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Abstract

In this paper, we use the notion of completion portfolios to construct a test of asset pricing

models in the presence of conditioning information, extending the analysis of Shanken (1985)

and Lehmann (1987).
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The purpose of this note is to provide an alternative test of conditional factor models, using

completion portfolios. A conditional factor model is one in which the factor loadings are

allowed to be time-varying functions of some conditioning information. A given set of factors

is a true asset pricing model if and only if the unconditionally efficient frontier spanned by

the factor-mimicking portfolios touches the efficient frontier spanned by the traded assets.

One method of testing this is to measure the minimum difference in Sharpe ratios of these

two frontiers. In the absence of a risk-free asset, we consider the ‘generalized’ Sharpe ratio

relative to a given zero-beta rate, and find the rate for which the difference between asset and

factor Sharpe ratios is minimized. The model prices all traded assets conditionally correctly

if and only if this minimum difference is zero.

Our main result is to express the Sharpe ratio difference as the expectation of a particular

completion portfolio, and thus express the test statistic as a simple moment condition.

Moreover, even if the test is rejected, the completion portfolio can be interpreted as the

‘missing factor’ in the sense that adding it to the existing factors completes the model into

a viable asset pricing model. Our analysis thus extends that of Shanken (1985) to the case

with conditioning information, and also the results of Lehmann (1987).
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1 Set-Up and Notation

Consider a financial market where trading takes place in discrete time and information flow

is described by a filtration (Ft)t. Consider the period beginning at time t− 1 and ending at

time t. Denote by L2
t the space of square-integrable, Ft-measurable random variables. There

are n traded risky assets, indexed k = 1 . . . n. We denote the gross return of the k-th asset

by rk
t ∈ L2

t . Let Xt be the space of all elements xt ∈ L2
t that can be written in the form,

xt =
n∑

k=1

rk
t θk

t−1, (1)

for Ft−1-measurable functions θk
t−1. To simplify notation, we write (1) as xt = R̃′

t θt−1,

where R̃t := ( r1
t . . . rn

t )
′

the n-vector of asset returns. While L2
t describes the space of

all (not necessarily attainable) state-contingent pay-offs, Xt is the space of pay-offs that

are attainable by forming managed strategies in the base assets, with weights θk
t−1 that are

functions of the conditioning information Ft−1.

By construction, the price of a strategy xt ∈ Xt is given by Πt−1( xt ) = e′θt−1, where e is an

n-vector of ‘ones’. Denote by Rt = Π−1
t−1{ 1 } the set of returns in Xt, and by Zt = Π−1

t−1{ 0 }
the space of excess (i.e. zero cost) returns.

Conditional Factor Models

To construct asset pricing models, we take as given a set of m factors F i
t ∈ L2

t , indexed

i = 1 . . .m. We say that the given set of factors gives rise to a viable asset pricing model if

and only if there exist Ft−1-measurable factor loadings at−1 and bi
t−1 so that

mt = at−1 +
m∑

i=1

bi
t−1F

i
t (2)

is an admissible stochastic discount factor (SDF) in the sense that mt prices all managed

strategies correctly, Et−1( mtxt ) = Πt−1( xt ) for all xt ∈ Xt. It is easy to show that necessary

and sufficient for mt to be an admissible SDF is E( mtrt ) = 1 for all rt ∈ Rt. In other words,

we can use an unconditional pricing relation to test a conditional factor model. This fact is

central to our analysis.
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If the factors are not themselves (portfolios of) traded assets, we associate with each factor

F i
t its unique factor-mimicking portfolio1 (FMP) f i

t ∈ Rt.

In analogy to the preceding section, denote by XF
t the space of all pay-offs that can be

written in the form (1), with the traded assets rk
t replaced by the FMPs f i

t . Similarly, we

define RF
t = XF

t ∩Rt and ZF
t = XF

t ∩Zt. For what follows, we will omit the time subscript

and write r instead of rt, etc.

2 Intersection and Completion Portfolios

The question is, when does a given set of factors F i give rise to a viable asset pricing model?

