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Abstract

In this paper we provide an introductory discussion of several issues
relating to robust policy design. We apply H∞ methods to a standard
empirical New Keynesian model of inflation and output gap and derive
optimal LQG and H∞ interest rate policy rules and compare them with
the historical record in the UK over 1988 -2001. Both optimal rules are
substantially more active than the historical policy record. We also in-
vestigate the importance of measurement errors on the output gap and
inflation forecast. It is clear that implementing the most robust rule does
not make economic sense but more robust rules than the LQG rule seem
to coincide well with actually policy over the period when the MPC has
been in place. However there is still a question as to why actual mone-
tary policy has been less responsive than these optimal rules suggest and
whether any preference for robustness is explicit within the MPC policy
making process..

1 Introduction
The theory of macroeconomic policy has developed over many years from Klein
and Tinbergen and through the Lucas Critique and the rational expectations
revolution and yet one of the most fundamental issues facing policy makers,
both then and now, that of how to cope with uncertainty, is still poorly under-
stood theoretically. How exactly should the Monetary Policy Committee in the
UK react to increased uncertainty regarding exchange rates, oil prices or mea-
surement errors in the projected output gap or model uncertainty. Publishing
fan charts showing the projected inflation uncertainty into the future does not
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resolve how that uncertainty should be properly taken into account and reflected
in the policy choice.
Economists have for many years adapted standard methods of control theory

and these now enable us to numerically compute “optimal” (expectations con-
sistent) policies in forward looking nonlinear models but this is with little or no
formal recognition of the potential impact of misspecification in the econometric
model and data uncertainty. The analysis of time consistency led to a strate-
gic monetary policy games literature which largely exploited Linear Quadratic
Gaussian methods and while this informed and indeed radically altered the
policy debate in many ways the approach can formally only deal with additive
uncertainty under a very specific class of errors following the Gaussian distri-
bution. Given certainty equivalence, the policymaker should behave as if the
average model were true and then “ignore” the additive uncertainty surround-
ing the model in the design of the optimal policy rule. Practical policy making
is of course not so rigid or rule based as these theoretical constructions imply
but models are used in the policy making process at least to generate forecasts
and for scenario analysis and these models are necessarily only approximations.
Policy makers are also clearly very aware that the current data they work with
is likely to be inaccurate. Brainard (1967) using a Bayesian analysis, was one
of the first to formally consider the effect of model uncertainty, in the particu-
lar form of parameter uncertainty, and showed how this should lead to a more
cautious policy. However caution in the face of uncertainty is not always a pri-
ori intuitively sensible. Consider for instance the case of global warming; is it
better to act cautiously and wait until the uncertainty is resolved or act more
aggressively now given that if we do not there may simply be no time left, given
the natural dynamics, to implement an appropriate policy?
The question of how to address uncertainty has been a major concern for

policy makers, see for instance Charles Goodhart’s Keynes Lecture at the British
Academy (Goodhart(1999)) where he notes that “One of the central problems is
that uncertainty is far more complex, insidious and pervasive than represented
by the additive error terms in standard models”. The Bank of England and the
Federal Reserve have produced a number of papers (see, Batini et al (1999),
Martin(1999) Martin and Salmon(1999) Sack(1998) and Wieland(1998) that
have attempted to address these concerns. In this paper we apply the tools
of Robust Decision Theory to reconsider these issues in the context of recent
UK monetary policy. As Goodhart notes there has been a tendency for actual
policy to smooth interest rate changes giving rise to the potential criticism
that the MPC acts “too little too late”. We are interested in seeing how this
apparent preference for caution stands up against optimal policies designed with
robustness in mind.
Several papers, notably Sargent (1999),Onatski and Stock (2002) and Gi-

anonni (2002) have already explored the use of robust methods in the monetary
policy context and shown how they can lead to more aggressive interest rate
decisions than actually observed. This conforms with the insight of Hansen
and Sargent (2000) that a preference for robustness is like a “discount factor”,
suggesting that the policy maker has an incentive to pre-empt the future con-
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sequences of current uncertainty by acting aggressively today. However, as we
show below, this “aggressiveness” gets less pronounced when measurement un-
certainty increases and is in fact problem specific as shown by Bernhard (2002).
In other words there is no reason in theory why robust rules should always be
more aggressive than non-robust rules.
In the next section we provide an introduction to the ideas and tools of robust

decision making before turning to their application to UK Monetary Policy1.

2 Robust Decision Theory
Major advances in Control Theory over the past ten years have led to the
development of a range of new approaches to decision making under uncertainty
which have typically been associated with what is known as H∞ theory or more
generally Robust Decision Theory. Critically H∞ methods free us from the
limitations of needing to assume additive Gaussian uncertainty and enable us
to design policy rules that perform well under quite arbitrary misspecifications
in the assumed nominal model and input data2. Essentially robust policy rules
are designed to perform well across a set of alternative models not just a single
linear model as in the classic LQG framework. The basic idea in this new
approach is to search for a “safe” policy, in other words one which retains good
performance under a presepcified set of potential misspecifications in the original
decision problem. Zames (1981) recognized that the goal of guaranteeing some
minimum performance in the presence of model uncertainty could be achieved
by analysing traditional control problems in the H∞ norm, rather than the
standard linear quadratic norm and this observation induced the subsequent
revolution in control theory.
We shall start by describing the familiar Linear Quadratic Gaussian (LQG)

control problem and show how it can be reformulated, first into the minimisation
of an H2 norm problem and then be seen in a robust control setting. We then
demonstrate how H∞ control techniques can be used to solve for robust rules
and compare the resulting robust rules with LQG rules.
The stability properties of different policy rules can be compared using the

H∞ norm which essentially tells us how close we are to instability for a given
range of perturbations from a nominal model and then the so called small gain
theorem states that the inverse of the maximum value of the H∞ norm provides
a conservative measure of (stability) robustness of the system under the policy
rules. The original development of H∞ theory was carried out in the frequency
domain and this approach can still provide substantial intuition although the
theory has now been fully developed in the time domain within the state space
framework. We can for instance evaluate the performance of the different rules

1A considerably more detailed introduction to these methods can be found in the manu-
script by Hansen and Sargent(2002).

2The relevant notion of robustness is simply that the policy should be designed so that the
output is relatively insensitive to misspecification or disturbances while retaining reasonable
performance and stability.
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using a frequency decomposition of the expected losses. This frequency decom-
position summarises how different attitudes towards model misspecification and
measurement errors affect the average performance of the system. It also allows
us to separate the contribution of the disturbance at each frequency to the total
loss as well as assess the average expected loss. We shall use both time and
frequency domain descriptions below.

