
extremely limited.

On the other hand, Bahra (1997) and McManus (1999) seem to provide some anecdotal
evidence of the forecast ability of RNDs for changes in Government interest rate policy. Campa,
Chang and Reider (1998) claim that RNDs correctly model the market expectations of currency

realignments.



For all these studies, an extremely limited number of events have been examined. A fully
systematic and formal analysis of the forecasting power of the RNDs over a long period, that
exploits the tools introduced by recent developments in the theory of density forecast evaluation,
has not been attempted, to our knowledge. However, this would be desirable, since we believe
that the investigation of the entire density would lead to a more accurate and complete evaluation
of the goodness of the distributional forecasts provided by the RNDs, in view of both a
comparative study of different specifications, and a more general assessment of the usefulness of
implied RNDs for forecasting.

While this paper was being written, we became aware of similar work in this area by
Weinberg (2001). As in our research, Weinberg (2001) examined the predictive ability of RNDs
(on US Dollar/Yen, US Dollar/Deutsche Mark and the S&P 500 options) for long time periods
and not solely for individual events, through formal goodness-of-fit tests based on the empirical
distribution function (EDF). He concludes that the RNDs for these markets are not efficient /
unbiased forecasts of realised densities. More specifically, he compared the forecasting
performance of a volatility smoothing method with that of a Black and Scholes lognormal
distribution through the investigation of Anderson-Darling, Cramér-von Mises and Watson
statistics. Given that EDF tests require independent realisations, Weinberg chose to enlarge the
sample size by computing the EDF statistics with a Monte Carlo technique. Our study differs
from this work under two aspects. First we produce a much wider battery of tests, more
informative on the nature of the misspecification in the RNDs when rejection of the hypothesis of
predictive accuracy occurs. Secondly, for constructing the test, we only rely on the actual total
number of quarterly contracts available in the sample for a given underlying. By working only
with non-overlapping observations, we restrict our data set severely, but the requirement of

independence is met and no further adjustments for interdependence are needed.



Other related research is by Bliss and Panigirtzoglou (2001), who also examined options
on the S&P 500 (and options on the Financial Times 100 stock index, FTSE 100) for a similar
time period to ours. In contrast to our study, which is restricted to quarterly non-overlapping
periods, they examine a variety of option expiration horizons from one week to six weeks.

It is well known that the representative agent’s subjective density function can be
obtained by dividing the risk neutral density by the (normalised) marginal utility of the agent. It is
only in the unlikely case of a risk neutral representative agent that no adjustment is necessary.
Bliss and Panigirtzoglou (2001) assume that an assumed utility function is stationary with the
result that with time varying RNDs will yield time varying subjective density functions. They
estimate the utility function that provides the best possible fit between the subjective and realised
densities. As with our study, Bliss and Panigirtzoglou (2001) reject RNDs as unbiased efficient
forecasts of realised densities, but find that the utility adjusted densities perform better. In this
study, we also consider a power utility adjustment for the RND and also find that it performs
better. As opposed to Bliss and Panigirtzoglou (2001), we are unwilling to conclude that the
subjective density forecast are "good" forecasts but merely that there is insufficient evidence to

prove that they are "bad" forecasts.

II. Alternative Methods For Estimating Risk-Neutral Densities

We follow four alternative approaches to the estimation of the risk-neutral distribution function:

three parametric and one non-parametric approach. Each will be examined separately.

A. Estimating RND using a Generalised Beta Approach
The parametric approach is based on the assumption that the risk-neutral distribution belongs to a

general family distribution and its unknown parameters are estimated from the option or asset
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data. For this estimation method, we first employ the Generalised Beta of the second kind (GB2).
GB?2 is defined (McDonald (1984)) as follows:

ap-1

laly

GB2(y;a,b,p,q) = — apra
bB(p, gL+ (»/b)°]

®)

for y >0,and GB2(y;a,b, p,q) =0 otherwise.

The expressions for its distribution function and #™ moment respectively are,

LR )
L @/)°)  lpl-g 20

1 a “4)
pB(pg) 2| p+1 1H0/D)

b"B(p+h/a,q—hla)

= B(p,q)

®)

1
where B(p,q) denotes the beta function, as given by B(p,q) = J.tp_] (1-1)""dtand ,F,
0

represents the generalised hypergeometric series defined by:

Ay @y3x | & (a));-(a,); X
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p ,{ - } ,.Zzol(b,),....(bp),. il (6)

The mean as well as the shape of the GB2 is determined by the four parameters of the

distribution. The parameter b affects directly the mean of the GB2,

_bB(p+1/a,q—1/a)
B(p,q)

For large values of the parameter a, the value of b will be close to that of the mean of the

E(y)

()

distribution. The other three parameters of the GB2 have a direct effect on the shape of the
distribution. The parameter a is associated to the speed with which the tails of the density
function approach the x-axis. Large values of aentail faster approach to the axis. The term

aq determines the fatness of the distribution. No moments of order equal to or higher than

aq will exist'. The parameters P,q must be strictly positive for the beta function to be defined
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and work interactively in determining the skewness of the distribution. A decrease in the value of
p leads to an effect that is the opposite of that of g.

We use the Generalised Beta of the second kind because it provides greater flexibility.
Compared to the lognormal, it allows for either positive or negative skewness and also for the
existence of even infinite moments. Furthermore, GB2 can be replaced by any distribution from a
wide range because it includes a wide range of well-known distributions. The generalised gamma
as well as the lognormal density are limiting cases of the GB2 as the value of g approaches
infinity. Moreover, distributions such as the chi square, exponential, gamma, Burr type 12, and
Burr type III can be expressed as both limiting and special cases. Finally, using the parametric
estimation allows having estimates beyond the corresponding strike range.

Under the assumption that the risk neutral distribution belongs to the distribution family

of the GB2, the values of the call and put options can be expressed as follows:

C/(K)=e™ [(S; - K,)GB2(S;;a,b,p,q)dS, , i=l.n 3.1)
K,
K;
P(K,)=e" [(K,-S;)GB2(S;;a,b,p,q)dS,, j=1.m (8.2)
0
S, =e™ [$,GB2(S,;a,b, p,q)dS, (8.3)
0

where n and m denote the number of call and put option market prices with the same maturity, for
different strikes and for a given contract per day.

We estimate the four parameters of the GB2 distribution by minimising the sum of the
squared errors between observed market option prices and the theoretical option prices calculated
accordingly to the above equations. Because calls and puts are evaluated from the same
distribution, they are both involved in the estimation of the parameters of the GB2 distribution.

Moreover, the forward price of the underlying is treated as an additional observation so that we
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ensure that the mean of the distribution is the forward price. The estimation of the four

parameters of the GB2 distribution involves minimising the following objective function:

2

MznZ[C(K 7)— c] +i|:P(Kj,z')—1;J} +[E(S,)-F[ 9)

a,b,p,q

The estimation of the parameters involves a non-linear least squares minimisation
problem. Using the recovered implied volatilities and the Black-Scholes option pricing formula,
we calculate the pseudo-European option prices. These are used as the observed market prices in

the minimisation problem.

B. Estimating RND using a Normal Inverse Gaussian Approach

Many recent studies (Barndorff-Nielsen (1997, 1998), Rydberg (1997)) have suggested that the
distribution of logarithmic asset returns’ can be well fitted by a particular distribution belonging
to the class of generalised hyperbolic (GH) densities, the Normal Inverse Gaussian. The NIG

density function is given by:

-1
NfG(x;a,ﬁ=#a5)=ﬂ'lae‘”["z‘ﬁz]'ﬂ”q(%) K1{5aq[x;ﬂ]}e”" (10)

where q(x): \/il +x ) ,ueR, 6>0,0<|f| < aand K| is the modified Bessel function of

third order and index 1. The moment generating function of a NIG possesses a nice and neat

expression:

M(u;a,ﬁ,,u, exp[é{\/ - B> \/a - ,B+u) )}+yu} (11)

which allows a convenient way of mapping between the parameters of the distribution and the
first four moments. As an intuitive explanation of the parameters, « represents a steepness
parameter, [ is an asymmetry parameter, ¢ describes the scale and u the location of the
distribution. A further advantage of adopting a NIG specification consists in its property of being
closed under convolution, not shared by alternative GH distributions.
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Despite its ability to account for crucial features of the distributions of financial asset
returns such as semi-heavy tails and asymmetry, and its parsimony in the number of parameters to
be estimated, the NIG has never been proposed in the past as a possible parametric specification
for the RNDs implied from option prices. We believe that the flexibility and tractability of such
distribution make it appropriate for our purposes. Therefore we estimate the parameters of the

implied NIG RNDs by solving a non-linear least squares minimisation problem of the kind in (9),

where:
C(K)=eT [(Soe™ —K,)NIG(xp;0t, B, 1,8 )dbry , i=1.n (12.1)
K;
K;
P(K)=e" I(Kj—SOe’T)NIG(xT;a,B, w,8)dx,, j=l.m (12.2)
0

under the constraint that the mean of the implied distribution for the underlying equals the

forward price, exactly as before.