Basu and Stremme (2005) show that this is the case if and only if a managed portfolio of

the FMPs exists that is unconditionally efficient in the augmented asset return space R. In

other words, a given set of factors is a true asset pricing model if and only if the efficient

frontiers spanned by managed portfolios of the traded assets and the FMPs, respectively,

intersect. Motivated by this observation, we define the distance measure

δ2
∗ = inf

ν∈IR
λ2
∗( ν )− λ2

F ( ν ), where λ∗( ν ) = sup
r∈R

E( r )− 1/ν

σ( r )
, (3)

and λF ( ν ) is defined analogously for RF . In other words, λ∗( ν ) and λF ( ν ) are the maxi-

mum Sharpe ratios in R and RF , respectively, relative to the zero-beta rate ν. Because the

frontier spanned by the FMPs is contained within the asset frontier, we always have δ2
∗ ≥ 0.

Obviously, the two frontiers touch if and only if δ2
∗ = 0.

Hansen and Richard (1987) show that the efficient frontier in the presence of conditioning

information is spanned by the return r∗ ∈ R with minimal second moment, and a canonically

chosen (orthogonal) excess return z∗ ∈ Z.

1An explicit construction of the FMPs can be found in Basu and Stremme (2005). It can be shown that,

if the model is indeed a true asset pricing model, the expression reduces to that derived by Ferson, Siegel,

and Xu (2005).
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We modify this construction and choose as benchmark r0 ∈ R the return with minimum

variance2 (GMV). In analogy with the Hansen and Richard (1987) construction, we choose

the canonical excess return z0 ∈ Z as the Riesz representation of the expectation functional

on Z with respect to the covariance inner product3, i.e. cov ( z0 , z ) = E( z ) for all z ∈ Z.

We denote by γ1 and γ2 the mean and variance of r0, respectively, and set γ3 = E( z0 ).

Note that γ1 and γ2 describe the location of the efficient frontier in mean-standard deviation

space, while its curvature is given by 1/γ3. Abhyankar, Basu, and Stremme (2005) show

that the maximum zero-beta Sharpe ratio admits a decomposition of the form,

λ2
∗( ν ) = λ2

0( ν ) + γ3, where λ2
0( ν ) =

(γ1 − 1/ν)2

γ2

(4)

Similarly, the frontier in RF generated by the FMPs is spanned by corresponding elements

r0
F ∈ RF and z0

F ∈ ZF . We denote the corresponding moments by γF
1 , γF

2 and γF
3 , respec-

tively. Of course, a decomposition analogous to (4) also holds true for the factor Sharpe

ratio λF ( ν ), with all quantities replaced by their respective counterparts in RF .

Theorem 2.1 The minimum Sharpe ratio difference can be expressed as,

δ2
∗ = λ2

∗( ν∗ )− λ2
F ( ν∗ ) = (γ3 − γF

3 )− (γ1 − γF
1 )2

(γF
2 − γ2)

(5)

This minimum is attained at the zero-beta rate ν∗ = (γ2 − γF
2 )/(γF

1 γ2 − γ1γ
F
2 ),

Note that, as the factor frontier is contained in the asset frontier, we always have γF
2 ≥ γ2

(the factor GMV has higher variance than the asset GMV). Similarly, γF
3 ≤ γ3 (the factor

frontier has higher curvature). As a consequence, (5) is the difference of two positive terms.

Our main result can now be stated; its proof is immediate.

2Note that, by the first-order condition of the variance minimization, r0 can also be characterized as the

return that has zero covariance with the space Z of excess returns.
3In the absence of a risk-free asset (i.e. constant pay-off), the covariance functional is indeed positive

definite and hence a well-defined inner product.
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Theorem 2.2 The Sharpe ratio distance can be expressed as δ2
∗ = σ2( zδ ) = E( zδ ), where

the completion excess return zδ ∈ Z can be written as,

zδ = [ z0 − z0
F ]− γ1 − γF

1

γF
2 − γ2

· [ r0 − r0
F ] (6)

Testing a conditional factor model thus reduces to simply testing whether the unconditional

mean E( zδ ) is zero. Moreover, because zδ has the property that its mean equals its variance,

the corresponding T -test statistic reduces simply to the standard deviation of zδ.
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