2.1 Preliminaries3

Assume that the economy facing the policy maker evolves according to the law
of motion given by

ẋ(t) = Ax(t) +B1v(t) +B2u(t) (1)

where x(t) is the vector of state variables, v(t) a vector of disturbances ( for the
moment random), u(t) , the policy variables and ẋ(t) = dx

dt . The policymaker
seeks to stabilize the economy using a state feedback rule, denoted by

u(t) = Fx(t) (2)

where F contains the policy response parameters, yet to be determined4. Let
z1(t) denote a vector of target variables and assume that there is a mapping
from the state variables into observable target variables of the form,

z1(t) = C1x(t) +D12u(t) (3)

C1 andD12 are selection matrices which choose the appropriate vector of output
variables from among the state and control variables. There is also a vector of
measured output variables z2(t),

z2(t) = C2x(t) +D21v(t) (4)

C2 is a selection matrix and D21 is the impact matrix of measurement dis-
turbances. Throughout we assume B0

1D21 = 0, that is, we assume that system
disturbances and measurement disturbances are not correlated. We assume also
that D0

12C1 = 0. This implies that there are no cross-terms between state vari-
ables and control variables — but this can be relaxed. To make our assumptions
clear the full state space system matrices are of the general form;

∙
A B
C D

¸
=

⎡⎣ A B1 B2
C1 D11 D12

C2 D21 D22

⎤⎦
3 In order to facilitate the further application of these robust methods we will follow the no-

tation used in the MATLAB robust control toolbox and μ -synthesis and analysis toolbox.We
discuss continuous time. H∞ techniques for simplicity but discrete methods are almost en-
tirely equivalent; a bilinear transformation can be used to transform discrete time systems to
continuous time.

4The feedback rule could be driven by (robustly) estimated state variables when the full
state vector needs to be reconstructed.
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with the two inputs to the state evolution being the disturbances ν(t) and the
control variables u(t).
Under the assumption that {v(t)} are i.i.d. disturbances, certainty equiva-

lence holds in the standard LQG problem: in other words the optimal policy
does not depend upon the matrix B1 and hence the covariance matrix of the
shocks. Moreover, the impact coefficients F in the optimal rule remain the
same, whether D12 is singular or not due to separation principle. When D12 is
different from zero, however, the state vector x(t) is evaluated at an estimated
state bx(t), where bx(t) can be calculated using Kalman filter, which forms recur-
sive mean square error forecasts of the current state vector given current and
past information. Adding uncorrelated measurement errors into the model has
only a minor impact on the ordinary LQG problem.
On the contrary, in the robust control setting B1 becomes the impact matrix

for model misspecifications of an arbitrary form, contributing to the solution
of the robust control problem. The disturbances v(t) can be interpreted as
unstructured model specification errors.
Certainty equivalence, in its standard sense, now breaks down as the robust

control problem allows the disturbances v(t) to feed back onto the state vector
x(t)5 . So in the robust control setting the nature of the measurement errors
critically affects the design of the robust rule. A Robust Kalman filter can then
used to recursively estimate the state vector.
Equations (1), (3) and (4) lead to an augmented state-space model Sa as

follows

Sa :

⎧⎨⎩ ẋ(t) = Ax(t) +B1v(t) +B2u(t)
z1(t) = C1x(t) +D12u(t)
z2(t) = C2x(t) +D21v(t)

(5)

When the control rule u(t) = Fx(t) is embedded, the model can be written
compactly in the reduced form as

Sc :
½

ẋ(t) = Acx(t) +Bcv(t)
z(t) = Ccx(t)

(6)

where Ac, Bc and Cc are reduced form counterparts of the A,B and C matri-
ces. Under some specific, but not too restrictive circumstances, the matrix D
does not in fact appear in the reduced form of the state space model. When
measurement errors enter into the model, the states x(t) are replaced with their
estimated counterparts bx(t)̇.
The reduced form model can then be further represented by means of the

closed loop transfer matrix T (s)

T (s) = Cc(sI −Ac)
−1Bc (7)

5An extended notion of certainty equivalence can however be stated see Hansen and Sargent
(2005) or the minimax certainty equivalence of Basar-Bernhard (1995).
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where the transfer matrix T (s) compactly describes the mapping from the
shocks v(t) to the output variables z(t) such that

z(t) = T (s)v(t)

2.2 LQG and Robust Control

2.2.1 H2 -Norm

In this section we give a definition of the H2 norm and the H∞ norm. We
discuss, how they can be computed both in the time domain and the frequency
domain. We also discuss equivalence between the so called H2 -problem and
LQG problem.

Definition 1 (H2 system norm in the time domain) For a proper transfer ma-
trix given in (7), the H2 norm of the system is defined as

kT k2 =
µ
1

2π
tr

Z ∞
−∞

g(t)g(t)0
¶ 1

2

where tr is the trace operator and g(t) is the system’s impulse response defined
as

g(t) =

½
Cce

ActBc, t ≥ 0
0, t < 0

Minimisation of the kT k2 norm, as presented above implies that the policy-
maker is only concerned with the magnitude of the impulse responses. In the
robust control setting, as will been seen later, the policymaker is also concerned
with the shape of the impulse response function. The H2 norm can also be
calculated directly from the state-space representation of the system (6). It can
be shown that

kSk22 = tr(C 0cCcLc) (8)

where Lc = L0c > 0 is a unique solution to the Lyapunov equation

AcLc + LcA
0 +BcB

0
c = 0 (9)

Equation (8) can be best understood by noticing that Lc, which in the literature
is often denoted as controllability grammian, is actually the correlation matrix
of the state variables when the exogenous disturbances are assumed to be un-
correlated white noise errors. To see this, notice that controllability grammian
is defined as

Lc =

Z ∞
0

eActBcB
0
ce
Actdt (10)

which resembles the correlation matrix of the stationary random vector process.
Given these, we are ready to develop the equivalence between the minimisa-

tion of the H2 norm and more familiar LQG cost function, given as
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J = E

Z ∞
0

[z1(t)
0Qz1(t)] dt =

Z ∞
0

E [z1(t)
0Qz1(t)] dt (11)

The matrix Q in (11) is a positive definite weighting function, chosen to quantify
the relative importance of the target variables. The cost can be calculated in
steady state as

J = E (z1(t)Qz1(t)) = tr{QΣy} (12)

where Σy is a steady-state correlation matrix of the output. J can be further
decomposed into