C. Estimating RND using a Two-lognormal Mixture
Many studies indicate the mixture of lognormal distributions as a good candidate to represent the
RND function, given its flexible specification that allows approximating quite a wide range of
shapes. In fact, this functional form seems to be the preferred one by the policy-makers in quite a
few industrialised countries. Even though we think that such a distribution is not the most
appropriate parametric form in this context, given the large number of parameters to be estimated,
we included it in our analysis for completeness and to provide an alternative parametric
specification to be compared with the generalised beta and the NIG.

We recall that the prices of European call and put options at time ¢ can be written as

follows:

C(KI’T): e Eq(STXST —Ki)dST 7 (13.1)
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P(K,t)=e™ [ 4(5,)K, - 5, )ds, (132)

Here we assume that the density function ¢(S7) is given by a mixture of two lognormal density

functions, that is

q(S;)=Y,L(;, B35, )] (14)

where L(o,;, B ;; S7) is the i™ lognormal density with parameters o; and B ;

a; =111S+(pi——%0".2}( and B, =cr,.\/1:— fori=1,2. (15)

Given the assumption made on g(S7), equations (13.1) and (13.2) can be expressed as follows:
Ci(KnT ) =e™ E [GL(ala BI;ST)+ (1 -0 )L(OLZ, BZ;ST )KST - Ki )dST (16.1)

P(K; )= ["PLE, BiiS;)+ (1-0)L(s, By S, K, — S, S, (162)

The estimates for the five parameters o, B, otz B2 6, are obtained by minimising the
deviation of the theoretical prices for both calls and puts given by (16.1) and (16.2) from the
market prices, across the available range of strikes. The total sum of squared errors for call and
put options is minimised by means of a non-linear least squares optimisation routine. The

minimisation problem then becomes:

Min Y [C(K,0)-& T+ [P(K,0)- bT +be°“+°'5ﬁ‘z +(1-0)e=% _ems[ (17

o,02,8;,828
subject to B;, B> 0 and 0< 0 <I.
Bahra (1997) derives closed-form solutions to equations (16.1) and (16.2):
C(K,.,r)= e {3 le“‘*O‘SB'ZN(d )-K.N(d )J+ 1-6 )le“2+°'5522N(d3)— K,N(d, )J} (18.1)
e Bl e W N d)+ K N )]+ (-0 ) 0PN () + K N(-d,)} (182)
where:

~InK +a, + B}
B,

d = ; d, =d, - B, (18.3)
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—InK 2
dy = ;az"'Bz ’ d,=d; -, (184)
2

The existence of a closed-form solution represents a nice feature of the mixture of
lognormal densities, obviating the need for numerical integration in these equations and therefore,
ensuring higher computational tractability and greater accuracy in the minimisation process that

leads to the estimation of the implied RNDs.

D. Estimating RND using B-Splines
In contrast to the parametric approach, the non-parametric makes no distributional assumptions
about the risk-neutral distribution. The implied volatility curve is modelled and the risk-neutral
density function is recovered from the second derivative of the pricing formula with respect to the
strike price, according to Breeden and Litzenberger (1978).

To estimate non-parametrically the risk-neutral distribution, we use Shimko's approach
(1993) but in a more flexible way. To calculate derivatives, we need smooth option-pricing
functions. Therefore, we want to obtain a volatility curve that is as smooth as possible and also
fits the given data set as closely as possible.

For this purpose, we use a linear combination of cubic B-spline functions. We want the
smoothest function that lies within the given tolerance fo/ of the data. We estimate a cubic
smoothing spline f (De Boor (1978)) such that:

2

x(n
D" f(t)= J[D"’f(t)] dt  x(1)<t<x(n) (19)
x(1)
is smallest, for which:
E(f)= Y0, - 0(f (x,))* <ol 20)
i=1

with m = 2 leading to the cubic smoothing spline. The variables O; and O(f(x;)) reflect options

prices (both calls and puts will be subsequently examined in this research). D™ f(¢) corresponds
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to a roughness measure and fo/ to the penalty imposed on the roughness of the approximation. As
the level of the tolerance varies, the spline changes within the two extreme cases of the least-
squares straight-line approximation and the natural cubic interpolating spline. Given that the
available strike prices used to fit the cubic spline occur over a limited range (i.e. do not extend
from zero to positive infinity), we are lacking information regarding the extreme tails of the
distribution. While a number of solutions to this have been proposed to fill in missing data in the
tails (for example Jackwerth and Rubinstein (1996)), we have chosen not to model the tails.
Therefore, for the non-parametric specification, our analysis is limited to the estimation and
testing only of the truncated density. The B-spline estimation method provides us with the

truncated RND.

ITI. Testing Forecast Ability of Risk-Neutral Densities

As stated previously, we propose to apply a battery of goodness-of-fit techniques designed to
assess density forecasts for the purpose of investigating whether a sequence of observed values of

future prices comes from the estimated RND.

A. Density forecast evaluation: the Probability Integral Transform (PIT) approach
The key device in the field of density forecast evaluation is the probability integral transform
(PIT) approach, which dates back to Fisher (1930) and Rosenblatt (1952), and was subsequently

adopted by Dawid (1984).

Given a sequence of one-step ahead density forecasts p, (y,lQ,) of the conditional

density f,(y, IQ,), the probability integral transform of the realisation of the process y, taken

with respect to the density forecast is:

1)
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If the forecasts and the true denmsities coincide, assuming that the Jacobian of the
transformations is non-zero over the support of the realisations, with continuous partial
derivatives, then the sequence of the PITs z, is distributed as i.i.d. U(0,1) (see Diebold, Gunther
and Tay (1998)).

In the PIT approach the evaluation of density forecasts translates into assessing whether
the series of the probability integral transforms is i.i.d. U(0,1). For this purpose, Diebold, Gunther
and Tay (1998) suggest a visual approach, claiming that formal joint goodness-of-fit tests of i.i.d.
U(0,1), as well as related separate tests of i.i.d. and U(0,1) are not constructive in revealing the
nature of the misspecification when rejection of the null hypothesis occurs. Therefore, they use
histograms to evaluate unconditional uniformity and correlograms of both the levels and the
powers of the series z, to detect inaccuracies in modelling the linear and non-linear dynamics of
the true process.

Formal goodness-of-fit testing procedures based on the PIT, have been employed more
often in the relevant literature. The most popular amongst these techniques is certainly the
Kolmogorov-Smirnov test. Cnkovic and Drachman (1996) use the Kuiper statistic. Noceti, Smith
and Hodges (2000) present a comparative study on the power of several alternative techniques,
mainly based on the PIT, to detect misspecifications of different type in the forecasted
distribution. As a result, they point out the lack of power displayed by the Kolmogorov -Smirnov
test against alternative methods.

Stressing the inadequacy of the tests usually associated with the PIT approach for
realistic sample sizes, Berkowitz (2001) suggests a modification of Rosenblatt’s techniques. A
further transformation to normality is applied to the series z, of probability integral transforms:

x, =@ (R(y,)) (22)
If the sequence of z is i.i.d. U(0,1), that of x, must be i.i.d. N(0,1). At this point, conventional

testing techniques for normally distributed data, whose statistical properties are well documented
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also for small sample sizes, can be applied. Berkowitz proposes to use log-likelihood ratio tests,
which, however, implicitly rest on the assumption of normality of the transformed series. Instead,
De Raaij and Raunig (2002) choose to test a simple autoregressive model, which embeds the i.i.d.

standard normal as a special case.

B. The PIT Approach and the Evaluation of Risk-Neutral Densities

The PIT result holds even if the forecasting model changes through time, and regardless of the
specific distributional form of the realisations y,, and of the way the forecasts have been obtained.
This latter aspect makes this approach particularly suitable to our problem of evaluating the
forecasting performance of RNDs, since RND functions are extracted from option prices and may
not be generated from a specific model. In the context of interest, p, denotes the sequence of
RNDs® and y, the sequence of observed values for the underlying at expiry of the contract.

