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Abstract

In this article, we develop an equilibrium model for storable commodity prices.
The model is formulated as a stochastic dynamic control problem and considers
two state variables - the exogenous supply and the inventory. The inventory is
a fully controllable endogenous variable. We assume that the uncertainty arises
from the supply, which evolves as a Ornstein-Uhlenbeck stochastic process. This
model is developed under a general framework which provides two distinct forms for
the alternative economic scenarios of perfect competition and monopolistic storage.
Since an analytical solution to the problem is not possible, we obtain a numerical
solution that provides an optimal storage policy and generates the price dynamics.
We also compute and analyse the equilibrium forward curves that result from the
steady state optimal storage policy. The results are consistent with the theory of
storage: the presence of storage in both economies stabilizes the natural prices. We
also show that this effect is greater when the storage is competitive. The resulting
forward curves take two fundamental shapes. If the initial spot price is greater
than the long-run natural price we observe backwardation; otherwise the market
is in contango. Furthermore, the degree of contango is greater in the competitive
market.
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1 Introduction

Over the past two decades energy markets such as electricity, natural gas,

petroleum products and coal have undergone significant changes. The market

has evolved from a monopolistic, stable pricing environment characterized by

long term contracts with guaranteed margins to a competitive and volatile

market environment. In this deregulated environment, market participants

have found themselves increasingly exposed to price movements and to coun-

terparty performance risk. This highlights the necessity to develop adequate

models for energy prices that assist on designing market trading strategies

and storage policies in the commodity industry.

Commodity prices in general are harder to model than other well devel-

oped conventional financial assets, such as equities. This is partly due to

the fundamental price drivers in commodity markets which are more com-

plex than in standard financial assets. In the case of energy commodities this

difficulty is reinforced by the recent dramatic changes in the way energy is

traded. In order to model the behaviour of commodity prices, it is necessary

to understand the dynamic interplay between demand, supply and storage. In

particular, storage plays a central role in shaping the behaviour of the prices

of a storable commodity. On the supply side, storage plays a vital role in sta-

bilizing spot prices by allowing an intertemporal shift of supply in response

to shortage. As such, storage is one of the key elements that determines the

degree of volatility in commodity prices, that is, the variance of spot price

movements over time decreases with the amount in store and vice-versa. In

addition, storage limitations may significantly increase the volatility of spot

prices when there is a shortfall in commodity’s availability. Similarly, storage

also influences the extent to which the Samuelson (1965) effect is observed in

commodity prices behaviour.

Commodity price dynamics and the economics of commodity storage has
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been the subject of numerous recent studies. Nevertheless, the research has

been largely disjoint. On one side we assist to the development of discrete time

structural models that focus on the behaviour of agricultural commodities and

where storage takes a central role in the modelling process. On the other side,

we assist to the recent development of reduced form models that emerged since

the energy market became deregulated.

The equilibrium structural models are derived explicitly from economic

principles and aim to replicate the equilibrium price for storable commodi-

ties. Most of the existing studies focus on establishing an equilibrium price

model for agricultural commodities where the supply is determined by spec-

ulative storage and random behavior of harvests. The price is is obtained

through numerical approximations that relate supply, demand and storage.

This approach is standard and is described in Williams and Wright (1991) and

is also adopted by Deaton and Laroque (1992, 1996), Chambers and Bailey

(1996), Routledge et al. (2000).

The reduced form class of models dominates the current literature and

practice on energy derivatives. Leading models include Gibson and Schwartz

(1990), Schwartz (1997), Miltersen and Schwartz (1998) and Schwartz and

Smith (2000). Generally, these models consider that the spot price and the

convenience yield follow a joint stochastic process with constant correlation.

The main focus of these models is to replicate the mean reversion in commod-

ity spot prices and the dynamics of the convenience yield. Nevertheless, the

use of current reduced form models in the literature to price energy contin-

gent claims has not been effective. In particular, the convenience yield process

seems to be misspecified since its specification ignores some crucial properties

of commodity prices behaviour such as the dependency of prices variability

on inventory levels (see Pirrong (1998) and Clewlow and Strickland (2000)).

These misspecifications call for a better understanding of the supply, demand

and storage roles on the dynamics of energy prices. Accordingly, the devel-
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opment of new structural models that take the key properties of the energy

commodity markets into account is a fundamental tool that help financial

managers to understand the dynamic interplay between the microeconomic

factors that drive commodity markets. In this context, current research on

structural models for commodity prices has been scarce and has not been fol-

lowing the rapid recent expansion of energy markets. As an example, none of

the existing equilibrium models takes the mean reverting properties of com-

modity prices into account, which is a key characteristic in energy prices.

The model presented in this paper is a storage equilibrium model, which is

formulated as a stochastic dynamic control problem in continuous time. The

solution to this problem produces an optimal storage policy within each of the

market contexts, which also generates the price dynamics. This model consid-

ers two state variables. One is the supply rate, which is a exogenous stochastic

variable. The other is the inventory, which is an endogenous variable, whereby

the storage policy is the decision variable in this model. This model expands

the current literature on structural models for commodity prices by taking

into account the mean reverting characteristics of commodity prices. One

of the most innovative features of this model is that it establishes the link

between the two major categories of the literature - the discrete time struc-

tural commodity price models and the continuous time reduced form models.

More specifically, we develop a model based on the microeconomics of sup-

ply, demand and storage similarly to the structural models and add three

important features. First, we consider a continuous time framework whereas

the traditional models consider a discrete time framework. Second, we include

the mean reverting characteristic of commodity spot prices in the dynamics of

our model similar to those proposed in the reduced form models. Particularly,

the mean reversion is introduced into the model by considering the exogenous

supply as a mean-reverting O-U stochastic process. This mean-reverting pro-

cess can be interpreted as the net supply, that is, the difference between the
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exogenous supply and the stochastic demand in the market. This interpre-

tation is appropriate since uncertainty arises from the demand side in many

commodity markets, such as energy. Although we do not consider seasonality

in this model, we mention how to include this property in this model without

adding complexity to the numerical computation of the solution. Third, we

formulate and analyze separately the model for both competitive and mo-

nopolistic storage economies. This comparative analysis is appropriate since

energy markets worldwide recently evolved from a regulated monopolistic en-

vironment to a competitive market. This comparison is not illustrated in the

current literature, which only considers a competitive storage economy.