J = E[x(t)0Q̄x(t) + u(t)0Ru(t)]

under the assumption that there are no cross-terms between the state variables
and control variables. R is positive semi-definite weighting matrix, which at-
taches a penalty for the control variable u.
The steady-state correlation matrix of the output, Σy, can be calculated

directly from the states of the reduced form system, using a diagonal selector
matrix Cc

Σy = CcΣxC
0
c (13)

where the state correlation matrix Σx is the unique solution to the following
Lyapunov equation

AcΣx +ΣxA
0
c +BcB

0
c = 0 (14)

Substituting (13) into (12) then yields

J = tr{QCcΣxC
0
c} = tr{QC0cCcΣx} (15)

due to the fact that the trace is invariant to cyclic permutations. Recall then
that

kSk22 = tr(C 0cCcLc)

So the H2 norm (kSk2) of the system S is a square root of J in equation (15)
provided the weighting matrix Q = I and Sw = I. In most cases, however, this
is not the case. In order to state the LQ problem as a minimisation of an H2

-norm problem, when in the original problem Q 6= I, R 6= I and Sw 6= I, we
simply need to use appropriate weighting matrices and partitioning.
The following H2 problem statement is then equivalent to the minimisation

of the linear quadratic loss function (11) subject to the law of motion of the
economy (1).

Problem 2 (H2) Find a stabilising feedback rule u(t) = Fx(t) which mini-
mizes the H2 norm of the reduced form system

SH2 :

⎧⎨⎩
ẋ(t) = Ax(t) +B1

√
Sv(t) +B2u(t)

z1(t) =
√
Qx(t) +

√
Ru(t)

z2(t) = C2x(t) +
√
Sv(t)

(16)
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S refers to spectral density matrices of the errors. Throughout, we assume
that errors have flat spectral densities, that they are uncorrelated and we set
S = I.
Since squaring is monotonic, minimising the LQ cost function is equivalent

to minimising the reduced form system H2 norm. This equivalence is extremely
useful as it implies that the H2 norm can be used for performance analysis in
the frequency domain as well6.

Definition 3 (H2 system norm in the frequency-domain) For a stable transfer
function given in (7),the H2 norm of the system in the frequency domain is
given by

kT k2 =
µ
1

2π
tr

Z π

−π
G(iω)G(−iω)0dω

¶ 1
2

where ω is a point in the frequency range (−π, π).

Plotting tr (G(iω)G(−iω)0) over the frequency range shows the contribution
of the disturbance to the total loss at frequency ω. One fundamental difference
between robust control and linear quadratic or H2 control is that a robust
decision maker does not assign equal weighting across frequencies, as would a
conventional LQ policymaker. In the time domain this means that a robust
policymaker is also concerned about shape of the impulse response function. In
effect a robust policy maker assigns more weight to the "worst " frequency and
it is this that makes H∞ methods more robust but more delicate in design.

2.2.2 Robust Control

We are now in a position to set up the H∞ norm as a cost function where the
minimisation of the H∞ norm can be seen as a problem of minimising the loss
under some form of “worst-case” scenario. We first provide definitions of the
H∞ norm, both in the time domain and frequency domain assuming analyticity
inisde the unit circle.

Definition 4 (time domain) the H∞ - norm can be defined as

kSk∞ = sup
v 6=0

kg(t)⊗v(t)k2
kv(t)k2

where g(t)⊗v(t) is the convolution of the input with the impulse response matrix,
yielding the time-domain system output.

Definition 5 (frequency domain) The maximum gain over all frequencies is
given by the H∞ norm.

kT k∞ = sup
ω
σ (T (jω))

where σ denotes maximum singular value over the frequency range ω.
6 Sargent and Hansen (1999) (2005), Kasa (2000) and Tetlow and Muhlen (2000) discuss

the frequency domain approach.
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The H∞ norm can then be calculated directly from the transfer function as
follows

sup
ω
σ (T (s)) = supσ

ω
[C(sI −A]−1B] (17)

An alternative interpretation of the robust control problem is as a game
between two participants; the policymaker who attempts to find a stabilising
policy rule which minimises his loss while a malevolent fictitious opponent is
choosing his inputs, the disturbances , so as to maximise the policymaker’s
loss.7

In order to state this min-max problem formally, let the economy evolve ac-
cording to (1). The solution to the differential game consists of simultaneously
finding an optimal trajectory for the policy variable, {u(t)}∞t=0, and a trajec-
tory for the worst-case disturbance input {v(t)worst}∞t=0. The solution to this
problem can be found by searching for a saddle point of an objective function

J(u, ν) (18)

where u is the choice variable of the policymaker and ν is a choice variable
of the malevolent opponent. If J is interpreted as a “loss function”, we are
interested in finding an optimal feedback rule u∗ which minimises J and v∗

which maximises J simultaneously. Choosing the loss function appropriately, it
is possible to apply standard equilibrium concepts, notably a Nash equilibrium,
to the solution of above game. A quadratic loss function will do, as long as we
ensure that the loss function is convex in u and concave in v8 . We next briefly
develop this rule starting from the robust control problem itself.
In the robust control problem the policymaker seeks to minimise the supre-

mum of the H∞ norm with respect to the linear law of motion of the economy.
This H∞norm is defined as

kSk∞ = sup
kvk2 6=0

kzk2
kvk2

(19)

In (19) kzk2 and kvk2 denote L2 vector norms of real valued vectors z and
v and sup denotes supremum. Vector z contains the linear (or non linear)
combination of target variables that the policymaker seeks to stabilise based on
his decision variables, u, and v contains the unobservable components of the
disturbance.
The robust control, or H∞ control problem is then to find a feedback policy

rule, u = u(z), which minimizes this H∞ norm given some bound γ > 0,

kSk∞ = sup
kvk2 6=0

kzk2
kvk2

< γ (20)

7See Basar and Bernhard (1995) or Green and Limebeer for books that develop the game
theoretic interpretation to H∞.