Although the PIT approach seems to be both a flexible and a rigorous method to assess
the adequacy of RNDs as a forecasting tool for the actual distribution of the underlying asset, an
important issue arises here. The set of option prices and strikes across which the derivation of the
RNDs is made is discrete and, for some contracts, quite narrow. When we choose a parametric
approach to estimate the RNDs, the tails of the resulting distribution outside the range of
available strikes are implicitly obtained and, in general, no additional extrapolation needs to be
performed.* Therefore, in presence of an entirely specified density function, series of PIT z, can
be computed to assess the forecasting performance of RNDs, following exactly the procedure
described above.

On the contrary, the implementation of non-parametric techniques only consents to
recover the implied RNDs within the range of available exercise prices. The resulting density is
then truncated on both tails, and we only know the probability mass and conditional mean of each

tail.
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In this case, the PIT approach is applicable only to the truncated density, and the
assessment of the forecasting power is confined to the body of the distribution. Since the
probability integral transforms are obtained from a truncated, rather than an entire density, a
modification of (21) becomes necessary. The “truncated” version of the PIT can be expressed as

follows:>

. P@)-rl,.)

Z,

TR BK,,) e S @3)

where X,,,,and X, denote, respectively, the minimum and maximum strike available at time ¢ on
a certain contract and P,(.) is the value of the cumulative distribution associated with the density
forecast. As before, if the eétimate of the truncated RND function coincides with the actual
process followed by the underlying at expiry within the range of available strikes, the series of z,
is i.i.d. U(0,1).

However, in this context, the PIT technique provides a useful instrument for judging the
forecasting performance of RNDs only in the body of the distribution. To guarantee a complete
evaluation of the forecasting power of the informational content that can be extracted from traded
option prices, we need to integrate the PIT analysis with testing procedures applicable to the tails
of the distribution. Since we only possess information about the probability mass below the
minimum strike and above the maximum strike, the natural testing techniques seem to be the ones

used for evaluating probability forecasts.®

C. Testing the Tails of the RND Functions

The most common measures of accuracy for probability forecasts are the so called “scoring
rules”, based on the distance between the probability forecast P, formulated at time -/ for an
event at time ¢ (in our case, the forecasted probability mass in a given tail) and a binary variable
R, which assumes value of 1 if the event occurs (specifically, if the actual realisation of the

underlying falls in the tail), and value of 0 otherwise.
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Amongst the various “scoring rules”, we chose to work with the Brier’s (1950) quadratic

probability score, also simply called the Brier score:
1
B,==% 2R -R) @4

Clearly, B, assumes values between 0 and 2 and more accurate probability forecasts are reflected
in smaller values for the score. To assess whether B, departs significantly from its expected value

Z P,(1-P), Seillier-Moiseiwitsch and Dawid (1993) suggest the test statistic:
t

2 =Y (-2P)&, -P)/[3 (-2R) B -B)]"” 25)

which is asymptotically distributed as a standard normal.’

In what follows the combination of PIT approach and techniques for probability forecasts
evaluation is adopted to assess the quality of not only RNDs extracted via non-parametric
methods (B-splines), but also those modelled according to a parametric functional form
(generalised beta, NIG and mixture of lognormals). For the latter, this “combined” analysis is
additional to the application of the PIT approach on the entire RND, and consents a more
immediate comparison with the non-parametric specification, in terms of forecasting

performance.

D. Testing the Body of the RND Functions

In the present work, various alternative techniques suggested by the relevant literature have been
implemented to test the series of both truncated and entire probability integral transforms. Since
we restricted our attention to non-overlapping data, the sample size of the PIT series is very
small, equal to 60 observations. Many studies (Berkowitz (2001) and Noceti, Smith and Hodges
(2000)) have shown that for such a small sample size, most test statistics generally display very

little statistical power to reject the density forecast under the null when it is false. Therefore, we
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think that the comparison of findings obtained from several alternative testing procedures might

be more informative on the robustness of the results themselves.

Testing the uniformity of z, series

We start by computing empirical distribution function (EDF) test statistics, based on the vertical
difference between the EDF and the theoretical DF of the null. Let z) < zg) < ... < z;, be the
values of the z series (both truncated and non truncated) arranged in ascending order. Some
measures are computed as the supremum of that vertical difference: the most famous amongst

these measures is the Kolmogorov-Smirnov statistic, introduced by Kolmogorov (1933):

D= max(D*,D’) (26)
where: D" =max, {i/n - z(,.)}; D™ = max; {z(,.) —(i —l)/n}
A similar measure is the Kuiper statistic (Kuiper (1962)), defined as:
V=D"+D" 27
Many other tests are based on a quadratic measure of the difference between the EDF and
the distribution function under the null. Two of the most common statistics belonging to this class
are the Watson U? statistic, introduced by Watson (1961) and the Anderson-Darling (1952) A*

test, which are respectively defined as follows:

U* =Y {7, - @i-1)/2n)f +1/(12n)-n(z-0.5) (28)
(where z = Zizi /n)
A =-n-(U/ n)zi (2i - 1)[Iog Zggy Iog{l ~ Zfo1-i) }] (29)

Comparative studies of the statistical performance of various EDF tests (D’Agostino and
Stephens (1986) and Noceti, Smith and Hodges (2000)) suggest that D and A” are particularly
appropriate for the identification of errors in the mean, U* and V are more appropriate for
misspecifications in the variance, whereas A? shows more power when the forecasted distribution

departs from the true frequency distribution in the tails. Since our aim is to detect generic
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deviations from the null hypothesis of simple uniformity of the z, series, we need to focus on test
statistics that possess good power against a wide range of alternatives. D’ Agostino and Stephens
(1986) identify Watson’s test as the best amongst the EDF statistics for this purpose. They also
recommend the Neyman-Barton smooth test of order 2 (N,) as a general omnibus test for

uniformity. This statistic, based on likelihood ratio methods, is defined as:
v, =1/\nY. m (z,), (30)
Ty (Z ) = 2‘/§y ;
T 2(2) = \/§(6y2 — 0.5),

and asymptotically distributed as x*(2).

Testing the normality of x; series
Berkowitz (2001) shows that most of the testing procedures described above are not powerful
enough for small samples. Therefore, we apply the inverse probability transformation in (22) to
the z, series. The resulting x, series should be i.i.d. N(0,1) if the RNDs coincide with the actual
distribution of the underlying asset. Both graphical methods and formal goodness-of-fit tests can
be implemented to test this hypothesis.

Berkowitz suggests to test the null hypothesis against a first-order autoregressive

alternative given by:
x, ~ 1 =plr, —p)te, (1)
such that the null of i.i.d. (0,1) translates into u = 0, p = 0, and var(g,) = 6 = 1. He proposes the

use of log-likelihood ratio tests. The log-likelihood function associated with the model in (31)

presents the following formulation:
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L(H,GZ, P)= —llog(Zn)—%logk2 /(1_ pz)]_ (x, —p/@-p)) N

2 262 /‘1— pzi
n-1 n—1  x, —ull—p)—px,_ ?
~logon)-" loécsz)—l= ( (202) ‘)J (32)

In order to test the hypothesis of independence across the observations, the likelihood ratio test

can be expressed as:

LR1=-2(L(13,6%,0)- L(1,62,6)) ~ °() (33)
Similarly, the likelihood ratio (LR) test for the joint hypothesis of independent observations with

zero mean and unit variance, can be formulated as:

LR2 = -2(2(0,1,0)- L(i1,6%,5)) ~ x*(3) (34)

Although the LR tests seem adequate for our problem since they should possess good statistical

power against general alternatives also for small sample sizes, they implicitly maintain the
assumption of normality of the x, series, instead of verifying it explicitly.

The normality of the transformed probability series is then assessed via the Jarque-Bera

and the Doomik-Hansen tests. The Jarque-Bera statistic (1980), probably the most common test

for normality, is formulated as:
JB=nlp,/6+(B,-37/24] ~ x*(2) (35)
where \/B ; is the sample skewness and [3; the sample kurtosis.
Arguing that the statistics VB; and P, are not independent, except for very large sample

sizes, Doornik and Hansen (1994) propose an alternative test for normality based on transformed

measures of skewness (z;) and kurtosis (z,), expressed as:
DH =zl +z} ~ %*(2) (36)
At completion of our testing experiments, we have also carried out diagnostic tests on the
single parameters of the autoregressive model in (31), which should be more informative on the
nature of the-violations of the assumptions made, when rejection of the joint null hypothesis
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occurs. First we estimate the parameters of the model using OLS, and then we apply #-statistics to
test the individual hypothesis 1 = 0 and p = 0, as well as chi-square statistics to test 6° = 1.3

To absence of both linear and non-linear dependence in the series of modified probability
transforms (both from the truncated and the entire RNDs) has been ascertained by plotting the
correlograms of x and x’ series.” Even though such analysis can provide some intuition on
potential misspecification of the dynamics of the forecasts, in general there is no one-to-one
correspondence between the dependence pattern shown by the x series and that of the underlying.
However, the study of the dependence in x is important also because the distribution theory for
many of the conventional goodness-of-fit tests rests on an assumption of independence of the

variable, which should be tested a priori.

