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Abstract

For any type of term structure field model the essential input is the instantaneous
correlation function. We suggest a construction of a strictly positive definite cor-
relation function which is consistent with the observed sample correlation matrix,
infinite-dimensional structure of the field, and monotonicity requirements. The con-
struction is based on a solution of a constrained matrix completion problem.
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definite correlation functions, constrained matrix completion problems.

1 Introduction

In recent years several researchers have used the random field framework for
modelling evolution of the term structure of interest rates. Random fields term
structure models have several advantages over their multi-factor counterparts.
The infinite number of risks associated with infinitely many instantaneous for-
ward rates can be easily represented by the infinite-factor structure of random
fields. In order to price or risk manage derivative securities in a field model,
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only an estimate of the covariance function of the rates is needed. Thus, ran-
dom fields offer a much more parsimonious description of term structure dy-
namics than the multi-factor term structure models. Furthermore, the random
field framework naturally accounts for the fact that the best hedging instru-
ment for a bond is another bond of similar maturity. This is in stark contrast
to finite factor models. The field models are also compatible with any sample
of forward rates. That is, there is always a possible path for the random field
over a finite interval, that can lead from the forward curve at the beginning
of the interval to the forward curve at the end of the interval.

There are two ways to set up a term structure field' model. The first has been
considered by Kennedy (1994). He suggested a model, in which the forward
rates follow a continuous Gaussian random field so that they evolve as a con-
tinuous random surface. In particular, he modelled the instantaneous forward
rates as

fs,t = Wst + Xs,ta

where the subscript s refers to the calender time, and ¢, depending on specifica-
tion, either the time of maturity or the time to maturity. The drift function
is deterministic and continuous, and X, is continuous Gaussian random field
with covariance structure between Xy, ;, and X, ;, specified by c(s1As2, 1, t2).
Furthermore, Kennedy (1994) derived a simple necessary and sufficient con-
dition on the drift surface:

t
Ms,t = Mo, + /0 c(s A v, v, t)dy,

which ensures that the discounted prices of zero-coupon bonds are martingales.

The second approach has been considered by Goldstein (2000), and Santa-
Clara and Sornette (2001). They utilise the Stochastic Partial Differential
Equations, whose solutions are random fields, to model the instantaneous for-
ward rates as

dfs,t = /Jls,tds + Us,tdZs,t-
Here, the instantaneous forward rates evolve via shocks from a field dZ; ;. For
all dates s, the field describes a realisation of a random field dZ; ;. for all ¢.

The arbitrage-free condition can be again expressed in terms of the covariance
function:

t
Pag = as,t/ duoy(s)c(s, t,u),
S

where the function c is the covariance function between the the changes in the

1 There has been interest in term structure field models in mathematical literature.
For example, Hamza, Jacka and Klebaner (2003) used field models to generalize the
fundamental theorem of asset pricing. Geometrical aspects have been considered by
Filipovic and Teichmann (2004).



forward rates:

Corr(dfs sy, dfst,) = Corr(dZsy,,dZs4,) = c(s,t1,t2)ds.

The application of random field models is not restricted to pricing. They
should be more appreciated within risk management context, where impact of
high number of factors is more crucial. Hodges and Weigel (2003) have con-
sidered these applications. Bouchaud et al. (1998) have also suggested SPDE
type field models based on statistical properties of the forward rate curve.

To complete the description of the field models in any of the above frameworks
the instantaneous covariance functions need to be specified. These functions
should be strictly positive definite, thus providing a truly infinite-factor struc-
ture for the model. They also need to be flexible enough to fit the empirical
sample covariance matrix observed in the market. The construction of such
functions has not been addressed in the research literature and is the subject
of this paper. We take the variance function as given?, and concentrate only
on the correlation function. Our idea comes from Matrix Completion Theory,
Johnson (1990). We consider a matrix which includes the observed sample
correlation matrix and the missing entries of correlations that are unknown.
These missing entries can be thought of as free variables, or “unspecified en-
tries” in the matrix completion literature.