8Formally we require concavity in ν but because u is allowed to use state feedback the
requirement in u is much less strict than convexity, See Basar and Bernhard (1995).
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Essentially (20) describes the effect of the disturbance ν on the output z
under the closed loop policy rule and by bounding the effect of ν on the output
through γ we achieve a degree of robustness. This norm bounded uncertainty
thus describes a set of alternative models ( misspecifications) or disturbances of a
completely unstructured form as long as they are contained within the γ bound.
This unstructured description to the uncertainty facing the policy maker holds
the real power of the H∞ approach and notice that this is achieved in a deter-
ministic formulation of the effect of the uncertainty on the output. Minimisation
of the H∞ norm implies that the policymaker minimises his loss kzk2 recognis-
ing and explicitly taking into account the impact of the potentially destabilising
(deterministic) inputs arising from misspecifications and disturbances to the
system as captured in v. Remarkably, as demonstrated by Glover and Doyle
(1988), it turns out that this optimal robust feedback policy rule based on the
minimisation of the bounded H∞ norm coincides with the optimal policy in a
linear exponential risk-sensitive criterion LEQG (see Whittle(1981) and (2002)).
If we square both sides of (20)

kSk2∞ = sup
kvk2 6=0

kzk22
kvk22

< γ2

we can see that in order for a supremum to satisfy a strict inequality above, the

term kzk22
kvk22

must be bounded away from γ2 so for some ε > 0 we can write

kzk22
kvk22

≤ γ2 − ε2

⇔
kzk22 − γ2 kvk22 ≤ −ε2 kvk22 (21)

When the inequality (21) holds, so does the strict equality (20) for all
disturbances v and for some ε2 > 0. Consequently, the left hand side of (21)
can be used as an objective function in the dynamic game between the two
players,

Jγ = kzk22 − γ2 kvk22 (22)

This objective function, in fact, provides the link to the stochastic risk-
sensitive decision theory, developed and studied in Whittle (1981). The para-
meter γ2 in (22) in effect describes the policymakers’ attitude towards uncer-
tainty or his desire for robustness- risk in the LEQG problem. It permits an
interpretation of risk sensitivity parameter when the policy rule results from a
saddle point solution to (22). That is, the optimal robust feedback policy rule
(u∗) and the most de-stabilising deterministic input (v∗) are solutions to

u∗ ∈ argmin
u
{Jγ(u, ν)}

v∗ ∈ argmax
v
{Jγ(u, ν)}
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In particular, the solution pair (u∗, v∗) is a saddle point when it fulfils the
following inequalities

Jγ(u
∗, v) ≤ Jγ(u

∗, v∗) ≤ Jγ(u, v
∗), ∀ v ∈ V, u ∈ U (23)

So Jγ(u, v) has a minimum with respect to the policy variable u and a maximum
with respect to v at the point (u∗, v∗).
All that has changed with respect to the original optimisation problem is

that an unobserved disturbance input v is introduced into the objective func-
tion directly: v is simply another control variable which is penalised by an un-
certainty preference factor γ2 > 0. The policymaker now plays a mental game
against the fictitious opponent: While the policymaker wants to minimise Jγ
by choosing some u∗, the opponent wants Jγ to be maximised. The policy rule
that results from this game is equivalent to the min-max policy rule. Standard
methods of solving linear quadratic optimisation problems can now be applied;
solving the optimisation problem using (22) as a loss function and a law of
motion of the economy (1) as a constraint9. When the state space model is
appropriately defined, as in (16), the resulting robust rules can be compared to
outcomes of linear quadratic gaussian rules or equivalently the minimisation of
the H2 norm, as given above (2). MATLAB provides a variety of computational
tools for solving for the H∞ policy rule.

2.3 Stability and robustness

As discussed above, H∞ techniques can be seen as providing an alternative to
LQG methods or H2, when policymakers want to design rules that perform well
under unstructured uncertainty. A policy rule which maximises robustness can
be found by searching for the infimum of γ such that the solution to the problem
exists and the policy rule stabilises the reduced form system This is due to the
Small-Gain Theorem, originally due to Sandberg and Zames (1981).
The Small-Gain Theorem states that the reduced form model, given for

instance in (6) remains stable with respect to all possible unstructured pertur-
bations ∆ of size k∆k∞ < 1/γ as long as kT k∞ < γ. Therefore, the infimum of
γ, or γ∗, effectively ensures that the policy rule is robust to the largest possible
unstructured perturbations before destabilising the economy. If we interpret, γ
as a preference for robustness we may decide that we are not really interested
in the maximum degree of robustness that retains stability and in fact we
may wish to move back from the optimal H∞ rule provided by γ∗ and thereby
achieve less robustness. As we let γ increase to infinity we recover the LQG
solution. By letting γ increase from γ∗ we are reducing the set of alternative
models/ misspecifications/disturbances the rule will be robust against. In this
way we shape the degree of robustness desired and in fact the “worst case” mis-
specification may be very close to the nominal model. This enables the method
to consider both behaviour and policy responses to minor deviations from say
rational expectations equilibrium but it can also be used to construct policies

9See for instance Sargent (2000), Zhou et. al. (1996).
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for dramatic uncertainties in which the relevant economic structure can lie a
considerable distance from the nominal model. None of this of course obviates
the need to construct models that are as accurate as possible since economic
welfare will decline through the use of policy that is unecessarily robust.

2.4 Performance

Whilst stability criteria can be stated explicitly - conditional on the judge-
ment of uncertainty of course - performance robustness must be evaluated with
respect to some a priori performance criteria. If the H∞ norm is used as a per-
formance criterion, then it must be possible to express performance in terms of
bounds on the target variables. This requires that the disturbance inputs and
output variables in the state space model given in (16) are adequately normal-
ized. If the target variable(s) fail the a priori criteria, then that policy rule does
not perform robustly. However, such a policy rule can still be robustly stable.
Many of the existing economic examples have focused on robust stability as a
performance criterion (see Onatski and Stock (2002), Tetlow and von Muhlen
(2000) etc). In economic models robust performance or performance in general
is perhaps best analysed by using the original H2 norm as an economic criterion
function, rather than H∞ norm. However assessment of relative performance
is not straightforward, even when the H2 norm is used. This is due to the
fact that the reduced form state evolution equation in the robust control prob-
lem involves a state-feedback law for the “worst-case” disturbances. Further,
when measurement errors are present, the standard separation principle breaks
down and strictly speaking-does not allow us to separate the control and robust
estimation problems.
To see this more formally and at the same time emphasise the differences

between robust control and ordinary LQG problem, we can see 10 that the
solution to the robust control problem yields the following laws of motion.

ḃx(t) = Ax̂t +B1v̂worst(t) +B2u(t) + Z∞L∞(C2x̂(t)− z2(t)) (24)

u(t) = −B0
2X∞x̂(t) (25)

v̂worst(t) = γ−2B0
1X∞x̂(t) (26)

where

L∞ : = −Y∞C 02,
Z∞ : = (I − γ−2Y∞X

0
∞)
−1

X 0
∞, and Y∞ are the solutions to corresponding Ricatti equations11 . Substitut-

ing the feedback rules for u(t) and v(t) into (24) yields.