IV. Data Sources

The estimates of the RNDs are obtained from quarterly prices of call and put options on:
- Standard & Poor’s 500 index future, for the period March 86 — September 2001;
- US Dollar/British Pound, for the period March 86 — September 2001;
We chose to work with quarterly data to ensure non-overlapping observations and to have as
many strike prices as possible. Specifically, we identified all expiration dates for the quarterly
expiration cycle during this period (March, June, September, December). On each expiration
date, we recorded the settlement levels of the futures contract expiring on that day, the futures
contract with exactly three months to expiration and all available option prices on this three-
month futures contract'’. Since the options are American style, the Barone-Adesi and Whaley
(1987) approximation has been used to recover the implied volatilities, which have then been
plugged back into the Black-Scholes formula to calculate the pseudo-European option prices
needed to compute the RNDs.

As is standard, all options prices which traded at the minimum level at the relevant

market or which allowed a butterfly arbitrage were excluded (see Jackwerth and Rubinstein
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(1996)). Furthermore, to reduce the potential problem of nonsynchronous prices for the options
and underlying futures, only those implied volatilities from the available out-of-the-money
(OTM) option contracts (not admitting arbitrage) were utilised. Bates (1991) and Gemmill (1996)
have shown that much greater deviations occur in the implied volatilities for in-the-money (ITM)
options relative to the OTM options. They suggest that this is due to futures and ITM option
prices not being recorded simultaneously. Thus, if the strike price was equal to or below the
underlying futures price, put options were examined; otherwise call options were examined.'' The
interest rate inputs were obtained from the Federal Reserve Bank in New York (US Dollar
Treasury Bill rate).

With this available data, we then estimated the RND from the options prices and then
compared the probability density forecast to the actual realised underlying futures price that
occurred in three month’s time. Given we examined fifteen years of data on a quarterly basis, we

had 60 observations in our analysis.

V. Results of the RND Estimation And Forecastability
A. Discussion of RND Estimates
Employing four alternative methods, three parametric and one non-parametric, we have estimated
the RNDs for options in the S&P 500 and the US Dollar/British Pound from 1986 to 2001.

Table I contains summary statistics for the time series of realised quarterly log-returns
and for the forecasted densities of the log-returns both extracted from option prices and simulated
from GARCH-type models for the volatility (as discussed in section VI). The first part of the
table refers to the currency contract and the second half to the index contract. For this latter
contract, the statistics have been computed for both unadjusted RNDs and RNDs adjusted through
Girsanov’s transformation to account for the risk premium in the equity market, as described in
subsection B.2. To provide a consistent comparison between moments of the observed point

realisations and those of the density forecasts, we proceeded as follows. Sample conventional
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measures of location, dispersion, skewness and kurtosis have been computed on realised log-
returns. Equivalent statistics have then been calculated for the distribution obtained as an equally
weighted mixture of the single density forecasts estimated for each quarter. This method seems
more appropriate than simply averaging the summary statistics of the individual densities across
time. However, simple averages of time series of the statistics have been computed as well, and
the average values for skewness and kurtosis are reported in the last two columns of the table.'?
The higher absolute figures obtained for skewness and fat-tailedness for the mixture can be
explained with Jensen’s inequality: since higher statistics are computed as ratios of moments, the
average of those ratios (method of time series) is smaller than the ratio of those average moments
(mixture method).

The RNDs of the currency options display very similar moments, whatever specific
functional assumption is made. The distributions exhibit slightly negative skewness and moderate
excess kurtosis. As expected, these moments underestimate the sample moments of the
observations, when the September 92 (EMU ejection of the British Pound) is included in the
sample. When this event is excluded, the kurtosis is estimated quite closely, whereas the
forecasted and realised skewnesses exhibit opposite sign.

For the S&P 500 options, implied NIG densities turn out to be more negatively skewed
and much more leptokurtic than the alternative specifications. The Generalised Beta distribution
shows instead the smaller values for the higher moments, however larger than the corresponding
moments recorded for the currency RNDs, as expected. Not surprisingly, the mean of unadjusted
RNDs is smaller than the sample mean since it does not account for the risk premium. The values
for dispersion and higher moments instead exceed the sample counterparts, supporting the
generally accepted conclusion that implied densities overestimate the skewness and fat-tailedness

observed in equity markets.
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For illustrative purposes, Figures 1 and 2 show plots of some pre- and post- October 87
crash implied RNDs for both the US$/BP and the S&P 500 options, under the NIG
specification.”® The densities implied from the currency options look very similar for both
periods, almost symmetric and slightly fat-tailed. As expected, the shape of the S&P 500 implied
distributions change substantially after the crash, becoming remarkably negatively skewed and
more fat-tailed.

Figures 3 to 6 report time series of the skewness and excess kurtosis for the index and
.currency RNDs. For the implied RNDs on the index, higher moments become much more volatile
after the 87 crash. The NIG densities display larger values of negative skewness and excess
kurtosis, which are also the most volatile. Less pronounced and volatile higher moments
characterise the other models, in particular the mixture of lognormals. For the currency options,
the three parametric models display very similar values for the higher moments, which are much
less pronounced and less volatile through time than those recorded for the index options. Table II
displays some summary statistics for the parameters of the RNDs estimated according to the three
parametric specifications.

As mentioned before, we have only estimated the truncated density for the non-
parametric specification. To compare the non-parametric to the three parametric approaches, we
have truncated the mixture of the lognormals, the NIG and the Generalised Beta at the lowest and
highest strikes. As an illustrative example, Figures 7 and 9 show the implied volatility smiles, as
produced by the B-spline approximation, for the S&P 500 and the US$/BP options on the 18" of
June 1992 and 4™ of June 1992 respectively. Figures 8 and 10 provide the corresponding
truncated RNDs for all the four estimation methods. For the currency, the four truncated RNDs
almost coincide. They differ for the S&P 500 options. The implied NIG and GB2 densities are
almost identical to the B-spline approximation, whilst the mixture of lognormals substantially

differs.
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In comparing the four alternative specifications, we remind the reader that the obvious
disadvantage of the B-spline approximation approach is that it does not recover the tails of the
RND outside the range of the available strikes. On the other hand, it provides greater flexibility.
No assumptions need be made for the underlying asset distribution and there is a better fit to the
implied volatility structure; however, with a danger of overfitting. In contrast to the non-
parametric approach, the three parametric specifications assume that the RND belongs to a
distribution family. Amongst the parametric distributions, we express preference for the NIG and,
to a slightly less extent, to the generalised beta, for their flexibility, the small number of
parameters to be estimated and, especially for the NIG, the excellent fit to the implied volatility
structure.® Despite its computational tractability and greater accuracy in the estimation of its

parameters, the mixture of the lognormals is not as flexible as the alternative specifications.

B. Are Implied RNDs Good Predictors? A Discussion of the Results.

Tables I1la and IIIb present the results from the tests conducted on the tails outside the
range of available strikes. For the right tail, the left tail and the combination of both tails we have
compared the frequency with which actual observations fall in those areas with the probability
mass assigned by the B-splines and the truncated versions of the parametric distributions to the
tails. We have also computed the test statistic based on the Brier’s score Y,” at 5% and 1%
confidence level.

Tables IVa and IVb display the results on the goodness-of-fit tests for uniformity of the
probability integral transforms z, computed for each contract type and both parametric and non-
parametric specifications for the RNDs. The critical values (at both 5% and 1% confidence level)
for D, A%, U? and V were taken from D’Agostino and Stephens (1986).

The results of the tests on the modified PIT (after a transformation to normality) for all

the estimation methods are shown in Tables Va and Vb. The first two columns report the t-tests
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on the parameters of the model in (31), with p-values in brackets. The third column displays the
chi-test on the variance. The two normality statistics and the two log-likelihood ratio tests follow.

Some Q-Q plots of the empirical cumulative distribution of the probability integral
transforms z, against their theoretical cumulative density (45° line) are also plotted in Figures 11-
14 for both contracts, under the NIG specification. The purpose is to provide a visual and more
intuitive tool to facilitate understanding of how the estimated implied RNDs differ from the actual

distribution of the underlying, when rejection of the null hypothesis occurs.