The analysis of this model is divided in two parts. The first focuses on

the dynamic relationship between storage, supply and the price dynamics and

draws the attention to the following issues: (i) the dependence of the storage

on both the inventory level and the supply rate, (ii) how the storage policy

affects changes the evolution of the commodity natural price1, (iii) how dif-

ferent levels of inventory affect the commodity price variability and (iv) the

differences between the competitive and the monopolistic storage policies in

terms of (i), (ii) and (iii). The second part of the analysis focuses on the

forward curve and convenience yield implied by this model. Specifically, we

apply the steady state storage policy implied by this model to compute a tri-

nomial tree for the commodity prices and the corresponding forward curves.

With the exception of Routledge et al. (2000), the current structural models

for commodity prices restrict the analysis to the properties of the spot prices

as a function of the state variables and does not study the implied equilib-

rium forward curves. Although Routledge et al. (2000) present a structural

model for commodity prices and present the analysis for the corresponding

equilibrium forward curves, their study is limited. In particular, the authors

limit their analysis to the case where the stochastic demand can only take

1By natural price we mean the commodity price evolution in the absence of storage.
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two states - high and low - which is unrealistic. Moreover, the generaliza-

tion of their results is difficult to obtain. In contrast, the numerical method

presented here is relatively easy to implement and the corresponding analysis

easy to generalize to any combinations of initial storage and supply levels.

The remaining of this paper is structured as follows. Section 2 formulates

the model and describes the solution method. We present the model under

a general framework and later unfold it into two distinct market scenarios:

competitive and monopolistic market. Section 3 describes briefly the numer-

ical implementation, provides numerical examples for both markets contexts

and analyzes the results. Section 4 describes the numerical method used to

compute the forward curves, provides numerical examples and examines the

properties of the forward curves implied by this model. Section 5 concludes.

2 Storage Equilibrium

This model builds on and extends the discrete time framework formulated in

Williams and Wright (1991). Williams and Wright develop a basic discrete

time model for commodities in a pure competitive market using a discrete

time dynamic programming approach. We use the basic storage formulation

of Williams and Wright as a starting point and introduce three main features

their framework and to the current structural models for the price of a storable

commodity. First, we develop the model in continuous time instead of the

discrete time setting used in the traditional literature. Second, we introduce

mean-reverting properties in the price dynamics by modelling the exogenous

supply rate as a mean reverting stochastic process of the O-U type. Finally,

we extend the model to the separate case of a monopolistic storage economy

and compare it with the competitive setting.

This model considers two state variables. One is the exogenous supply

rate and the other is the inventory level. The stochastic supply rate can be

6



interpreted as the difference between the exogenous supply and the stochastic

part of the demand side. This interpretation is appropriate since demand

is stochastic for many commodities. In the competitive storage economy, the

storage decisions are made from a social planner perspective as if to maximize

the expected present value of social welfare in the form of ”consumer surplus”.

The planner’s problem in the current period, t, is to select the current storage

that will maximize the discounted stream of expected future surplus. The

decision variable is the rate of storage, that is, the rate at which the com-

modity is bought or sold by the stockholder2, which can be either positive or

negative. For the monopolistic storage context, the competitive formulation

is modified to consider that the decisions are made by the monopolistic stock-

holder, which maximizes the discounted stream of expected future cash-flows

generated by his storage facility. For each market, the optimal storage policy

is defined by specifying the rate of storage for each possible state of the world

at each moment in the future.

2.1 Model Formulation

Both models are developed using the same basic framework. In one case

we assume that the market (including storage) is perfectly competitive; in

the other we assume that storage (only) is monopolistic. In the competi-

tive equilibrium, we assume that the number of firms in the storage industry

is sufficiently large for each to be a price taker. The storage decisions are

made by a single identity, the ”invisible hand”. Under monopolistic storage,

consumers can deal directly with producers through the market but neither

group can store on its own. Only one firm has the right or the technology

to store the commodity. A monopolistic firm is not the only source of the

commodity for consumers since the producers also continuously supply the

market. Hence, the monopolist does not extract its extra profits by holding

2Stockholder refers to the aggregate storage in the competitive market.
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the commodity off the market to keep the price high. Likewise, the firm com-

petes with consumers for any quantity it purchases on the market. The model

is developed under the risk neutral measure whereby all the economic agents

are risk neutral.

We introduce the model under a general formulation and later unfold it

into the two distinct market scenarios. The general assumptions of the model

are as follows:

• A single homogeneous commodity is produced and traded in continuous

time, over a finite-time horizon T ;

• Storage is purely speculative, whereby inventory decisions are driven by

the single motive of trading profit;

• The supply has zero elasticity;

• The marginal storage cost, k, is constant; the storage cost is k × s per

unit of time, where s is the current storage level;

• The one-period risk-free interest rate, r ≥ 0 is constant.

We consider two state variables: the exogenous supply rate and the inven-

tory level. The exogenous supply rate, zt, is given by3:

dzt = α(z − zt)dt + σdBt, (1)

where:

• α is the speed of mean reversion;

• z is the long-run mean, that is, the level to which z reverts as t goes to

infinity;

• σ is the (constant) volatility;

3This model can be easily extended to incorporate seasonality by adding a seasonal component to
the supply. In this case, the supply rate, xt, would be given by: xt = zt + c sin (2πt). Therefore, the
transition for xt is dxt = (α(z − zt) + 2πc cos (2πt))dt + σdBt. All the remaining theoretical results
presented in this article hold if the exogenous supply rate is given by xt instead of zt.

8



• Bt is a standard Wiener process.

The aggregate storage level, s, is a fully controllable endogenous state variable

and satisfies:

ds = u(s, z, t)dt, s ≥ 0 (2)

where u represents the rate of storage and is the decision variable in our

problem. At each time t, the rate at which the commodity is stored depends

on the amount already in storage, s, and on the exogenous supply, z.

Note that the decision u(·) is a function in [0, T ], which we call the inven-

tory management plan. If the inventory capacity is b > 0, then the inventory

level s(t) must satisfy the constraint:

0 ≤ s(t) ≤ b (3)

since negative storage is not allowed. On the other hand, if z(t) is the supply

rate at time t, then u(·) must not exceed this rate, that is:

u(t) ≤ z(t). (4)

Constraints (3) and (4) imply that the optimal storage rate, u∗, belongs to

[umin, umax] whereby the values umin and umax are such that these two con-

straints are satisfied. Any inventory management plan that satisfies these

conditions is called an admissible plan. The total rate of consumption in

the market, q, establishes the relationship between the state variables defined

above and satisfies the equilibrium condition:

q = z − u (5)

Moreover, the market price (or inverse demand function) is given by p(q),

where ∂p
∂q

< 0.
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We consider a finite-time horizon T , at which there is no carryover and we

work backwards in time. The following function is then to be maximized:

J(st, zt, t; u(·)) = {Et
z

∫ T

t

e−r(l−t)L (sl, zl, ul, l) dl + (6)

Ψ(sT , zT )|s = S, z = Z}.