ḃx(t) = (A−B2B
0
2X∞ + γ−2B1B

0
1X∞)| {z }

Aγ

x̂(t) + Z∞L∞(C2x̂t(t)− z2(t)) (27)

10See Zhou, Doyle and Glover (1996) for details.
11 Solution involves following two Hamiltonian matrices
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Equation (27) gives a law of motion for the economy under the “worst-case
disturbances” and under the robust rule. Matrix Aγ therefore embeds both a
feedback policy rule, as well as feedback rule for the worst-case disturbances.
The law of motion in the standard H2 optimal control problem, in turn, can

be written asḃx(t) = Ax̂(t) +B2u+B1v(t) +GLQ(C2x̂t(t)− z2(t)) (28)

u(t) = FLQx̂(t) (29)

FLQ = −B0
2XLQ (30)

GLQ = YLQC
0
2 (31)

x̂(t) is the optimal estimate of x, obtained by using Kalman filter. XLQ and
YLQ are solutions to corresponding Riccati equations12.
Substituting (29) into (28) delivers the reduced form state equation,

ḃx(t) = (A−B2B
0
2FLQ)| {z }

ALQ

x̂(t) +B1v(t) +GLQ(C2x̂t(t)− z2(t)) (32)

Given these, there are basically two different ways to assess a relative perfor-
mance of LQG rule and robust rule13 . The first possibility is to assess losses
under an approximating model such thatḃx(t) = (A− Fi)x̂(t) +B1v(t) +Gi(C2x̂t(t)− z2(t)) (33)

where Fi corresponds either to the LQ rule (FLQ) or the robust rule (Fγ). Gi

corresponds either to the Kalman filter or the robust Kalman filter as given in
(24) by the term Z∞L∞. At first sight this may seem an intuitive and natural
way to proceed: we just set the worst case disturbances to zero and assume that
the approximating model usually prevails. However, strictly speaking, in the
robust control setting the stochastic separation principles does not allow us to
separate control and estimation. This means that the robustified Kalman gain
Z∞L∞ makes sense only under (27).

H∞ : =
A γ−2B1B01 −B2B02

−C0
1C1 −A0

J∞ : =
A0 0

−B0
1B1 −A0 − C2

B01D21
D0
21B

0
1 C02

such that X∞ = Ric(H∞) and Y∞ = Ric(J∞).
12 Solution involves following two Hamiltonian matrices

HLQ : =
A −B2B02

−C0
1C1 −A0

JLQ : =
A0 0

−B0
1B1 −A0 − C2

B01D21
D0
21B

0
1 C02

such that XLQ = Ric(HLQ) and YLQ = Ric(JLQ).
13Criteria to assess performance is always quadratic loss or equivalently H2 -norm.
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A second possibility is to make a performance comparison directly between
the approximating model under the LQG rule (33) and the worst case model
under the robust rule as given in (27). We opt for the latter but note that we
are actually comparing two ”different models”.

3 UK Monetary Policy

3.1 New Keynesian Model

We adopt a stripped down version of a New Keynesian form of policy model,
extensively studied in the recent literature on monetary policy rules. The New
Keynesian model consists of two aggregate relationships with direct founda-
tions in a dynamic general equilibrium theory with temporary nominal price
rigidities14 .
The first aggregate relationship links inflation to the real output gap as

follows
πt = ρEtπt+1 + (1− ρ)πt−1 + λyt + �t (34)

where πt is the inflation rate, yt is the output gap, Etπt+1 is expected inflation
of period t + 1 conditional on information available at time t and 0 ≤ ρ ≤ 1.
The {�t} are serially uncorrelated innovations.
The parameter ρ, describes the degree to which expectations are forward

looking. Setting ρ = 1, implies that expectations are purely forward looking so
that current inflation is determined with no reference to past inflation. Many
authors assume that costs of adjustment and overlapping price and wage con-
tracts generate some inertia in inflation, so that ρ will be less than one. At the
other extreme, for instance Ball (1999) and Svensson (1997), it is assumed that
expectations are purely backward looking. Empirically estimated values for ρ
vary greatly. Rudebusch (1999) for instance suggests that based on the recent
empirical studies with U.S. data a 90 % confidence interval for ρ would range
from 0 to 0.6.
Although it would interesting to study the performance of robust and LQG

rules under parametric uncertainty regarding ρ, we set ρ = 0 initially15 Thus,
our base model reduces to a backward looking model for inflation

πt = πt−1 + λyt−1 + �t (35)

The estimated counterpart for U.K. during the period of 1988:1-2000:2 de-
livers the following simple relationship

14See for instance Roberts (1995), Woodford (1996), Goodfriend and King (1997), Walsh
(1998), Clarida, Gali and Gertler (1999).

15This is not completely implausible on empirical grounds. For instance Fair (1993) and
Gruen, Pagan and Thompson (1999) obtain very small values for ρ.
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∆πt = −0.02
(0.02)

+ 0.05
(0.013)

yt−1 + �t

R2adj = 0.50

BG = 5.59(0.04)
JB = 0.85(0.65)

S.E. = 0.20

BG(4) and JB are the Breusch Godfrey and Jarque Bera statistics for het-
eroskedasticity and normality respectively. Standard errors are shown in paren-
theses. Potential output level is estimated using a Hodrick-Prescott filter with a
smoothing parameter of 30,000 from monthly industrial production. The output
gap was then calculated as a logarithmic difference between actual and its esti-
mated potential level and is measured in percentages. Inflation is measured as
annual percentage change in RPIX. Currently, the Bank of England uses RPIX
as a preferred measure of underlying inflation where RPIX differs from RPI by
excluding mortgage interest payments.
This relationship between inflation and the real output gap is very “approxi-

mate” and there is some evidence of serial correlation. However the explanatory
power of the regression is reasonably high and the parameter of interest is de-
termined accurately it would seem. This permits us to pin down a rough value
for the λ parameter and allows us to keep the structure of the model as simple
as possible in order to concentrate on the principal issue of robustness16.
The second aggregate relationship in these New Keynesian models, links the

real output gap to its expected value, nominal interest rates and an equilibrium
real rate

yt = Etyt+1 − β(it −Et+1πt − rt) + νt (36)

where yt is real output gap, Etyt+1 is expected real output gap at time t + 1
conditional on information at time t, it is the short-term nominal interest rate
and r is equilibrium or natural rate of interest. In the theoretical model of
Woodford (1996), this natural rate of interest is interpreted as a steady-state
value in the case of zero inflation and steady output growth. The νt are serially
uncorrelated innovations. The empirical counterpart of (36) typically allows
some form of costly adjustment or habit formation in order to generate inertia
and lagged responses of output gap on the interest rate and inflation. Starting
from the hypothesis that expectations are purely backward looking, and after
experimenting with the U.K. data, we ended up into following specification

yt = δ1yt−1 + δ2yt−2 − β(it−1 − πt−1 − rt−1) + νt (37)

Real output gap depends upon its lagged values and the lagged real rate of
interest less the equilibrium real rate of interest. The real rate of interest

¡
i− π

¢
was calculated as a difference between a 15 month moving average of the Bank of
England´s base rate and 15 month moving average of the periodic annualised

16Notice that to a degree we are not emphasising the need to develop a perfect econometric
model since the robust methods used to construct policy below take the misspecification into
account.
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percentage change in RPIX. This suggests that monetary policy affects the
real economy with a considerable lag. We experimented with different moving
average lengths, but discovered that shorter moving averages would not deliver
a significant value for β.
Estimating the equilibrium rate of interest rt is somewhat more debatable.