B.1. RNDs from Currency Options

When the implied RNDs for options on the US dollar/British Pound contract are defined only
within the range of strikes (B-spline and truncated version of the parametric forms), the
probability forecast for the right tail is rejected. More specifically, the figures in Table IIla
indicate that the forecasted probability mass in the right tail is a downward biased estimate of the
frequency with which the observed values for the underlying exceed the maximum strike. The
hypothesis that the body of the distribution well represents the corresponding portion of the actual
distribution cannot instead be rejected for the truncated versions of the parametric models. In
Table IVa, a rejection occurs for the B-spline, as suggested by the U?, V, and N, statistics, which
could be caused by a bias in the variance, given the low value for the estimated variance (0.6776)
[see Table Va]."* The good forecasting performance of implied RNDs modelled with parametric,
non-truncated, specifications can never be rejected according to distributional tests for
uniformity. However, when the transformation in (31) is applied, the normality of the resulting
series is rejected by Jarque-Bera and Doornik-Hansen tests, as a consequence of the
misspecification in the tails discussed before. The non-normality of the transforms for the (entire)
parametric distributions is also observable from the visual inspection of the Q-Q plot in Figure
11. This suggests that the previous failure to reject was probably due to the low statistical power

of uniformity tests rather than to the good fit of the implied RND to the actual density.
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B.2. RNDs from Index Options

The unadjusted battery of tests conducted on the S&P 500 options seem, at first sight, to lead to
quite different conclusions. In Table IIla, the tests on the tails for both the B-spline and the
truncated parametric distributions seem to indicate that the probability mass left in both tails
represents a good forecast of the actual frequency with which realisations of the underlying at
expiry fall into those tails. On the contrary, the values assumed by D, A%, N, (in Table IVa) lead
to a rejection of the predictive performance of the body of the implied RNDs for all
specifications, parametric and non-parametric.'® A deeper investigation via diagnostic tests
confirms the suspicion that the principal reason for rejecting is a bias in the mean,'” with the
addition of a bias in the variance for the B-spline. This result is not surprising, given the historical
evidence of the presence of a risk premium in equity indices which implies that the mean of the
risk-neutral distribution always understates the mean of the actual distribution. We propose two
measures of adjustment, in an attempt to remove the risk-premium effect from the actual

realisations for the underlying.

A simple mean-adjustment for the risk premium

The first adjustment consists of a simple shift in the mean of the distribution. Let:
1&0
AR==-)» —* (37
n Z:l: F, )
be the average value of the ratios of the actual observation (in three months time) to the forward

price observed at the point in time when the RND was estimated (at the beginning of the period).

1 18

The “adjusted” realisations, corrected for the risk premium, are computed as: O: =0, -—

AR
This type of adjustment possesses the nice property of keeping the actual mean of the distribution
equal to the forward price, without affecting the volatility, which remains unchanged. This
feature turns out to be particularly desirable when, as in our case, we only want to correct for a

bias in the mean. All the tests have then been recomputed on the adjusted observations for the

31



underlying and the same implied RNDs as before. The findings are now in line with those for the
currency options. The bias in the mean has been removed. Again the right tail is misspecified, as
indicated by the tests of the tails for the truncated distributions,' by the rejection of normality
assumption for the entire parametric specifications, displayed by the normality tests, and by the
Q-Q plots (Figure 13). In particular, the probability assigned to the tails overestimates the actual
frequency of observations in these areas. Most of the relevant test statistics also agree in detecting

a bias in the variance, which turns out to be significantly smaller than one.

A more rigorous adjustment

Following Bliss and Panigirtzoglou (2001), the second adjustment is an application of Girsanov’s
theorem and requires specific assumptions on the representative investor’s utility function U(Sy).
It is well known that when markets are complete and frictionless and a single risky asset is traded,

the subjective density function g(S7) can be related to the risk-neutral density function p(St)

through:?°
p ((S T)
_u(sy)
q(S;)= J.?;Td—x (38)
U'(x)
Common choices for U(S7) are the:
- . Sy -1
power utility function: U (S T) = 1 (39)
—Y
e—Ysr
exponential utility function: U (S T) =— (40)
Y

Both utility functions depend on a single parameter y. The power specification constitutes a
sensible choice to make given its analytical tractability and its constant relative risk aversion
(RRA), measured by the parameter y. A utility function of the exponential type is the
specification assumed in the application of the popular Esscher transform. However, it has

constant absolute risk aversion, whilst the relative risk aversion is time varying, depending on
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both y and the realisations for St. Given that the specific parametric forms hypothesised for the
RNDs do not support an exponential transformation, and that we give preference to constant RRA
utility functions, we have chosen to work with the power utility function.

Therefore, the transformation in (38) has been applied to the time series of all the RNDs
obtained under our three parametric models, for different choices of the parameter y. Summary
statistics for the resulting risk-adjusted density functions for values of yequal to 1 and 2 are
displayed” in Table I. As expected, the adjustment had the effect of pushing the mean of the
implied densities towards the observed one as well as reducing the gap between implied and
sample higher moments, which remain, however, overestimated.

All the tails and distributional tests have then been re-run on the risk-adjusted densities,
and the outcomes are reported in Tables IIIb, IVb, and Vb. Our findings indicate that we can no
longer reject, at 5% confidence level, the hypothesis that the risk-adjusted density functions
represent unbiased/efficient forecasts for the actual distribution of the underlying at expiry. The
only exception is given by the truncated version of the adjusted mixture of lognormal density,
with y = 1, which is rejected by LR1 and LR2 tests. These results clearly denote an improvement
in the quality of the density forecasts consequent upon an appropriate adjustment of the original
RNDs to account for the risk premium. However, we suspect that the inability to reject is largely
due to the low statistical power of our testing procedures for the small sample size considered.

We conclude this because Bliss and Panigirtzolou (2001) found that the parameters for
the power (and exponential) utility function varies as a function of the levels of the at-the-money
(ATM) volatility and also varies depending upon the term to expiration of the option.”” This
would suggest that splitting the available data to test these results would be warranted. However,
given that we have already utilised all available non-overlapping data, it would probably be
infeasible to split the data to test these additional hypotheses: we would most probably not have

enough observations to prove or disprove the additional hypotheses.
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Our main results can therefore be summarised as follows. For the contracts under
examination, unadjusted implied RNDs extracted from option prices do not represent an
appropriate forecast of the true distribution of the underlying at expiry, whatever functional form
(parametric or non-parametric) is chosen to model them. Not surprisingly, the main reason for
rejecting the predictive ability of RND is given by misspecification of the tails outside the range
of strike, on which very little information is available. The second reason (however, not common
to all specifications) seems to be a bias in the variance, i.e. an underestimation of the real variance
of the actual process. The worst specification turns out to be the B-spline, which tends to overfit
the actual option prices. The mixture of lognormals, the NIG and the generalised beta exhibit very
similar forecasting performances, only slightly better for the latter under the majority of the tests
implemented. However, parametric methods are clearly superior to the B-spline, perhaps
suggesting that parametric specifications are more appropriate for the purpose under
investigation.

The rejection of the predictive ability of the implied RNDs is stronger for the S&P 500
options. This is not altogether surprising, given the higher risk premium in this market. However,
things change when an adjustment for the risk premium is introduced. If a simple mean-
adjustment has the main effect of shifting the bias from the mean to the tails, a more rigorous
adjustment in the shape of the original RND translates into a sensible improvement of the
predictive ability of the resulting adjusted distribution. This indicates that not only unadjusted
RNDs from index options should not be used to forecast the actual underlying densities, but also
that particular attention should be paid to the specific methods employed to adjust to account for
the risk-premium.

As far as the testing techniques are concerned, our findings provide evidence of the
usefulness of a complete battery of distributional tests to assess the predictive ability of implied

RNDs. Given the small size of the sample of observations and estimated RNDs, some tests might
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lack statistical power. Therefore, a more robust and informative appraisal can be carried out by

implementing a whole set of complementary techniques.

VI. Assessing The Relative Performance Of RNDs: Comparison To Historical-

Based Density Forecasts

Even though RNDs fail to provide unbiased and efficient forecasts in absolute terms, it could well
be that they represent the best we can do in comparison with alternative ways of producing the
density forecasts. It is therefore of interest to assess the performance of forecasts made on an
entirely different principle.

In order to investigate this, we have used a GARCH-type model to produce distributional
forecasts for quarterly returns and then assessed their performance using the same methods as
before. Working with both the S&P500 and the US$/BP data, we estimated various GARCH
specifications. The estimates were made using only data available at the time the forecast was
made.