The optimization is over all the admissible plans where L(st, zt, ut, t) is the

instantaneous profit rate and Ψ(sT , zT ) is the salvage value of having sT and zT

as states at final time T . Without loss of generality, we consider Ψ(sT , zT ) = 0.

The crucial difference between the pure competitive and the monopolistic

storage problem formulations consists in the definition of L, which we will

describe later.

To find a solution to the problem we use the dynamic programming ap-

proach. Accordingly, we need to maximize a value function, J(·), in order to

obtain the optimal set of carryover decisions through time. In other words, we

apply the Bellman’s principle of optimality (Bellman (1957)). This principle

states that at any point of an optimal trajectory, the remaining trajectory is

optimal for the corresponding problem initiated at that point. We then obtain

the dynamic programming equation of the form (see derivation in appendix

A):

−∂V (s, z, t)

∂t
−H(s, z, Vs, Vz, Vzz) = 0 (7)

where:

H(s, z, Vs, Vz, Vzz) = sup
u∈[umin,umax]

{L(s, z, u, t) + uVs(s, z, t) + (8)

α(z − z)Vz(s, z, t) +
1

2
σ2Vzz(s, z, t)−

rV (s, z, t)}

for the value function V (s, z, t) with the boundary condition V (s, z, T ) = 0.

This yields the optimal u∗. Note that u∗ needs to be formulated in such a way
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that the storage constraints are not violated, that is umin ≤ u∗ ≤ umax. If uunc

represents unconstrained the maximum of the above dynamic programming

equation, then:

u∗ = umax, if umax ≤ uunc; (9)

u∗ = uunc, if umin ≤ uunc ≤ umax; (10)

u∗ = umin, if uunc ≤ umax; (11)

Finally, the current price is given by:

p(q) = p(z − u∗) (12)

In what follows, we separate the formulation into the competitive and the

monopolistic scenarios. The distinction between these two formulations is

imposed by the definition of the instantaneous profit rate, L(st, zt, ut, t), which

differs among these two contexts as mentioned above.

2.1.1 Competitive Market

As explained before, the competitive equilibrium evolves as if the maximiza-

tion is made from a social planner perspective. This perspective is also

adopted by Samuelson (1971), Robert E. Lucas and Prescott (1971) and

Williams and Wright (1991). The social planner, in the current period t,

aims to select the current rate of storage that will maximize the discounted

stream of expected future consumer surplus. Let p(q) represent the inverse

demand function and also let:

f(x) =

∫ x

0

p(q)dq, for x ≥ 0, (13)

Accordingly:

L(st, zt, ut, t) = f(zt − ut)− kst (14)
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where k is the constant marginal storage cost per period. Accordingly, the

functional to be maximized is obtained by substituting equation (14) in equa-

tion (8). By differentiating the right hand side of the resulting equation with

respect to u, we obtain the first order condition that allow us to find the

maximum:

−f ′(z − u) + Vs(s, z, t) = 0 (15)

A necessary, but not sufficient, condition in order to have a maximum is4:

f ′′(z − u) ≤ 0 (16)

where f ′ and f ′′ represent the first and the second order derivative of the

function f(·) defined by equation (13).

Let D(·) = p−1(x), x ≥ 0 represent the demand function. If we initially

ignore the fact that u∗ needs to satisfy the storage constraint, the (uncon-

strained) maximum, uunc, is given by:

uunc = z −D(V ∗
s ) (17)

Then, by taking into account the constraints given by (3) and (4) we obtain

the optimal control value, u∗.

2.1.2 Monopolistic Market

We now specify the problem for the case of a monopolistic stockholder. In

this case, the monopolistic storage manager in the current period, t, aims to

select the current rate of storage that will maximize the discounted stream

of expected future cash flows generated by the management of his storage

facility. The control variable, u, represents the rate of storage, that is, the

absolute change in inventory level over an infinitesimally small interval of

4A rigorous mathematical verification of existence and uniqueness of the solution requires additional
technical work and is beyond the scope of this study.
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time; hence −u is the amount he sells over each period to generate profits.

The instantaneous rate of profit is given by the proceeds from sales minus the

cost incurred on the currently held stocks, that is:

L(st, zt, ut, t) = −utp(zt − ut)− kst (18)

Accordingly, the functional to be maximized is obtained by substituting equa-

tion (18) in equation (8). We obtain the unconstrained control, uunc by solving

the first order condition of the right hand side of the above equation given by:

−p(z − u) + up′(z − u) + Vs = 0 (19)

where p′ denotes the first order derivative of the function p(q). The necessary

(but no sufficient) second condition to obtain maximum is5:

2p′(z − u) + up′′(z − u) ≤ 0 (20)

where p′′ denotes the second order derivative of the function p(q).

Depending on the inverse demand function considered, there might not

exist an explicit expression for uunc, therefore equation (19) might need to be

solved numerically. We then obtain the optimal control u∗ taking into account

the admissibility constraints.

2.1.3 Boundary Conditions

Since the Bellman equation is a backward equation, the temporal side condi-

tion is a final condition, rather than an initial condition. Supposing that no

salvage value remains at the final time 6:

V ∗(s, z, T ) = 0 (21)

5As before, the proof of existence and uniqueness of the solution is beyond the scope of this study.
6Note that this assumption is for simplicity and not a restriction to the method.
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In this problem there are no explicit boundary specifications, so the bound-

ary values must be obtained by integrating the Bellman equations along the

boundaries (see Hanson (1996)). The non-existence of explicit boundary con-

ditions implies that there are no exterior circumstances in the nature of the

problem that would force it to have specific solutions at the boundaries.

Therefore, the boundary version of the Bellman equation will be the same

as the interior version of the Bellman equation represented by equations (7)

and (8) with the boundary values applied.

2.2 Linear Inverse Demand Function

Although the general formulation of our model allows for different definitions

of the inverse demand function p(qt), we use a linear inverse demand function

in the numerical implementation of the model for computational simplicity:

p(qt) = a− bqt, α, β > 0. (22)

Accordingly, for the competitive market, the unconstrained storage rate is

given by:

uunc =
V ∗

s + bz − a

b
(23)

which exists and is finite for any V ∗
s and z.