Some authors have argued that in the U.K, there is a strong evidence that
the equilibrium rate of interest, that is, a rate of interest which keeps output
growth constant and inflation at zero, has radically changed over the years.
We have therefore “estimated” the equilibrium (real) rate of interest using a
Hodrick-Prescott filter with a smoothing parameter (20,000). 17 The resulting
estimated equation for the period of 1988:M1 to 2000:M2 yields the following
relationship

yt = 0.04 + 0.52
(0.08)

yt−1+ 0.28
(0.08)

yt−2− 0.17
(0.08)

(it−1 − πt−1 − rt−1) + �t

R2adj = 0.71

BG(4) = 1.75(0.14)
JB = 1.62(0.44)

S.E. = 0.73

The explanatory power of the regression is reasonably high and all the esti-
mated parameters are relatively accurately determined. There is no evidence of
serial correlation and the errors are normally distributed.

3.2 Measurement errors

As stressed at the outset monetary policymakers are not only concerned with
model misspecification but with errors in the inflation forecast and estimates
of the output gap. Apart from conceptual issues relating to the measurement
of the output gap, setting monetary policy on the basis of the level of the
estimated real output gap requires relying on a quantity that is difficult to
measure accurately and the real-time measurement errors can be large, as noted
by Rudebusch (1999) and many others18 . As noted by Egginton et. al (2001),
the size and number of revisions to UK macro data have also been large. A
number of researchers have argued that the quality of UK macro statistics has
deteriorated over time and showed a considerable downward bias in the initial
measurement of key variables in the late 1980s. Policy-makers, at both HM
Treasury and the Bank of England thought that this bias may have delayed the
tightening of monetary policy in the late 1980s, and therefore, contributed to
the inflationary Lawson boom.
In order to get some idea how large the real-time measurement errors may

have been in the U.K during the estimation period, we have used a unique real-
time macro data set from Eggington et. al. (2001). The data consists of a
common set of macro economic variables with different vintages, which reflect
17Martin and Salmon (1999) detrended base rate directly.
18Orphanides (1999) found that real-time estimates of potential output severely overstated

the economy’s capacity relative to the revised estimates in the U.S. in 1970s.
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the revisions and updates of the data over time. So we can use data that was
actually available in 1988 rather than that which is presented today for 1988 in
the revised national statistics.
Figure 1 shows the output gap, as calculated from the real-time data and

from the revised data. Real-time output gap has been calculated from the
first available estimates of the monthly industrial production and using the
Hodrick-Prescot filter to estimate potential output. The revised output gap, in
turn, has been calculated from the last revised figures of industrial production.
Considerable differences can be seen in these output gap estimates throughout
the whole sample period, particularly in 89− 90, 91− 92, 94− 95, 97− 98, which
emphasises the importance of this issue in practical policy making and th need
for robustness.

-4

-2

0

2

4

6

89 90 91 92 93 94 95 96 97 98 99

Real-time Revised

Figure 1: Output Gap in real time and after subsequent data revisions.

Figure (2) shows the distribution and summary statistics of the output gap
measurement errors, calculated as a difference between real-time output gap
and actual. The standard error of output-gap measurement errors during the
whole sample period is 1.09.
There is also some evidence that output gap measurement errors persist

over time, but we nevertheless make an assumption that the errors are purely
transitory and can be modelled as white noise with variance σηt and mean
zero. Of course, at the time that the policymaker assesses the state of the
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Std. Dev.               1.093112

Figure 2: Distribution of Output Gap Measurement Errors and Summary Sta-
tistics
Source: Own calculations from Egginton et. al (2001).

economy, he has no indication of what the “true” measurement error actually
is. However, over the course of time, we assume, that the policymaker has
learned how large the measurement errors have been historically, and therefore
uses that value as a proxy for “real-time-measurement error”.Furthermore, we
assume that measurement errors are uncorrelated with the innovations �t and
νt; not an implausible assumption.
In practical implementation, diagonal elements of the impact matrix D21

contain the standard errors of the measurement errors and diagonal elements
of the impact matrix B1 contain the standard errors of innovations �t and νt.
The assumption that D21B

0
1 = 0 ensures that the innovations and measurement

errors are uncorrelated.

3.3 Policy rules

We assume the monetary policymaker’s task is to stabilise inflation and output
and to achieve this goal with “minimum” effort. We also assume that the
policymaker uses an interest rate feedback rule of a simple Taylor (1993) form,
specifically

it = θiit−1 + θππt + θyyt (38)

where θi, θπ and θy are the feedback coefficients, it is the nominal interest
rate in annual terms, πt is annual inflation rate and yt denotes the output gap.
Interest rate rules of this type (38) are perhaps only naive approximations to the
actual policy making process, but as suggested initially by Taylor (1993), they do
seem to describe actual outcomes relatively well. Several authors (for instance
Clarida, Gali and Gertler (1999), Rudebusch (1998) and Nelson (2000) for the
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U.K.) have found considerable inertia in interest rate rules and interpreted this
as the policymaker’s concern for interest rate-smoothing.19

In order to derive such a rule optimally in this setting, we assume that the
policymaker’s linear quadratic loss function can be expressed as

kz1(t)k22 =
∞X
t=o

βt−1Lt

Lt = λπ (πt − π∗) + λy (yt − yn)
2
+ λi(it − it−1)

2

where β is the discount rate, Lt is the periodic loss function, λπ, λy and λi
are the preference weights associated with inflation, output-gap and the change
in interest rate respectively. In the benchmark simulation, we set λπ = λy =
β = 1 and λi = .25. The policy maker’s objective function is standard in that he
is penalised by the deviation of output and inflation from their assumed target
values and that the policymaker has an interest rate smoothing objective. When
deriving the robust policy rule, the policymaker minimises the H∞ norm, as
defined in (19).
Several empirical studies have found that the optimal feedback coefficients

from LQG optimisation are larger than those estimated empirically while others
have shown that robust rules can be more aggressive than LQG rules. On the one
hand, this challenges the original insight of Brainard (1967), who showed that
parametric uncertainty should lead to less aggressive policy responses, when the
policymakers are Bayesian. On the other, robust rules seem to be even further
away from the realistic policy responses estimated from the observed data20.
Whilst we have not estimated the policy response coefficients, we compare the
performance of the different optimal rules with the actual policy visually below.