As customary, we assume that the evolution of the (demeaned) log-returns 4, follows the
conditional process:

h=0cg, 41)
where €, is an i.i.d. process with zero mean and unit variance and the conditional volatility c,is a
time varying, positive and measurable function of the information set at time #-1. Regarding the
particular process that describes the conditional variance 0%, we first investigate a simple

GARCH(1,1) specification as suggested by Bollerslev (1986):

o] =0, +o,hl +Bor, (42)
where oy > 0, o; * *0, B; * °0 and a; + ; < 1 to ensure stationarity. A vast literature (see, e.g.,
Hsieh (1989), Baillie and Bollerslev (1989)) indicates that the normal specification, originally

employed to model the conditional distribution, does not account for the significant fat-tailness
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exhibited by the empirical data. Therefore, following Baillie and Bollerslev (1989), we have also
chosen to use a Student’s ¢ distribution for the error.

When modelling the standardised returns on the index, the leverage effect observed in the
data (for which positive and negative shocks have a different impact on the volatility) must also
be taken into account. Several variants of GARCH models that introduce asymmetry have been
proposed by the relevant literature (TARCH, EGARCH, GJR, etc.) and many studies provide
evidence of their superior performance at describing equity time series (see Brailsford and Faff
(1996), Loudon, Watt and Yadav (2000)). After attempting different models,”> we have opted for
a very simple asymmetric GARCH that seems to guarantee robust estimates and reliable
forecasts. The conditional variance is modelled according to the following process:

o/ =0, +a1(ht-l _Kl)z +Bor, (43)
where k; represents the asymmetry parameter, which models the leverage effect for positive
values.

At the beginning of each quarter for the time period of interest we have estimated the
model in (42) with both normal and Student’s ¢ errors and the model in (43) with Student’s #
errors”* over the past series of daily returns. The series of past returns employed for the estimation
include daily returns from April 82 to the beginning of the quarter under exam. Therefore the
length of the estimation window increases as we consider more recent quarters. We chose to fit
our models over long return series in order to minimise the impact of extraordinary high or low
volatility periods on the estimation process and, therefore, to obtain robust and stable estimates for
the coefficients which constitute an essential basis for reliable forecasts.

Average values for the time series of the coefficient estimates, together with their
dispersion figures, are displayed in table VI. In line with the general findings for these models,
the sum of the AR and MA parameters is close to one, and the GARCH lag coefficients are large,

indicating that shocks to conditional variance die out very slowly. The average figures for the
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degrees of freedom suggest that conditional fat-tailed distributions are very close to the boundary
between finite and infinite kurtosis (which characterises Student’s ¢ with four or less degrees of
freedom). As expected, the sign of the asymmetry coefficient is positive and, therefore, consistent
with the leverage effect observed in equity markets. Perhaps with the exception of the number of
degrees of freedom, there is little variation amongst the estimates.

At the beginning of every quarter, the estimated coefficients are then used to produce

recursive daily forecasts of the returns over the following three months according to:

rl+l = “’ +Gl+181+1 (44)
with G,y =0, +d,h} +Bo} (45)
A2 A ~ \2 A 3
or G,y =4, +d,\h —X,] +Bo, (46)

where € ;+; are random numbers generated from a standard normal (for the GARCH model only)
and from a standardised Student’s ¢ (for both the GARCH and the asymmetric GARCH models)
with the estimated degrees of freedom.” The daily forecasts are then added up together to
compute the three-month return forecast and the process is repeated 10,000 times to obtain a
distribution for the simulated returns.

Summary statistics for mixtures of these simulated quarterly distributions are shown in
Table I, and contrasted to the corresponding statistics for implied RNDs and observed log-returns.
For the currency contract, the GARCH specification with fat-tailed errors produces moments
similar to the implied RNDs’ ones. However, statistics closer to the empirical moments are
obtained from the GARCH model with normal errors. For the S&P 500 contract, the most striking
feature is the gap between the kurtosis of the mixture distribution and the average kurtosis from
the time series of the distributional forecasts. In fact, the mixtures built on any of the GARCH
specifications exhibit higher fat-tailness than both the empirical sample and the mixtures obtained
from the implied RNDs.?® In contrast, only the asymmetric GARCH specification with ¢ errors

enables us to produce a mixture density with a significant negative skewness. The degree of
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asymmetry however, not only is far smaller than the asymmetry of the implied density
counterpart, but also underestimates the asymmetry observed in the data.

In order to test how closely our simulated distributions for the log-returns fit the actual
distribution, we have run the entire battery of tail and distributional tests on the density forecasts
from the various models. The results are reported in tables VII-IX.

The most appropriate specification for the currency contract seems to be the GARCH(1,1)
with fat-tailed errors.”” As for the implied RNDs, we record a misspecification of the right tail, due
to an underestimate of the probability of the observation falling beyond the maximum strike.
However, in contrast to the implied forecasts, the good forecasting performance of both entire and
truncated versions of the simulated distributions can never be rejected according to distributional
tests for uniformity and normality. These results suggest that the forecasts obtained by simulating
from a simple GARCH(1,1) process with Student’s ¢ errors do a better job in predicting the actual
distribution of returns than the distributional forecasts extrapolated from option prices.

The best choice for the log-returns on the index contract amongst our alternatives is the
asymmetric GARCH with fat-tailed conditional distribution. As for the currency contract, the
findings from our test statistics suggest that the distributional forecasts produced according to this
model outperform the (unadjusted) implied risk-neutral density forecasts. When the distribution is
split into tails and body, and each component tested separately, the goodness-of-fit is never
rejected, even though the results of the tail tests might indicate a misspecification in the right tail.
Rejection occurs only for the entire distribution from the Watson’s statistic and from the normality
tests on the transformed PIT series.

In this section we have assessed a variety of GARCH models estimated from historical
daily returns. We found that although some methods of implementing GARCH forecasts did not
produce robust results, some quite simple specifications could provide better forecasts that risk-

neutral densities implied from option prices. Our finding that the historically estimated forecasts
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usually dominate the forecasting performance of the RNDs supports the conclusion that these

RND forecasts seem not to be efficient.

VII. Conclusions And Suggestions For Further Research

A significant recent literature considers the risk neutral density function (RND) associated with
options prices. An informationally efficient options market, with sufficiently low risk premia,
could provide more precise information than other financial indicators about future levels of
underlying market prices and the amount of probability attributed to any given realisation. Bahra
(1996, 1997), McManus (1999) among others present the theoretical argument for this
relationship and suggest that RNDs could be used by financial regulators to avert future market
turbulence. Whether or not RNDs actually provide such information is the empirical issue
considered here. Previous research on this question has tended to rely upon single extreme
events. The general conclusion is that for stock markets, RNDs do not provide useful information
about future market distributions. Evidence for foreign exchange and interest rate markets is
mixed. Some studies find antecodal evidence for useful information, while others do not. In this
research we have asked whether or not such RNDs provide an unbiased forecast of the
distribution of future returns for options on the S&P 500 and British Pound/US Dollar.

Using a variety of methods to determine RNDs, we find that pure RND forecasts are
biased estimators of realised density functions. As with recent work by Weinberg (2001) and
Bliss and Panigirtzolou (2001), all the moments of the RNDs are biased estimates of the realised
moments of the probability density function. The major source of error for the S&P 500 was
initially found to be the mean value. As we may have an inappropriate drift adjustment (under the
risk neutral measure), the substitution of the actual mean of the density, corrects this error and
shifts the error to the higher moments. In both cases, we reject the hypothesis that RNDs for

either the S&P 500 or the currency are unbiased forecasts of the actual probability density
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function. Only after adjusting the shape of the original RNDs for the S&P 500, through a
Girsanov’s transformation, are we unable to reject the hypothesis that the resulting subjective,
risk-adjusted densities are unbiased. This is also similar to findings of Bliss and Panigirtzolou
(2001). However, it would be dangerous to conclude that an inability to reject the hypothesis of
efficient forecast ability of the subjective distribution should be interpreted as acceptance of the
subjective distribution as a "good" forecast. In our tests, the statistical tests are close to
significance levels that reject the efficient forecast hypothesis. In addition, the results of Bliss and
Panigirtzolou (2001) reject their own assumption of a stationary utility function. Therefore, we
conclude that instead of accepting the hypothesis that the utility adjusted RND is an efficient
forecast of realised density functions, we are merely unable to reject it. At the very least, there is
little disagreement that the RND density function is a poor estimate prima facia of the realised
density functions.

In support of our conclusion, we have also found that the forecasting performance of
distributions simulated from GARCH-type specifications for the volatility process is usually
superior to that of implied RNDs. Therefore also in relative terms, RNDs do not appear to be
efficient predictors of the true densities.