For the monopolistic market, the optimal storage is given by:

uunc =
V ∗

s + bz − a

2b
(24)

which exists and is finite for any V ∗
s and z. The optimal storage rate, u∗ is

obtained by taking into account the state constraints defined by equations (3)

and (4).
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3 Numerical Implementation and Results

The solution to the general stochastic dynamic programming problem defined

by equation (6) is obtained by solving the PDE given by equations (7) and

(8) subject to the final condition V (s, z, T ) = 0. This PDE does not have an

analytical solution and therefore it is necessary to apply numerical methods

to solve them. The optimal feedback control u∗(s, z, t) is computed as the

argument of the maximum in the functional control term L(s, z, u, t).

Despite having a nonlinear partial differential equation (PDE) for both

problems, the application of an explicit standard method (e.g. Morton and

Mayers, 1994 Morton and Mayers (1994)) to obtain a numerical solution is as

good as alternative methods which are more complex and imply a greater com-

putational effort. For comparison we implemented both the explicit standard

method and the hybrid extrapolated predictor-corrector Crank-Nicholson method,

modified to account for the non-linearities and discontinuities in the PDEs

(Hanson (1996) and Hanson and Ryan (1998)) were implemented. Both

achieved very similar results. Therefore, we adopt the standard explicit nu-

merical procedure to solve PDEs.

The results reported below consider the optimization problem formulated

in equation (6). We compute and present separately the results for each al-

ternative economic scenarios of perfect competition and monopolistic storage.

We consider a very large final time, that is when T −→∞ in order to obtain

the steady state equilibrium independent of time7. In other words, we con-

sider T sufficiently large so that the influence of anticipation that storage will

stop in period T becomes negligible and the decision rule becomes time inde-

pendent. We consider T = 50 years, which gives a steady state equilibrium

for the parameters considered below. As previously described, we perform the

analysis for a linear price function: p(q) = p (z − u) = a− b (z − u) , a, b >.

7We have also considered the possibility of developing this model for the steady state equilibrium by
considering an infinite time horizon. However, the solution would be impossible to obtain without the
knowledge of the boundary conditions for s and z.
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Table 1 reports the parameters values used in the numerical implementation

and Table 2 specifies the range for the annual supply rate8 and the inventory

capacity considered. When storage is not available, the price is a function

of the exogenous supply only, that is, p(q) = p(z) = a − bz = 100 − 10z,

z ∈ [0.0, 9.0]. Accordingly, in the long run, the price in the absence of storage

follows a normal distribution with mean µp = 55 and σp = 8.2. Numerous pa-

rameter combinations were implemented and analyzed beforehand to ensure

that the results reported below are representative for the qualitative model

properties.

a b α σ z k r

100 10 12.0 4.0 4.5 5.0 0.05

Table 1: Value of the Parameters used to obtain the numerical solutions of both
competitive and monopolistic markets.

zMin zMax sMax

0.0 9.0 0.9

Table 2: zMin and zMax represent the lower and upper values of the grid for the
exogenous supply rate, z. sMax represents the storage capacity.

Next, we present the results for the optimal storage policy and the resulting

price within each of the competitive and the monopolistic market contexts.

We also represent graphically the results of the price variability as a function

of the supply rate at different fixed levels of storage9. In the absence of

storage, the price volatility is given by bσ = 40. In the presence of storage,

the variability is calculated as σpz as derived in appendix B, where pz is the

first order partial derivative of the price in order to z. This partial derivative

is calculated numerically according to the approximation described before.

This analysis illustrates the effect that the existence of storage in the economy

8In the long run, z has a gaussian stationary distribution with mean µz = z = 4.5 and standard
deviation σz = σ√

2α
= 0.82. This range cover the steady state distribution of z.

9Because of the additive form of our model, we prefer to calculate the standard deviation of the
commodity spot price process, dP , rather than the standard deviation of dP

P as in a conventional volatility
measure. Accordingly, we name this measure spot price variability instead of spot price volatility.
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has on the variability of the commodity prices. We will also emphasize the

differences between the competitive and the monopolistic markets. The results

are analyzed separately for the competitive and the monopolistic markets and

the results are compared thereafter.

Figure 1 shows the competitive optimal storage rate, u∗, as a function of

both the storage level and the supply rate. Figure 2 illustrates the super-

position of the corresponding price in the absence of storage and the price in

the presence of storage in this economy as a function of both state variables.

Figure 3 shows the variability of the price as a function of supply at different

levels of storage.

The results confirm the intuition and the predictions in the theory of stor-

age. Figure 1 shows that the storage rate increases with the value of the

supply rate and decreases with the storage level. Figures 2 and 3 illustrate

that the existence of storage stabilizes the prices. More specifically, if the

commodity price is above the natural long-run mean (because supply is low),

the existence of storage lowers the prices in relation to the natural price. On

the other hand, if the price is below natural long-run mean (because supply

is high), the existence of storage increases the prices in relation to the natu-

ral price. We conclude that storage affects the price dynamics by keeping the

prices more stable and closer to the long-run mean, dampening down the slope

of the original price function10. However, if the supply is high (the price is

above the mean) and all the storage capacity has been used, the stockholders

are being prevented from storing any further quantity of the commodity from

the market and the price falls, behaving as in the case of non-storage. The

spot price variability curves are represented in Figure 3, which corroborate

the following results: the existence of storage significantly reduces the price

variability as a function of supply. Moreover, this reduction is positively re-

lated to the inventory level. The exceptions occur when the aggregate storage

10The variability of the prices is directly proportional to the slope of the prices as a function of supply.
Therefore damping down the slope means reducing the price variability.
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facility is empty or when the full storage capacity is being used. In these two

cases, the variability is equal to 40, which is the same value as it would be

observed in a non-storage economy.

Figure 1: Competitive Case - Storage rate, u, as a function of the two state
variables inventory level, s, and exogenous rate of supply, z.

Figure 2: Competitive Case - Super-position of two graphs for the prices in the
absence and in the presence of storage, respectively. The price is represented as a
function of the two state variables inventory level, s, and exogenous rate of supply,
z.
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Figure 3: Competitive Case - Price variability as a function of supply rate, at
different fixed levels of inventory.

Figures 4, 5 and 6 represent the equivalent results for the monopolistic

case. Figure 4 shows that the storage rate increases with the rate of supply

and decreases with the level of storage. When supply is high, the storage rate

is relatively large and positive. However, when the supply rate is high and the

inventory level is close to its capacity, the storage rate is forced to be reduced.