4 Results

4.1 LQ and Robust Interest Rate Rules

This section presents our initial results from applying both LQG and H∞ to
derive (optimal) policy rule for the model estimated in the previous section.
When deriving the interest rate rule, we impose the condition that the rule will
be a full state feedback rule in that it depends on all the state variables where
our state variables are it−1, πt−1, yt−1, yt−2.
Equations( 39) and (39) provide a benchmark linear quadratic rule and the

optimal robust rule (γ̂∗ = 8.3552).

iLQt = .343it−1 + 1.28πt−1 + .55yt−1 + .17yt−2 (39)

iRt = .08it−1 + 7.80πt−1 + 1.28yt−1 + .34yt−2 (40)
19For the discussion of interest rate inertia in forward looking models, see for instance

Woodford (1999)
20Tetlow and von zur Muehlen (2000) and Onatsi and Stock (2002) suggest, however, that

rules that are robust to structured model uncertainty tend to be less aggressive than optimal
LQG rules. They suggest also that the equilibrium responses of these rules are closer to
empirically estimated rules.
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where πt−1 is the15 month inflation moving average lagged one period, it−1
is the one period lagged base rate and yt−1 and yt−2 are one and two period
lagged output gaps respectively. These benchmark results are derived under
the assumption that there are no measurement errors and that the policymaker
attaches equal weight (unity) to inflation and the output gap as well as a small
weight on interest rate smoothing (0.25). The optimal robust rule is clearly
radically more aggressive and less autoregressive than linear quadratic rule.
This “optimal” robust rule would suggest an unrealistically strong inflation

response, implying that the policymaker should respond to 0.1% percentage
point increase in inflation rate with an approximately 80 basis points increase
in the base rate, while 1 percentage point increase in output gap should trigger
an approximately 150 basis point increase in the interest rate. In order to get
some idea of how the linear quadratic interest rate rule performs with respect to
the actual base rate we compare the two in Figure(3) and can see similar results
to Sack( 1998) in that the optimal LQG rule is much more active or variable
than the actual policy. One potential explanation for apparent variation is that
actual policy is discretised and rarely if at all moves in steps other than discrete
multiples of 25 basis points. The optimal policy is continuous and the figure
shows a discretised version in which the optimal rate is only moved to the nearest
quarter percent.
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18

89 90 91 92 93 94 95 96 97 98 99 00

Linear Quadratic Rule Base rate

Discretisised

Figure 3: The discretised optimal LQG policy and the actual base.

So even the linear quadratic rule tends to be more aggressive than the actual
policy ( see Goodhart (1999) for more discussion as to why this may be the case).
Contrasting these two policies with the optimal γ̂∗ robust rule shown in (40)
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is meaningless since the implied responses are unrealistically high even with
“realistic ”measurement noises.
We next concentrate on modifying the optimal robust rule. We first ex-

perimented with changing the relative inflation preference weight, the inflation
conservativeness parameter. Keeping everything else equal with respect to (40)
but increasing the relative weight on inflation in the loss function to 2.25 delivers
an even more aggressive inflation response. This, “inflation conservative robust
rule” would suggest responding to a 0.1 percentage point increase in inflation
by raising interest rates by approximately 160 basis points.
Less aggressive robust rules can be derived either by increasing a weight

associated with interest rate smoothing or lowering the weight with respect to
inflation. For instance, increasing the penalty on interest rate smoothing to1,
and at the same time increasing inflation measurement errors would deliver an
inflation response coefficient of around 1.50 ( Taylor’s nominal value). Whilst
increasing inflation measurement errors seems reasonable, it would be hard to
convince many of the need for such a high preference for interest rate smoothing.
We next study in some detail the effects of measurement errors. As argued

above,the output gap is, in particular, difficult to estimate accurately in real-
time. So we have assumed that the standard error of output gap measurement
error is 1.09, as estimated from the real-time data above. We assume also a
small standard error for inflation measurement errors (0.1). This produces the
following optimal robust rule using the robust Kalman filter to estimate the
output gap;

iRt = .32it−1 + 7.48πt−1 + 0.5yt−1 + .5yt−2 (41)

The introduction of the output gap measurement error quite radically reduces
the output gap response coefficient and also brings down the inflation response
coefficient slightly. Interestingly, the robust rule also shows more inertia as the
measurement noise increases. The panels in Figure(4) display these effects in
more detail and Figure (5) shows the effects of errors in the inflation forecast.
Figure(5) indicate the strong effect that recognising measurement errors in

the inflation forecast has on the feedback coefficient on inflation in the robust
rule. There appears to be very little effect on the degree of feasible attainable
robustness as shown by the value of γ as the measurement error increases.
Nevertheless, the policy rule (41) is still unrealistically aggressive and we

therefore turn to analyse rules where the preference parameter for robustness is
allowed to depart from its lowest attainable value. In other words we look for
less robust rules but those that still stabilise the economy.

4.2 Departing from Robustness

The optimal γ∗ robust rules analysed in the previous section tend to yield unre-
alistically high inflation responses when compared with the actual behaviour of
the base rate. We could of course try to search for a better fitting rule by opti-
mising the inflation and output weights, but our motivation lies somewhere else
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Figure 4: Effects of increasing measurement error on the output gap on the
robust Taylor Rule.

(that approach is taken in Salmon and Weston (2001)). It might be unrealistic
to assume that the policymaker would actually want to “maximise” robustness,
in the sense of finding the smallest attainable γ, or γ∗, for which the stabilising
solution exists. Essentially the difficulty we now face is how to specify a formal
preference for robustness alongside the normal objectives of policy.
Without a utility maximising framework choosing a value for γ is rather

arbitrary however it turns out that in practice γ values close to γ∗, even small
departures can drastically change the optimal reaction coefficients in the implied
robust policy rule. As we mentioned above at the another extreme, when γ
approaches infinity, H∞ delivers the LQG rule.
In order to demonstrate how the degree of robustness alters the behaviour of

the policymaker we let the robustness parameter γ increase in small increments
of .05, starting from γ∗ and show how the policymaker’s response coefficients
change. Figure (6) shows how the inflation response coefficient and output gap
response coefficient change as a function of γ. Preference parameters are as in
the benchmark case, σηπ = .1 and σηy = 1.09.
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Figure 5: The effect of errors in the inflation forecast on the robust Taylor rule.