The results of this study, that simple RNDs provide only biased information about future
market dynamics, should be interpreted in the context of a number of other studies that have
reached similar conclusions in slightly different contexts. Gemmill and Saflekos (2000) show
that RNDs are reactive and not predictive, and studies of the predictive content of implied
volatilities (such as Canina and Figlewski (1993), Christensen and Prabhala (1998) and more
recently Hansen, Christensen and Prabhala (2001)) universally estimate them to be biased
predictors of future volatility, even where some information content is found. In general it seems
that implied volatilities look backwards more than forwards, and typically respond to past shocks,

providing exaggerated forecasts of the future.
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These considerations lead us to concur with Shiratsuka (2001) that the utility of RNDs
for financial regulators is extremely limited. The use of pure, unadjusted RNDs as indicators of
future market turbulence could be counterproductive. Such information would not indicate to
regulators when market turbulence was imminent. If recent market price dynamics were subdued,
it appears that the RNDs would be benign, provided no indication of future market turbulence. If
such market turbulence subsequently occurred, options markets would react to this with the
RNDs assuming density functions consistent with this shock. Therefore, if regulators reacted to
RNDs as though they were predictive, it could be that after the occurrence of a market crisis, they
would assume further crises would occur and act accordingly. Such reaction may be counter
productive if actions taken by regulators send signals to the market that further market turbulence
were expected. Our research suggests that RNDs do not provide such unbiased forecasts of future

market turbulence and are unsatisfactory indicators of such events.
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! This provides a tool for constructing leptokurtic distributions.

2 Here we assume Sy = Sy exp(X7), therefore Xr= In(S7) — In(Spy).

3 The estimated RNDs are non-overlapping (one at the beginning of every quarter, for the contract expiring
at the end of the same quarter), in order to ensure consistency with the requirement of independent
observations in the PIT analysis.

4 In fact, the tails are approximated in this case as well. However, if the family of the functional form
chosen for modelling the RNDs is not too rich, there will normally be a unique fit for the tails (see
Aparicio and Hodges (1998)).

5 The analogy with the formulation for the truncated version of a density function is evident.

SFora good review, see Diebold and Lopez (1996).

7 Since an accurate forecast produces a small value for B,, a one-sided test is more appropriate here.

8 The use of t-tests in the context under examination can still be justified asymptotically, even if the z-
statistic is not exact for autoregressive specifications, or for non-Gaussian error terms.

® Since the correlograms do not exhibit statistically significant autocorrelation, they have been omitted
here.

19 Clearly, for the first date in the analysis, the current expiring futures contract was not used.

""'In the instance that put and call options with the same time to expiration and same striking prices have
different implied volatilities, this indicates that Put-Call Parity is violated and that an arbitrage opportunity
may exist. In reality, it would most probably suggest that one of the option prices might be “old”. From the
previously quoted references, this would most probably be the in-the-money option. Given that liquidity
problems should not exist when dealing in the underlying futures, it would be a simple matter to combine
the out-of-the-money options with a position in the futures contract to create an in-the-money option with
exactly the same implied volatility. It might be possible for markets where selling the underlying asset is
prohibited, one would have to examine put and call smiles separately. However, the restriction of this
research to options on actively traded futures contracts precludes this case and thus, the smiles we have

estimated are not two branches glued together at the at-the-money level, but (by Put-Call parity) seamless.
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12 Mean and dispersion have been omitted since their figures were not significantly different from those of
the mixture density.

13 Analogue plots have been drawn for the two other parametric specifications, but we decided not to report
them here as they closely resemble the plots in figures 1 and 2.

14 As for the B-spline approximation, we run the risk of overfitting.

15 However, the null hypothesis of unit variance cannot be rejected at 5% confidence level.

16 Under some testing procedures, the rejection occurs more often for the truncated version than for the full
parametric specification. This could be explained by the fact that these tests place more weight on the tails
of the distribution, which are the original ones for the full distribution and which are somehow
“redetermined” for the truncated one. If the outcomes from the tail tests suggested that the original tails are
not misspecified, it is less likely that the full density specification is rejected by the distributional tests than
the truncated one.

17 The bias in the mean is also evident from the Q-Q plots (Figure 12), as the empirical distribution of the
transforms lies below the theoretical 45° line.

18 Note that that with lognormal distributions and power utility, the adjustment would take this simple
form.

19 Since the observed values have been adjusted, whilst the truncation points (corresponding to the
minimum and the maximum strikes) have been left unchanged, only the tail frequencies have been
affected, and the probability forecasts in the tails stay the same.

20 The denominator represents a normalisation for the subjective density function to integrate to one.

2! The risk adjustments and the corresponding tests have been done for the integer range of values for y
between 1 and 6. However, since the test outcomes do not differ substantially, we only report the results
fory =1, 2, which are the most sensible values to assume for the constant RRA parameter.

22 The fundamental assumption made by Bliss and Panigirtzolou (2001) is that the utility function is
stationary. In their research, they find that this is not the case. Their paper shows that the when the ATM
implied volatility is low, the tails of the distribution are underestimated and when the ATM implied

volatility is high, the tails are overestimated.

52



2 In particular we abandoned the EGARCH model because, even though we could obtain stable estimates,
the resulting forecasted distributions were far too volatile.

24 The asymmetric model was estimated only for the index.

25 Somewhat arbitrarily we assigned values for p of zero for the currency and 7% on an annual basis for the
index, rather than allow our estimates to be distorted by sampling error.

26 With the exception of the NIG specification.

27 These findings are consistent with Hsieh’s (1989) results on modelling foreign exchange rates.
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Figure Captions

Figure 1. Implied RNDs from currency options

A sample of implied Risk-Neutral densities of Normal Inverse Gaussian type extracted from

currency options before and after the *87 crash.

Figure 2. Implied RNDs from S&P 500 futures options

A sample of implied Risk-Neutral densities of Normal Inverse Gaussian type extracted from

options on the index future before and after the 87 crash.

Figure 3. Skewness Time Series for Implied RNDs - S&P 500

Time series of skewness of the implied Risk-Neutral densities extracted from options on the index
future. Comparison amongst the three alternative parametric specifications: mixture of

lognormals, generalised beta, normal inverse gaussian.

Figure 4. Excess Kurtosis Time Series for Implied RNDs - S&P 500

Time series of excess kurtosis of the implied Risk-Neutral densities extracted from options on the
index future. The excess kurtosis is computed with respect to a normal distribution (coefficient of
kurtosis — 3). Comparison amongst the three alternative parametric specifications: mixture of

lognormals, generalised beta, normal inverse gaussian.

Figure 5. Skewness Time Series for Implied RNDs — US$ / BP

Time series of skewness of the implied Risk-Neutral densities extracted from currency options.
Comparison amongst the three alternative parametric specifications: mixture of lognormals,

generalised beta, normal inverse gaussian.

Figure 6. Excess Kurtosis Time Series for Implied RNDs — US$ / BP

Time series of excess kurtosis of the implied Risk-Neutral densities extracted from currency

options. The excess kurtosis is computed with respect to a normal distribution (coefficient of



kurtosis — 3). Comparison amongst the three alternative parametric specifications: mixture of
lognormals, generalised beta, normal inverse gaussian.

Figure 7.

Plot of implied volatilities from option market prices and approximated with a B-spline function.

Data on S&P 500 future options at 18/6/1992.

Figure 8.

Plot of implied risk-neutral densities, modelled as B-spline, mixture of lognormals, generalised
beta and normal inverse gaussian, truncated at the bounds of the range of available strikes. Data

on S&P 500 future options at 18/6/1992.

Figure 9.

Plot of implied volatilities from option market prices and approximated with a B-spline function.

Data on currency options at 4/6/1992.

Figure 10.

Plot of implied risk-neutral densities, modelled as B-spline, mixture of lognormals, generalised
beta and normal inverse gaussian, truncated at the bounds of the range of available strikes. Data

on currency options at 4/6/1992.

Figure 11. Q-Q plots: currency options
Q-Q plots of the empirical distribution function for the probability integral transforms (calculated

with respect to the probability forecast) vs the theoretical distribution function of a uniform
distribution (45° line). The density forecast is modelled as a Normal Inverse Gaussian density.
Data on currency options. Sub a) is for the entire density forecast, sub b) is for the truncated

density forecast (within the range of available strike prices).



Figure 12. Q-Q plots: S&P 500 future options (unadjusted for risk premium)

Q-Q plots of the empirical distribution function for the probability integral transforms (calculated
with respect to the probability forecast) vs the theoretical distribution function of a uniform
distribution (45° line). The density forecast is modelled as a Normal Inverse Gaussian density.
Data on S&P 500 future options. Sub a) is for the entire density forecast, sub b) is for the

truncated density forecast (within the range of available strike prices).