This formulation allows us to cast the problem as a typical constrained matrix
completion problem. In such a problem one looks for a choice of the unspecified
entries so that the resulting ordinary matrix (called a completion of the given
partial matrix) is of a desired type (e.g. positive definite). The unspecified
entries are not independent free variables, but are subject to constraints (e.g.
linear equation, or, as in our case, monotonicity).

Generally, the “shapes” of the sample correlation matrices in the interest rate
market can be quite complex. However, they usually exhibit patterns such as
monotonicity off the diagonal, i.e. £ — Corr(T; ;, Tj1x,;) is monotone decreas-
ing. This is intuitive from economic point of view: we expect the correlation
between, say 1 and 2 year rates to be higher than that between 1 and 10
years rates. A second pattern is the monotonicity along the diagonals, i.e.
j = Corr(T; i+, T j+k) is monotone increasing. That is, rates for shorter ma-
turities with the same distance apart usually have correlations lower than such
rates with longer maturities. These patterns constraints the constraints in our
completion problem.

In summary, our method produces an estimate matrix of the correlation func-

2 The variance function can be easily constructed using curve approximation and
interpolation techniques.



tion for any number of maturities. This matrix is positive definite, so it is
compatible with an assumption that the correlation function be strictly pos-
itive definite (infinite-factor field model). It is also compatible with stylised
monotonicity patterns usually observed in interest rate markets. Furthermore,
the correlation estimates for the observed maturities are identical with the
sample correlations.

The remainder of this paper is organised as follows. In the next section we set
up and solve a constrained matrix completion problem. In Section 3 we dis-
cuss parameter estimation and implementation of the method. Furthermore,
we present applications of the method based on both, stylised correlation ma-
trices and sample correlation matrices estimated from empirical data. Section 4
concludes.

2 Constrained Positive Definite Completion

An n x n matrix is called doubly nonnegative (positive) if it is both positive
semidefinite and entry-wise nonnegative (positive definite and entry-wise pos-
itive). We call a doubly positive correlation matrix monotone if its entries
strictly decrease in each row leading away from the main diagonal. For exam-
ple,

1.3.2.1
31 4.2
2415
1251

is monotone. By symmetry, the entries also decrease in columns leading away
from the diagonal. If, in addition, entries increase along diagonals parallel to
the main diagonal, we call such a correlation matrix doubly monotone.

Question: May a row (column) be inserted between two consecutive rows
(columns) of an n x n (doubly) monotone matrix to achieve an (n+1) x (n+1)
monotone matrix? The answer is “yes”, but we actually show more. First, some
notation for this problem is useful. For an n x n matrix A = (aj;), let A be
the (n+1) x (n+1) partial matrix, for which A({k}), A with row and column
k deleted, is A and all other entries of A are unspecified. Then, denote by
A, the particular completion of A for which row (column) k of A, is o times
row (column) k£ — 1 of A, plus (1 — @) times row (column) k + 1 of A,. In
other words a row and column is inserted into A by averaging two consecutive
rows/columns with weight a.

We illustrate a simple way to calculate A, when n = 4, A is a correlation



matrix and k£ = 3. Let

ladf
albe
dblec
fecl

Then A is

la?df
al?be
77777
db?71lc
felcl

and A; may be obtained, for example, by first replacing column 3 with col-
umn 2,

laadf
allbe

and then replacing row 3 with the (new) row 2:

laadf
allbe
allbe
dbblc

\feecl

A

Note that, at first, the third diagonal entry is undetermined, but that it is
determined and is 1 after the second stage. In a similar manner (replacing
column 3 of A with column 4 and then row 3 with row 4), A is determined



as

(1addf
albbe
Ag=1|dbllec
dbllec
kfeccl
Then A, is @Ay + (1 — ) Ay, which is
( 1 a aa+ (1 —a)d d f
a 1 a+(1—a)b b e
As=|aa+(1—a)da+(1—a)b | ab+ (1 —a) ae+ (1 —a)c
d b ab+ (1 —a) 1 c
\ f e ae+ (1—a)c c 1

Thus, A, is a correlation matrix and meets the mentioned requirements.