Similarly to the competitive case, Figures 5 and 6 show that the existence

of storage smoothes the price behaviour by comparison with the non-storage

case. However, if the inventory level is close to capacity, the stockholder is

prevented from buying additional stock, even if it would be optimal to do

so. Similarly, when the inventory is empty, the stockholder cannot sell the

commodity, even if it was profitable to do so, since commodity short sales are

not allowed in a storage economy.

A comparison between Figures 1 and 4 show that the monopolist transacts

less than the competitive stockholder at all supply levels. As a result the

extent to which the monopolist actions smooth the price smaller than in

the competitive case. This is observed by comparing Figures 2 and 3 with

figures 5 and 6. Moreover, since the monopolist builds less inventory than

the competitive stockholder, the capacity constrain on the storage policy for

high supply levels is more prominent in the competitive market than in the

monopolistic market.
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These results show that the monopolistic stockholder benefits from per-

forming less transactions than the competitive storer, thereby benefiting from

a higher spread between the buying prices and the selling prices. The result

of these policy differences is that the monopolist reduces less the variability

of the natural commodity spot price behaviour than the competitive one.

Figure 4: Monopolistic Case - Storage rate, u, as a function of the two state
variables inventory level, s, and exogenous rate of supply, z.

Figure 5: Monopolistic Case - Super-position of two graphs for the prices in the
absence and in the presence of storage, respectively. The price is represented as a
function of the two state variables inventory level, s, and exogenous rate of supply,
z.
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Figure 6: Monopolistic Case - Price variability as a function of supply rate, at
different fixed levels of inventory.

4 Numerical Implementation and Analysis of

the Forward Curve

In this section we implement and analyze the forward curve corresponding to

the structural commodity price model presented above for both competitive

and monopolistic markets. Using the steady-state optimal storage policy de-

veloped above, we construct a trinomial tree for the commodity prices and

the corresponding forward curve that evolve by computing at each node the

optimal combinations of inventory level and exogenous supply rate. We first

build a trinomial tree for the Ornstein-Uhlenbeck process that describes the

stochastic supply in the model presented in the previous chapter applying

standard methods as described by Hull and White (1993, 1994). At time

zero, we assume predetermined values for the supply rate and the level of

storage. The storage levels for each node in the tree evolve from this starting

point by computing the optimal rate of storage for each combination of sup-

ply and inventory. This optimal rate is calculated by interpolation using the

steady optimal storage policy values obtained from the computational imple-

mentation of the structural model above. As the time evolves in the tree, the

possible number of storage levels for each node representing the supply rate
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increases very rapidly. When the number of combinations is above a certain

predetermined value, we merge the storage values that are combined with

a particular supply value into a predetermined (smaller) number of values.

The reduction in the number of nodes is subtle to avoid a large loss of infor-

mation. The commodity price is calculated for each existing combination of

supply and storage and the forward price at each instant of time is computed.

The forward curve is calculated forward in time and not by moving backwards

as in standard procedures.

We analyze and compare the different types of forward curves and the

convenience yield obtained by varying the initial values of the inventory level

in the model. Although we only illustrate the results for a unique initial value

for the supply rate, the generalization for other values of initial supply can be

easily made.

4.1 The Trinomial Tree

The tree that represents the evolution of commodity prices is the results of

two main steps. The first is the construction of the tree representing the

O-U process that describes the supply rate process as described by equation

(1). The second is the calculation of the optimal storage levels which result

from the application of the steady-state storage policy developed above. Each

combination of storage and supply yields a unique commodity price with a

certain probability.

At each time t, the rate at which the commodity is stored depends on the

amount already in storage, st, and on the exogenous supply, zt, as described

before. Accordingly, at time t, for each combination of inventory level, st,

and exogenous supply zt, there exists an optimal storage rate, u∗(st, zt). This

value is obtained through interpolation11 using the long-run optimal storage

11We use the local Shepard interpolation method described in Chapter 9 of Engeln-Mullges and Uhlig
(1996).

22



policy, u∗(s, z) obtained numerically previously12.

Taking into account the discrete time version of equation (2), given the

storage level at time t− 1 and the optimal storage rate u∗, the inventory level

at time t is given by:

st = st−1 + u∗(st−1, zt−1)∆t (25)

Given the Markovian structure of both the exogenous supply rate and the

storage process, it is always possible to compute (st+∆t, zt+∆t) from (st, zt).

We denote the kth value of s at node (i, j) by si,j,k, for k = 1, · · · , ki,j where

ki,j is the number of possible (s, z) combinations at node (i, j). For t ≥ 2, for

each value of zi,j in the tree we have k values of inventory levels. Thus, the

number of possible combinations of inventory level and supply rate, (s, z) at

each node grows rapidly.

The spot price of the commodity is given by:

p(q) = p(z − u∗) (26)

where z is the rate of exogenous supply evolving according to equation (1),

and u∗ is the optimal storage rate resulting from the optimal storage policy

in the long run as described in the previous chapter. As mentioned above, for

each specific combination (s, z) we calculate u∗ by interpolating the values of

the optimal storage policy designed in the previous chapter. Therefore, for

each combination (si,j,k, zi,j), k = 1, ..., ki,j, where ki,j is the number of possible

(s, z) combinations at node (i, j), there is an optimal storage rate associated

with it, u∗(i, j, k). Clearly, the probability associated with this optimal stor-

age rate is the same as the probability associated with the combination of

(si,j,k, zi,j). This, in turn, also implies that this same probability is associated

12We are calculating u∗ by interpolating the steady-state storage policy calculated previously, that is,
when T →∞. Therefore u∗ does not depend on time t.
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with the resulting spot price, p(si,j,k, zi,j). This information allows us to cal-

culate the resulting price expectation at each time in the tree. Since we are

working in the risk-neutral measure and the interest rate is non-stochastic we

have that:

Ft,T = Et
z

[pT ], (27)

where Et denotes the conditional expectation under the risk neutral proba-

bilities given the information at time t.

The probability attributed to a combination of (s, z) is calculated forward

as the tree evolves. This enables us to compute the expected value of the spot

price at each time in the tree without needing to calculate the expectation

backwards. In this particular problem a forward calculation is simpler due to

the merging process of nodes explained next.

4.2 The Node Merging Process

The numerical method described above implies that the number of possible

combinations of the state variables, (s, z), grows very quickly with the size

of the tree, becoming computationally inefficient. To avoid this problem we

place a constraint on the number of the combinations (s, z) at each node of

the basic tree that evolves exogenous supply process given by equation ((1).