Figure 13. Q-Q plots: S&P 500 future options (mean-adjusted for risk premium)
Q-Q plots of the empirical distribution function for the probability integral transforms (calculated

with respect to the probability forecast) vs the theoretical distribution function of a uniform
distribution (45° line). The density forecast is modelled as a Normal Inverse Gaussian density.
Data on S&P 500 future options. Observations mean-adjusted for the risk premium. Sub a) is for
the entire density forecast, sub b) is for the truncated density forecast (within the range of

available strike prices).

Figure 14. Q-Q plots: S&P 500 future options (adjusted for risk premium - Girsanov)
Q-Q plots of the empirical distribution function for the probability integral transforms (calculated

with respect to the probability forecast) vs the theoretical distribution function of a uniform
distribution (45° line). The density forecast is modelled as a Normal Inverse Gaussian density.
Data on S&P 500 future options. Probability forecasts are adjusted for the risk premium through a
Girsanov’s transformation assuming a power utility function with y = 1. Sub a) is for the entire
density forecast, sub b) is for the truncated density forecast (within the range of available strike

prices).



Table I. Summary Statistics for Actual and Forecasted Distributions

Summary statistics for time series of realised quarterly log-returns (sample) and for the forecasted densities both extracted from option
prices and simulated from GARCH-type models. For the index contract, the statistics are computed for both unadjusted RNDs and RNDs
adjusted through Girsanov’s transformation with power utility function. Sample conventional measures of location, dispersion, skewness
and kurtosis are computed on realised log-returns. Equivalent statistics are calculated for the distribution obtained as an equally weighted
mixture of the single density forecasts estimated for each quarter. Simple averages of time series of the skewness and kurtosis are also
reported in the last two columns of the table.

Mean St. Dev. Skew. Kurt. Skew.* Kurt.*

US$ / British Pound
Sample (full) 0.0101 0.0602 -0.4020 6.3930 - -
Sample (ex sept. 92) 0.0123 0.0521 0.3494 4.2397 - -
Implied RNDs Mixture -0.0017 0.0586 -0.1396 5.5477 -0.0909 42137
GB2 -0.0017 0.0581 -0.0638 4.9472 -0.0515 3.9291
NIG -0.0017 0.0584 -0.0953 4.8392 -0.0769 3.9793
Simulated GARCH#»  3.02E-05 0.0557 -0.0005 3.7678 0.0022 3.3581
GARCH ¢ 1.13E-05 0.0574 -0.0178 5.2279 -0.0104 4.8566

S&P 500

Sample (full) 0.0180 0.0793 -1.2059 6.2415 - -
Implied RNDs Unadjusted Mixture -0.0053 0.1054 -1.5161 9.1559 -1.1248 5.3709
GB2 -0.0046 0.1031 -1.3865 8.5881 -1.1969 6.3864
NIG -0.0056 0.1101 -2.5713 27.0292 -1.5612 9.4931
Adjusted Mixture 0.0001 0.1003 -1.3342 8.7682 -1.0881 5.1365
y=1 GB2 0.0003 0.0996 -1.2391 8.2547 -1.0428 5.2622
NIG -0.0002 0.1052 -2.0411 19.5538 -1.4932 8.5213
Y=2 Mixture 0.0052 0.0980 -1.2032 8.1518 -1.0698 5.4313
GB2 0.0055 0.0965 -1.0753 8.0381 -0.9905 5.4368
NIG 0.0052 0.0990 -1.5528 12.9225 -1.3385 8.0068
Simulated GARCH n 0.0160 0.1071 0.0569 11.9356 -0.0055 5.1237

GARCH ¢ 0.0159 0.0947 0.0693 13.8484 -0.0122 6.9809
AGARCH 0.0159 0.0924 -0.3171 12.0915 -0.3404 5.7866
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Figure 1. Implied RNDs from currency options

A sample of implied Risk-Neutral densities of Normal Inverse Gaussian type extracted from
currency options before and after the *87 crash.
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Figure 2. Implied RNDs from S&P 500 futures options

A sample of implied Risk-Neutral densities of Normal Inverse Gaussian type extracted from
options on the index future before and after the *87 crash.
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Figure 3. Skewness Time Series for Implied RNDs - S&P 500

Time series of skewness of the implied Risk-Neutral densities extracted from options on the index
future. Comparison amongst the three alternative parametric specifications: mixture of
lognormals, generalised beta, normal inverse gaussian.
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Figure 4. Excess Kurtosis Time Series for Implied RNDs - S&P 500

Time series of excess kurtosis of the implied Risk-Neutral densities extracted from options on the
index future. The excess kurtosis is computed with respect to a normal distribution (coefficient of
kurtosis — 3). Comparison amongst the three alternative parametric specifications: mixture of
lognormals, generalised beta, normal inverse gaussian.

Excess kurtosis implied RND - S&P500
30
25 &
20 & .
A ¢ Mixture
15 B
A . A GB2
10 A, A NIG
A Ay T
A A AL ash M4 - “A‘
> A 00400, G As
LTS (3 @, 6000,
o_lh-ll;; AL et ML E!
Mar-85 Decc-87 Sep-90 Jun-93 Mar-96 Decc-98 Sep-01




Figure 5. Skewness Time Series for Implied RNDs — US$ / BP

Time series of skewness of the implied Risk-Neutral densities extracted from currency options.
Comparison amongst the three alternative parametric specifications: mixture of lognormals,
generalised beta, normal inverse gaussian.
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Figure 6. Excess Kurtosis Time Series for Implied RNDs — US$ / BP

Time series of excess kurtosis of the implied Risk-Neutral densities extracted from currency
options. The excess kurtosis is computed with respect to a normal distribution (coefficient of
kurtosis — 3). Comparison amongst the three alternative parametric specifications: mixture of
lognormals, generalised beta, normal inverse gaussian.
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Figure 7.

Plot of implied volatilities from option market prices (small circles) and approximated with a B-
spline function (line). Data on S&P 500 future options at 18/6/1992.
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Figure 8.

Plot of implied risk-neutral densities truncated at the bounds of the range of available strikes.
Data on S&P 500 future options at 18/6/1992.
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Figure 9.

Plot of implied volatilities from option market prices (small circles) and approximated with a B-
spline function (line). Data on currency options at 4/6/1992.
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Figure 10.

Plot of implied risk-neutral densities truncated at the bounds of the range of available strikes.
Data on currency options at 4/6/1992.
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Figure 11. Q-Q plots: currency options

Q-Q plots of the empirical distribution function for the probability integral transforms (calculated
with respect to the probability forecast) vs the theoretical distribution function of a uniform
distribution (45° line). The density forecast is modelled as a Normal Inverse Gaussian density.
Data on currency options. Sub a) is for the entire density forecast, sub b) is for the truncated
density forecast (within the range of available strike prices).
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Figure 12. Q-Q plots: S&P 500 future options (unadjusted for risk premium)

Q-Q plots of the empirical distribution function for the probability integral transforms (calculated
with respect to the probability forecast) vs the theoretical distribution function of a uniform
distribution (45° line). The density forecast is modelled as a Normal Inverse Gaussian density.
Data on S&P 500 future options. Sub a) is for the entire density forecast, sub b) is for the
truncated density forecast (within the range of available strike prices).
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Figure 13. Q-Q plots: S&P 500 future options (mean-adjusted for risk premium)

Q-Q plots of the empirical distribution function for the probability integral transforms (calculated
with respect to the probability forecast) vs the theoretical distribution function of a uniform
distribution (45° line). The density forecast is modelled as a Normal Inverse Gaussian density.
Data on S&P 500 future options. Observations mean-adjusted for the risk premium. Sub a) is for

the entire density forecast, sub b) is for the truncated density forecast (within the range of
available strike prices).

a) Entire Distribution

Empirical vs Theoretical CDF

09 4
0.8+ 4 /
075 '*‘ 2

06

04+ o
03 ¢
¢

02+

P o
01+ -

: : : ‘ : : : : :
o 0.1 02 03 0.4 0s 06 07 0.8 08 1

b) Truncated Distribution

Empirical vs Theoretical COF




Figure 14. Q-Q plots: S&P 500 future options (adjusted for risk premium - Girsanov)

Q-Q plots of the empirical distribution function for the probability integral transforms (calculated
with respect to the probability forecast) vs the theoretical distribution function of a uniform
distribution (45° line). The density forecast is modelled as a Normal Inverse Gaussian density.
Data on S&P 500 future options. Probability forecasts are adjusted for the risk premium through a
Girsanov’s transformation assuming a power utility function with y = 1. Sub a) is for the entire

density forecast, sub b) is for the truncated density forecast (within the range of available strike
prices).
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