Theorem 1 If A is positive definite, and 0 < a < 1, then A, is positive

definite.

Proof: Consider first A; and Ay. Each of these (n + 1) x (n + 1) matrices is
positive semidefinite of rank n. Each is singular, because a row is repeated,
and, therefore one eigenvalue is 0. On the other hand, each matrix is symmetric
and, by the interlacing theorem for eigenvalues of symmetric matrices, Horn

Johnson (1985), pp. 185-186, has

n positive eigenvalues, as A, which is a

principal submatrix, has n positive eigenvalues. Now, notice that the null

space of A; is spanned by

(entry 1 is at the L th

[0

o

position) as row k is repeated, and the null space of A




is spanned by

0

(entry 1 is at the (k+ 1)St position) as row k + 1 is repeated. The symmetric
matrix A, = ad;+ (1 —a)Ag and, thus, is at least positive semidefinite when
0 < a < 1. However, the sum of two positive semidefinite matrices (in this
case aA; and (1 — a)A, for 0 < a < 1) is positive definite, unless their
null spaces intersect. In this case the null spaces do not intersect, so that
aA; + (1 — a)Ay = A, is positive definite for 0 < o < 1, as claimed. g.e.d.

Before continuing, we make two observations related to Theorem 1. First, if
A is completed in some other way to produce symmetric A so that the entries
of row k lie between those of row kK — 1 and row k+ 1, A may or may not
be positive definite. It will be positive definite if and only if det(A4) > 0, as,
again, the principal submatrix A is positive definite (so that if det(A) > 0 there
will be a full nested sequence of positive principal minors). Second, among the
completions A,, 0 < a < 1, there is a unique one with maximum determinant,
namely A 1.

This may be proven as follows. Suppose, without loss of generality, that A =
(a;;) is a positive definite correlation matrix, and note that the column vector
bi(a) of off-diagonal entries that complete A is b () = aa(k—1)+(1—a)a(k),
in which a(j) denotes the j — th column of A. Then, by Schur complements,
Horn Johnson (1985), Ch. 0, we have det(A,) = (1 — bg(a)T A7 bi(ax))det(A).
But, det(A) > 0 is constant w.r.t. o, and A~ b(a) = A Haa(k — 1) + (1 —
a)a(k)) = aeg—1 + (1 — a)eg, in which e; denotes the j-th standard unit basis
vector (e] = (0,---,0,1,0,---,0)). Then, bx(a)T A7 b () = @Par—1k—1+(1—
a)?ap; + a(l — @)ag—_1x + (1l — @)agp—1 = & + (1 — a)? + 2a(1 — a)ag_14.
Thus, except for the constant factor det(A), det(4,) =1 —0a? — (1 — @)% —
2a(1 — a)ag_1k, so that

%detAa = (2 —2(1 - @) +2(1 — 20)ar_1x) = (2 — 40)(1 — ax_14).

Since 1 — ax_1,% > 0, as A is a correlation matrix, the only critical point then
occurs at a = 3. Since there is a maximum for det(4,) on [0, 1] by Weierstrass’



theorem and it cannot occur at 0 or 1 as (det(4y) = det(A;) = 0), it must
occur at o = 3, as claimed.

Now, we may apply theorem 1 to answer our original question. Notice that if
A is a correlation matrix, both A; and Ag are as well, so that A, is also a
correlation matrix. Further, if A is doubly positive, so is A,, 0 < oo < 1. We
may conclude

Corollary 2 If A is monotone, then each A,, 0 < a < 1, s monotone as
well.

Proof: As noted above, A, will be a doubly positive and a correlation matrix.
It is easily checked that if the entries of A decrease, moving away from the
diagonal, those of A,, 0 < a < 1, will as well. g.e.d.