In other words, if the number of combinations (s, z) in a node exceeds say l

then we merge these combinations into lNew combinations such that lNew < l.

Before a merger takes place we first sort the storage levels to be merged by

increasing order, starting with the smallest. This ensures that the mergers are

effectuated between adjacent values of storage levels. This merging process is

done using linear interpolation weighted by the corresponding probabilities,

as described by equation (28) below. Note that we only merge the values of

storage levels, s, while the corresponding value of z remains the same. Denote

by si,j,kNew
the storage level that results from the merger of two nodes and by
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si,j,k0 and si,j,k1 the two nodes to be merged. The resulting node is given by13:

si,j,kNew
=

pri,j,k0 ∗ si,j,k0 + pri,j,k1 ∗ si,j,k1

pri,j,k0 + pri,j,k1

(28)

the corresponding probability is the sum of the two probabilities of the cor-

responding nodes, that is:

pri,j,kNew
= pri,j,k0 + pri,j,k1 (29)

This process ensures consistency in the calculation of the expectation as de-

scribed by equation (27) above. This process is repeated every time the num-

ber of combinations (s, z), m, is greater than a maximum of l. In this case,

these combinations are merged in a predetermined number of nodes, lNew < l,

according to the process described above. This ensures that the number of

(s, z) does not grow beyond a certain limit. Note also that the reduction in

the number of nodes involved in a merger should be subtle in order to keep

accuracy in the resulting calculations.

4.3 Calculation of the Forward Curve and the Conve-

nience Yield

Since we are working in the risk-neutral measure and the interest rate is non-

stochastic, the forward curve is calculated using the expectation relationship

between forward prices and spot prices as described by equation (27) above.

Using this relationship we construct the forward curve starting at time t = 0

for the period of length T , conditional on a particular initial combination of

exogenous supply rate and storage level (s0, z0).

The calculation of the convenience yield relies on the well known relation-

ship between the futures and the spot price of a commodity when the interest

13Here we consider only two nodes to be merged for simplicity. However, this can be applied to an
arbitrary number of nodes.
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rate and the convenience yield are deterministic. If the amount of storage

costs incurred between t and t + dt is known and has a present value C at

time t the convenience yield, δ, is defined as:

Ft+∆t = (pt + C)e(r−δ)∆t (30)

Based on this relationship, we calculate the annualized convenience yield for

the time interval between t and t + ∆t by using pairs of adjacent maturities

futures contracts according to the following formula:

δt,t+∆t = r − 1

∆t
ln

(
Ft+∆t

Ft + C

)
(31)

A similar definition for the convenience yield is also used by Gibson and

Schwartz (1990).

4.4 Results

This section presents and analyzes the commodity forward curves, which are

generated by the application of the steady state storage policy. Both cases of

competitive and monopolistic storage are considered.

Table 3 displays the time to maturity period, T , the time-step dt, the

maximum number of combinations (s, z) allowed at each node of the tree,

l, and the number of new combinations (s, z) after the merge takes place,

lnew. We keep the reduction in the number of the nodes subtle in order to

avoid a significant loss of information. Although we implement the tree using

a time-step of 0.005, the results plotted in the figures correspond to sample

time-intervals of 0.1. The annualized convenience yield is calculated according

to equation (31) using two forward prices with consecutive maturities which

differ by a time interval of 0.1. The parameter values used in the computation

of the tree are displayed in Tables 4 and 5. Note that the values used here are
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the same as previously, with the exception of the supply rate limits, zMin and

zMax, the marginal cost of storage, k, and the total storage capacity, sMax.

The supply rate limits are different because they are induced by the trinomial

tree that represents the O-U stochastic process for the supply, starting at

z0 = 4.514 with time-step as above and space-step dz = σ
√

3dt. Finally

and without loss of generality, we consider a marginal cost of storage equal

to zero to avoid adding further numerical approximations in the calculation

of the convenience yield. Specifically, the calculation of the storage costs

incurred at each period of time involves the calculation of the total amount of

storage at each period of time. This calculation, in turn, would be affected by

numerical approximation resulting from the interpolations and the merging

processes that occur. Moreover, keeping the storage costs equal to zero does

not modify the results qualitatively.

T dt l lnew

9 0.005 30 20

Table 3: T represents the maximum time to maturity considered, dt represents
the time-step, l represents maximum number of combinations (s, z) allowed at
each node of the tree, and lnew is the new number of (s, z) combinations after the
merging takes place.

a b α σ z k r

100 10 12.00 4.00 4.50 0 0.05

Table 4: Value of the parameters used to implement the tree for both competitive
and monopolistic markets.

zMin zMax sMax

0.09 8.9 0.9

Table 5: zMin and zMax represent the lower and upper values of the grid for the
exogenous supply rate, z. sMax represents the storage capacity.

14Although here we only present the case where the initial supply rate z0 = 4.5, the results for different
initial values of supply follow by analogy.
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Each of the Figures 7 and 9 represent a series of three forward curves for the

competitive and the monopolistic markets, respectively. Each of the forward

curves displayed correspond to initial inventory levels s0 = 0, 0.225, 0.45 and

0.9 respectively. The evolution of the corresponding convenience yield curves

is displayed in Figures 8 and 10. When s0 = 0, both forward curves are in

backwardation since null inventory levels at time zero reflect the possibility

of commodity shortages during the life of the forward contracts, inducing

positive convenience yields. In the long-run, both curves move towards a

state-independent (constant), long-term forward price, F∞, which is equal to

the long-run mean natural price15 P = p(z̄) = a − bz̄ = 55 where z̄ is the

long-run mean of the Ornstein-Uhlenbeck stochastic process for the supply

rate. This reflects the steady state equilibrium of both storage economies in

which the expected total amount of commodity sold is equal to the expected

total amount of the commodity bought by the (aggregate) storer. The cor-

responding convenience yield curves decrease with time, matching the shape

of the forward curves. In particular, the convenience yield is at its maximum

when the storage is empty and decreases convexly as the aggregate inventory

increases with time, becoming equal to the riskless interest rate in the steady

state long run. This is consistent with the predictions of the theory of storage

which states that the convenience yield is a convex function of the aggregate

inventory, that is, the convenience yield declines at a decreasing rate as the

level of inventory increases.