Small changes close to the neighbourhood of γ∗ = 8.43, can make a sub-
stantial difference in the inflation response coefficient, whilst at higher values of
γ inflation response coefficients settle down to values close to 1 corresponding
to that in the LQG rule. Also, the output gap response coefficients decrease
relatively fast close to the neighbourhood of γ∗.
Interestingly, Figure (7) also shows how inertia in the policy rule changes

as the degree of robustness changes; the lagged interest rate coefficient becomes
larger and hence the policy rule therefore more “backward looking ” as the
policymaker becomes less concerned with the robustness properties of his rule.
We can now explore the question raised initially about the degree of forward

looking behaviour by the private sector in forming their expectations of inflation.
As a simple calibration exercise we can increase the value of the coefficient, ρ,
that determines the relative weight of forward expectations in equation (34).
Up to this point we have set ρ = 0 so expectations have been purely backward
looking and when ρ = 1 expectations are purely forward looking. Figure(8)
below shows that the optimal value of γ decreases monotonically as ρ increases
towards unity. Hence as there is more forward looking behaviour the policy
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maker is able to be more robust. This seems to suggest that the forward looking
nature of expectations can absorb some of the concern the policy maker may
have for robustness.

Finally, a moderately robust rule with γ approximately 30% higher than its
lowest attainable value is calculated below. This implies γ value of 10.84 in the
graphs above. .

iRt = .45it−1 + 2.23πt−1 + .30yt−1 + .34yt−2 (42)

This rule, after adjusting for mean, delivers decisions for the base rate, which
by visual inspection are reasonably close to actual policy choices at least over
the period 1993-2001. Figure(9) plots this moderately robust rule and base rate.
This rule would have suggested considerably more aggressive interest rate

increases during the early period of the “Ken and Eddie” show. Then, from
1993 the rule seems to follow reasonably closely to actual base rate until about
1997. Towards the beginning of 2000 the robust rule would have again suggested
somewhat more active interest rate movements. One interpretation of this ob-
servation that it appears impossible to capture both the preMPC and MPC
periods with the same γ may be that the procedures adopted within the MPC
for monetary policy making may be more robust than previous procedures. It
is also noticable that even though we may be able explain part of the MPC’s
behaviour as a desire for robustness we still see more variability in this robust
policy than the actual policy.

4.3 Average Performance

Finally, as discussed in section (2.4) we need somehow to compare the perfor-
mance of these rules. We do this by plotting in Figure(10) the frequency decom-
position of the expected losses under the robust rule, the moderately robust rule
and the linear quadratic rule, corresponding to (40), (42) and (39). This corre-
sponds to plotting the trace of a closed-loop transfer function (tr(G(θ)0G(θ)0))
over a frequency range θ.Each point on the plot shows the contribution of the
shock process to the total loss at frequency θ. The area below the curve gives
the average expected loss under the corresponding rule21.Frequencies on the
horizontal axis can be translated into a cyclical period of a shock in real time,
as shown in the figure below. Consequently, the frequency decomposition of
expected losses summarises how different attitudes towards model misspecifica-
tions and measurement errors affect the performance of the system.
One clear observation is that there is relatively little difference between the

moderate robust rule and the Linear Quadratic rule, yet the figure shows that
the linear quadratic rule is somewhat more vulnerable to the shocks that occur at
normal “business cycle frequencies”. The robust rule, instead delivers a flatter
frequency response, suggesting that it insulates the economy across a wider
range of disturbances at different frequencies. This is due to the fact that the

21See the discussion in the section(2.4).
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robust policymaker assigns larger weights to frequencies to which the economy
is most vulnerable as his rule is specifically designed to avoid the worst-case
outcomes.

5 Conclusions
We have explored the use of robust control methods in the context of recent
UK monetary policy in this paper and several insights have been gained. In the
first place it is clear that the simple application of this approach in the case of
unstructured uncertainty, where the set of misspecifications is determined simply
by the choice of the γ parameter, does not immediately produce economically
sensible solutions. This may imply that we should follow the alternative route of
making specific assumptions as to the nature of the misspecifed model we wish
our policy to be robust against (structured uncertainty) or alternatively that the
minmax criterion is not always a suitable resolution to the problem of Knightian
Uncertainty. Essentially each of the alternative misspecified models we could
consider defines an alternative probability framework in which we could carry
out our standard policy analysis and we are faced with resolving the multiple
prior form of Knightian Uncertainty discussed by Gilboa and Schmedler(1989).
The minmax criterion is one way of resolving the ambiguity in the decision
problem and providing a unique solution but it is not the only route and perhaps
more consideration should be given to considering alternatives.
However we found that relatively small adjustments to the size of the set

of models we wish the policy to be robust against , determined by movements
away from the optimal γ∗delivered sensible solutions. This emphasises that the
concentration on robust stability within H∞ methods serves only as a guide but
it not necessarily the dominant concern. If policy makers are to make use of
these powerful techniques we need to find formal justifications for the manner
in which we move back from the most robust solution. Once we reduced the
value of γ by some 30% we found economically sensible and interesting policy
conclusions.
First, it is clear that even the non-robust LQG policy was more active or

variable than the actual policy carried out over our sample period in common
with all robust policies we computed. We need to understand better why actual
monetary policy is relatively inactive when compared to these optimal robust
and non-robust policies. Maybe the resolution here lies as suggested by Charles
Goodhart (1999) in the need for the policy maker to retain credibility and
rapid policy changes do not inspire much confidence. The framework we have
developed here is not able to address this issue properly. We did however find
that the policy maker’s ability to construct more robust policy increased as
the private sector became more forward looking when forming their inflation
expectations which emphases the importance of addressing the strategic issues
raised in the design of robust monetary policy.
We also found that the impact of errors in estimating the output gap and

the inflation forecast have a strong impact on the robust policy design and are
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an important element to take into account. The robust Kalman filter approach
we adopted can be easily used in practice.
From a political economy point of view we found that we were unable to

explain the preMPC and MPC periods with the same γ value. In particular
the MPC period seems to be explained by a considerable degree of robustness
unlike the previous period in which the robust policy would have been much
more aggressive than the monetary policy that was actually implemented from
1989-1992.
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Figure 6: The effect on robust Taylor reaction coefficients as the degree of
robustness is decreased

30



8 9 10 11 12 13 14 15 16 17
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48
Robustness and Policy Inertia

C
oe

ffi
ci

en
t

γ
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