Finally, we may also conclude a parallel statement for doubly monotone ma-
trices. The proof is again a matter of checking inequalities that govern the
relative position of entries.

Corollary 3 If A is doubly monotone, then each A,, 0 < a < 1, is monotone
as well.

3 Implementation, Estimation, and Examples

We first discuss the implementation of our our completion method for a given
value of the parameter , and then the estimation of this parameter. The prob-
lem can be formulated as follows. For a given vector of the observed maturities
(T1,...,T,), we need to find the correlations of these maturities with a new
maturity T' € [T}, Ti41], for ¢ € {1,...n — 1}. Unfortunately, the completion
method we described in the previous section does not associate the comple-
tion with a particular maturity, it simply gives a completion between two
neighbouring dates. We assign this completion the middle of the interval, i.e.
(T; + T;41)/2. Having now associated completion with particular maturity we
apply a bisection method to find a completion for any maturity T' € [T}, Ti14],
fori € {1,...n—1}. We simply keep bracketing maturity date T" till we obtain
the completion for either T itself or a date sufficiently close to it.

The only parameter we need to estimate is the convexity parameter a. We
estimate oo by minimising an objective function which we construct as follows.
The idea is similar to the evaluations of the minors a matrix. We start with a
n X n sample matrix A, with entries a7, signifying the correlations between
maturities T; and Tj. Consider matrices A(T;), ¢ = 2,...,n — 1 which are
obtained by deleting the row T; and the column T; in the matrix A. The



(n—1)x (n—1) matrices A(T;) are the same as A except that they don’t include
correlations with the maturity T;. For each of the matrices A(T;) we construct
a completion for maturity 7; and calculate how “far” this completed row and
column is from the actual row and column in the sample correlation matrix A.
That is, for each completion we sum up the absolute value of the differences
between the completed rows and the actual rows in the sample correlation
matrix A. The sum of these (n — 2) error terms constitutes the objective
function with parameter @ as the argument. Minimising this objective function
we obtain the optimal parameter a.

To highlight the effect of the convexity parameter o in our completion method
we consider a 2 x 2 stylised correlation matrix between maturities 1 and 9
years, with correlation between these maturities 0.5. We assume that we are
interested in the maturity of 5 years. The completion for this maturity for
parameter oo = 0.5 is the first matrix in (1).

1.00 0.75 0.50 1.00 0.65 0.50
0.75 1.00 0.75 | , 0.65 1.00 0.85 | - (1)
0.50 0.75 1.00 0.50 0.85 1.00

For this choice of o we have achieved monotonic decorrelation off the diagonal.
However, the correlations along diagonal are constant. Monotonic correlations
along the diagonal, can be obtained with a different choice of a.. For example,
with oo = 0.3, we obtain the second completion matrix in (1). This completion
is monotonic in both off the diagonal and along the diagonal.

To test our framework on real data we have used the sample correlation matrix
arising from Japanese Yen for the period 2/12/96 to 25/10/01. The data is
courtesy of LCH, London, and has been obtained by stripping the Japanese
government issues.

In Figure 1 we plotted the sample covariance and correlation matrices. The
plot of the sample correlation shows an expected decreasing behaviour: the
further the distance between any two maturities, the lower the correlation.
The actual values of sample correlations are in Table 4. Also, observe the high
correlation between maturities. The figures fluctuate between 0.659 and 0.998.
Observe the monotonic shape of the sample correlation matrix off the diagonal
and along the diagonals.

We have estimated the parameter a by minimising the objective function de-
scribed above, and obtained the value o = 0.408. This value is close to 0.5 and
is not unexpected: The sample correlation matrix is monotonically increasing
along the diagonals and for most of maturities has a very small slope. We
have completed this matrix for maturities that are middle points between the



observed maturities. A part of this completed matrix is in Table 4. In Figure 2
we have plotted the completed matrix. Observe that the completed matrix
maintains the same shape as uncompleted matrix in Figure 1.