For positive inventory at time zero, all the forward curves are in contango,

as expected, since the commodity price at time zero is smaller than the long-

run natural commodity price. We also observe that the smaller the initial

inventory level is, the greater the initial commodity spot price is. This is

due to the fact that the total availability of the commodity decreases. This

is also reflected in the length of time at which each of the curves remain in

15The natural price is the price in the absence of storage.
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contango. That is, the smaller the initial commodity price is the longer the

forward curve will remain in contango until it reaches the unconditional for-

ward price F∞ = P . This is observed because the slope of the forward curves

is (approximately) the same16 (within each of the competitive or monopolistic

economies) independently of the initial level of storage.

Comparing the forward curves between the competitive and monopolistic

markets we note that the slope of the competitive forward curves is greater

than the slope of the monopolistic forward curves. This is also observed in the

corresponding values of the convenience yield observed within each market.

The convenience yield observed in the competitive market is (approximately)

zero when the market is in contango. On the other hand, the convenience

yield observed in the monopolistic market is positive (but small). This means

that the annualized futures returns given by ln
(

Ft+1

Ft

)
is equal to the annu-

alized risk free interest rate when storage is competitive. In contrast, the

annualized futures returns are smaller than the interest rate when storage is

monopolistic. This implies that the monopolistic storer has a positive benefit

from holding inventory explained by the convenience yield. Moreover, this

benefit is greater the greater the initial inventory is. This positive value is

a result from the monopolistic storage policy. In particular, the monopolist

restricts the quantity he buys since this strategy will guarantee him profitable

spreads between the prices at which he buys and sells the commodity. Al-

though the monopolist trades less than the competitive stockholder, these

spreads guarantee him greater cash-flows than what we would get following

the competitive trading strategy.

In summary, the commodity forward curves take two fundamental shapes

depending on whether the initial commodity price is below or above the state-

independent long-term forward price, F∞ = P . Specifically, if the commodity

16Note that the results presented are affected by numerical approximation and errors due to the
successive interpolations to calculate the optimal storage policy for all the (s, z) combinations in the tree
and to the merging process. Therefore the results are affected by some noise.
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price is less than the long-run forward price, the curve will be in contango

otherwise it will be in backwardation. In the example provided in this paper

the initial inventory is equal to the long-run average supply, z. In this case

we observe the following two shapes: (i) when the initial inventory is zero,

the forward curve is downward sloping (backwardation) for some time and

declines towards the steady state long-term forward price, and (ii) when the

initial inventory is positive the forward curve is upward sloping (contango)

for some time and rises towards the steady state forward price. Moreover,

the amount of time the curve remains in contango is positively related to the

initial inventory level. In any case, the forward curve tends to the long-run

forward price, F∞ = P . These results are consistent with the theory of storage

and with the properties inherent to the structural models in the literature and

in particular with the forward curve analysis in Routledge et al. (2000). These

authors assume that the source of uncertainty comes from the demand, where

the shocks are modelled by a 2-state Markov process, a high demand state

and a low demand state. They assume an initial low (or zero) inventory level

and observe the two following forward curve shape: (i) the curve is upward

sloping when the demand state is low, which correspond to an low initial spot

price and (ii) the curve is downward sloping when the demand is high, which

corresponds to a high initial spot price. In both cases, the forward curve

eventually becomes equal to the long-term forward price, F∞.
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Figure 7: Competitive case: Evolution of the forward curve when the initial supply
rate is 4.5 and the initial inventory is equal to 0, 0.225, 0.45 and 0.9, respectively.
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Figure 8: Competitive case: Evolution of the convenience yield curve when the
initial supply rate is 4.5 and the initial inventory is equal to 0, 0.225, 0.45 and 0.9,
respectively.
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Figure 9: Monopolistic case: Evolution of the forward curve when the initial supply
rate is 4.5 and the initial inventory is equal to 0, 0.225, 0.45 and 0.9, respectively.
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Convenience Yield for Different Initial Levels of Inventory
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Figure 10: Monopolistic case: Evolution of the convenience yield curve when the
initial supply rate is 4.5 and the initial inventory is equal 0, 0.225, 0.45 and 0.9,
respectively.

5 Conclusion

In this paper we presented a continuous time stochastic equilibrium storage

model suited for non-perishable storable commodity prices, where the source

of uncertainty comes from the exogenous supply. This model builds upon the

existing discrete time structural models. However, it also takes into account

relevant features of reduced form models recently developed in the literature

by accounting for the mean-reverting characteristics of spot commodity prices.

This model is formulated as a stochastic dynamic programming problem

in continuous time and considers the existence of two state variables: (i) the

exogenous stochastic supply, which evolves as a O-U stochastic process and

(ii) the endogenous inventory level, which is a fully controllable variable. The

decision variable is the rate of storage, which in turn determines the final

commodity prices. In order to simplify the numerical computation, we con-

sidered a linear inverse demand function in the numerical examples provided.

The model is initially formulated under a general framework and later unfolds

into two distinct market scenarios - competitive and monopolistic markets.

The analysis provided in this paper is twofold. First, we analyzed the

dynamic interplay between the optimal storage policy and the commodity
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price. Second we analyzed the forward curves and convenience yields implied

by this model. The results provided are in accordance with the theory of

storage. The presence of storage in the economy smoothes the spot price

behavior by reducing the variability of the natural spot price from the no-

storage case. Moreover, the degree of reduction in this variability is positively

related to the level of inventory. This smoothing effect is more evident in

the case of storage competition than it is in the case of monopolistic storage.

This difference results from the observation that the monopolist performs less

trading activity than the competitive storer since he benefits from having a

greater spread between the buying prices and the sales prices. Another rel-

evant result involves the effect of the storage capacity on the storage policy.

In particular, if the storage capacity is fully used (or close to), the stockhold-

ers in both economies are not able to respond optimally to price variations.

Consequently, the price dynamics will follow the natural price process. The

resulting forward curves take two fundamental shapes: if the initial spot price

is greater that the equilibrium long run commodity natural price we observe

backwardation; otherwise the forward curve is in contango.

The model presented in this chapter makes several contributions to the

current literature. First, it introduces a continuous time structural model

that draws on specific microeconomics assumptions of the market environ-

ment and establishes a link with the existing reduced form models in the

literature. That is, it builds on the structural models but it uses a continuous

time framework and includes the mean reverting characteristics of commodity

prices. This latter contribution is particularly relevant since none of the exist-

ing structural models has included the mean reversion property of commodity

prices. Second, this model is developed under a very flexible framework which

allows for different extensions of the model to be adapted to different com-

modities. For example, this model can be extended to accommodate other

type of supply/demand functions. In particular, we mentioned how season-
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ality could be included in the model without adding extra complexity to the

solution method. Third this paper provides a renewing and comprehensive

analysis of the forward curves implied by this model. With the exception of

Routledge et al. (2000), the existing literature in structural model for com-

modity prices does not provide the analysis of the forward curve. Although

Routledge et al. (2000) provide a study of equilibrium forward prices their

analysis is limited since the stochastic state variable is restricted to two states

and a generalization to a more realistic number of possible state values is not

obvious.