So far, we have assumed the parameter a to be constant. This need not be
the case. One straightforward generalisation is to vary o linearly between
two neighbouring maturity. Le., allow it to go from 0 to 1 as we move along
from one observed maturity to the next. In this case we can avoid bisection
altogether, as the parameter o for a given maturity will be a function of this
maturity.

A more profound questions arising in this context relate to the properties of
the limiting surface. We have suggested a method for construction of strictly
positive surfaces however the properties of this surface are still unclear. E.g., if
we believe in a smooth evolution of the fields, then, necessarily, the correlation
surface need to be smooth as well. Second issue is about the choice of the
convexity parameter «. Realistically, it needs to be a function of maturities
and distances between neighbouring maturities. The precise functional form
needs to be inferred empirically. We currently investigate these issues.

4 Conclusions

Our main objective was to construct strictly positive definite correlation func-
tions for infinite-factor Gaussian field models. These functions should be able
to fit sample correlation matrices observed in the practice. They also should
exhibit monotonic patterns usually associated with such sample correlation
matrices.

We have developed a method for construction of estimates of such functions for
any set of maturities. This estimate is consistent with all the requirements we
expect from a reasonable correlation function: it exactly fits the sample corre-
lation matrix, is positive definite for any number of maturities and respects the
usual patterns of sample correlation matrices. The method we develop allows
calibration of field models to key market information, namely the covariation
of the rates. Thus, we can capitalise on the main advantage of the field mod-
els, i.e. capturing the inter-dynamics of movements in the term structure. Our
construction makes the random field methodology a much more practical tool.
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2 3 4 5 6 7 8 9 10 12 15 20 25
0.964
0.909 0.975
0.856 0.940 0.985
0.813 0.907 0.965 0.991
0.773 0.872 0.942 0.976 0.993
0.755 0.857 0.928 0.966 0.987 0.996
0.739 0.841 0915 0.955 0.980 0.992 0.996
10 [ 0.723 0.827 0.904 0.946 0.972 0.987 0.993 0.997
12| 0.707 0.811 0.888 0.932 0.961 0.977 0.985 0.991 0.996
15| 0.692 0.797 0.873 0918 0.948 0.966 0.976 0.984 0.990 0.995
20 | 0.673 0.778 0.855 0902 0933 0953 0.964 0.974 0.981 0.988 0.995
25| 0.667 0.771 0.847 0.894 0.926 0.946 0.958 0.968 0.975 0.984 0.992 0.998

300659 0.762 0.837 0.884 0.916 0.936 0.948 0.959 0.967 0.976 0.985 0.993 0.998
Table 1
Sample correlation matrix of changes in interest rates.

© o =N o O s W

2 25 3 35 4 45 5 55 6 65 T 15 8
2.5 |0.979

310.964 0.985

3.510931 0.963 0.985

410909 00948 0.975 0.990

4510877 0923 0.954 0.976 0.991

510856 0.906 0.940 0.967 0.985 0.994

550831 0884 0920 0.952 0.973 0.986 0.995

610813 0.868 0.907 0.941 0.965 0.980 0.991 0.996

6.50.789 0.847 0.886 0.925 0.951 0.969 0.982 0.990 0.996

710773 0.832 0.872 0.913 0.942 0.962 0.976 0.986 0.993 0.997

7.50.762 0.822 0.863 0.905 0.934 0.955 0.970 0.981 0.989 0.994 0.998
810.755 0.815 0.857 0.899 0.928 0.950 0.966 0.978 0.987 0.992 0.996 0.993

85]0.745 0.806 0.848 0.891 0.921 0.944 0.960 0.973 0.983 0.989 0.994 0.996 0.998
Table 2

Sample correlation matrix of changes in interest rates together with completed cor-
relations for selected maturities.
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Fig. 1. Sample correlation matrix of changes in interest rates.
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Fig. 2. Completed sample correlation matrix on with completed maturities being
the middle points between the known maturities.
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