Finally, this model is formulated and analyzed for both competitive and

monopolistic storage environments. This comparison renewing since it is not

illustrated in the current literature, which only considers a competitive storage

economy. Since the energy markets have evolved from a monopolistic to a

competitive environment in recent years, we stress the importance to analyze

both storage economies in order to understand the implications of the market

evolution in the price dynamics.

One of the directions for further work should include the extension of the

analysis to encompass non-linear demand functions, although this would im-

ply a more arduous numerical implementation to solve the Bellman equation.

Another direction of future work is to study the case where the supply in-

cludes jumps since one of the energy price characteristic is the occurrence

of occasional spikes. This could easily be included in the model by adding

a Poisson process to the supply stochastic process in the spirit of the jump

diffusion process presented by Merton (1976). Allowing capacity investment

is also worth exploring. The integration of a real options model like that of

Dixit and Pindyck (1994) with the richer environment of this model is an

interesting, and certainly challenging, possibility. Another direction is the

development of a steady state version of the model presented in this chap-

ter. Although this seems to be extremely difficult to obtain under realistic
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assumptions, it would be interesting to find a method to study the steady

state case directly.

A Derivation of the Stochastic Dynamic Pro-

gramming Equation

We derive the stochastic dynamic programming equation resulting from max-

imizing the following functional:

J(st, zt, t; u(·)) = Et
z
{
∫ T

t

e−r(l−t)L (sl, zl, ul, l) dl|+ Ψ(sT , zT )|s = S, z = Z}
(32)

over all the admissible plans where the state variables s and z satisfy the

following transition equations:

dzt = α(z − zt)dt + σdBt, t ≥ 0; (33)

where Bt is a standard Wiener process defined on the underlying filtered

probability space
(
Ω, F, {Ft}t≥0 , P

)
.

ds = u(s, z, t)dt, 0 ≤ s ≤ b; (34)

and L(st, zt, ut, t) is the instantaneous profit rate and Ψ(sT , zT ) is the salvage

value of having sT and zT as states at final time T . Without loss of generality,

we consider Ψ(sT , zT ) = 0.

To solve the problem defined by equation (32), let V (s, z, t), known as the
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Value Function be the expected value of the objective function in (32) form t

to T when an optimal policy is followed from t to T , given st = S and zt = Z.

Then, by the principle of optimality,

V (s, z, t) = sup
u∈[umin,umax]

E
z
{L(st, zt, ut, t)dt + (35)

e−rdtV (s + ds, z + dz, t + dt|s = S, z = Z)}

where [umin, umax] is defined in Section 3.1.

Multiplying both sides of the equation by erdt and noting that erdt ' 1 + rh

we obtain:

(1 + rdt) V (s, z, t) = sup
u∈[umin,umax]

E
z
{L(st, zt, ut, t)dt + (36)

V (s + ds, z + dz, t + dt|s = S, z = Z))}

That is:

rdtV (s, z, t) = sup
u∈[umin,umax]

{L(st, zt, ut, t)dt+E
z
(V (s + ds, z + dz, t + dt)−

V (s, z, t)|s = S, z = Z)} (37)

= sup
u∈[umin,umax]

{
L(st, zt, ut, t)dt + E

z
(dV (s, z, t)|s = S, z = Z)

}

Applying Ito’s calculus, we have:

dV (s, z, t) =
∂V

∂t
dt +

∂V

∂s
ds +

∂V

∂z
dz +

1

2

∂2V

∂z2
(dz)2 (38)
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where ds and dz are as above and dz2 = σ2dt, which gives:

dV (s, z, t) =
∂V

∂t
dt +

∂V

∂s
udt + (α(z − zt)dt + σdBt)

∂V

∂z
+

1

2
σ2dt

∂V 2

∂z2
(39)

which implies that

E (dV (s, z, t)|s = S, z = Z) =

(
∂V

∂t
+

∂V

∂s
u + α(z − z)

∂V

∂z
+

1

2
σ2∂2V

∂z2

)
dt

(40)

Replacing (40) into equation (37) and dividing by dt gives:

rV (s, z, t) = sup
u∈[umin,umax]

{L(st, zt, ut, t) +
∂V

∂t
+

∂V

∂s
u + α(z̄ − z)

∂V

∂z
+

1

2
σ2∂V 2

∂z2
}, (41)

which is the stochastic dynamic programming equation we need to solve.

This equation can also be written in the following form:

−∂V (s, z, t)

∂t
−H(s, z, Vs, Vz, Vzz) = 0 (42)

where:

H(s, z, Vs, Vz, Vzz) = sup
u∈[umin,umax]

{L(st, zt, ut, t) + uVs(s, z, t) + (43)

α(z̄ − z)Vz(s, z, t) +
1

2
σ2Vzz(s, z, t)− rV (s, z, t)}

37



B Derivation of the Spot Prices Variability

First we point out that, because of the additive form of our model, we prefer to

calculate the standard deviation of the commodity prices process dP , rather

than the standard deviation of dP/P as in a conventional volatility measure.

The price function is p(q) = a− bq. If we write the price as a function of

the two state variables in the models s and z, which are the inventory level

and the supply rate and apply Ito’s lemma we get:

dP (s, z) = Psds + Pzdz +
1

2
Pzz(dz)2 (44)

where ds and dz are the transition equation of s and z respectively and are

given by:

dst = u(s, z, t)dt, 0 ≤ s ≤ b (45)

dzt = α(z − zt)dt + σdWt (46)

where Wt is a standard Wiener process. Substituting equations (45) and (46)

in equation (44) we get:

dP (s, z) = (utPs + α(z − zt) +
1

2
σ2Pzz)dt + σPzdWt (47)

Ignoring the deterministic terms of the above equation, the variability of the

resulting price, σp is given by

σp = σPz (48)

where Pz is calculated numerically as explained in Section 3.3.1. In the ab-

sence of storage, the volatility of the spot price would be a function of the

exogenous supply only, that is, p(z). In the particular case of the linear func-

tion considered here we would have p(z) = a − b(z), a, b ≥ 0. Applying
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Ito’s

dP = Pzdzt = −bα(z − zt)dt− bσdWt (49)

The variability of the price in the absence of storage is then bσ.
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