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AI in Finance 

2

} Recent progress: AI for Finance with Deep Learning
} Prediction – prices, performance, trends
} NLP – from sentiment analysis to chatbots …
} Modelling customers – credit, fraud, design, marketing 
} Possible because of Big Data

} Social media, mobile devices 
} Remote sensing, image analysis …

} Problem: Deep Learning 
is a Black Box
} for investors, banks, insurers, 

regulators, developers, scientists
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Explaining Black Box Models
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} Need transparency and scrutiny for 
} performance, robustness, efficiency, ethics, fairness 

} DARPA XAI Program (2016) 
} GDPR Customer right for explanation (2018)
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Explaining Black Box Models

4

} Built-in: combine performance and interpretability (rare)
} Post-hoc: Train model and explain afterwards (surrogate)
} Global: represent the whole model
} Local: focus on a single item
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Understandable Explanations
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} Explanations should be
} accurate
} actionable 
} understandable

} Focus here on understandability
} Goal: match human thinking better
} Approach: Use background knowledge
} Needed: Identify technical concepts for understandability
} Test: Experiments with human subjects
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Explaining with Decision Trees
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} Global post-hoc approach: 
} Approximate trained black box model with explainable 

alternative (surrogate)

} Trepan – (Craven & Shavlik 1993)
} Extract Decision Trees from any black box model
} Sample output from trained model
} Build DT on original features
} Typically better DT than with original data alone
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Decision Trees

7

} DT: easy to understand 
} Elements have meaning
} Readable rules
} Split feature selection by

information gain

} … but can become unwieldly

2. Preliminaries

In this section, we present the main foundations of our approach, namely,
decision trees, the Trepan algorithm and ontologies.

2.1. Decision Trees
Decision tree sub-
section added

90

Decision trees are one of the most popular machine learning models that are
used to solve classification and regression problems. Decision trees are popular
since they are symbolic models, that are intrinsically interpretable in the sense
that the user can follow the path through the tree and retrace the decision
process. For this reason, they are often used as local or global explanations of95

more opaque decision models such as neural networks or SVMs [19].
A decision tree is a rooted, directed acyclic graph consisting of a set of split

nodes, usually depicted as rectangles, and a set of leaves, usually depicted as
ovals. Each split node in a decision tree has an associated logical test based on
the features in the domain. When classifying an instance or example, the role100

of a split node is to send the example down one of the outgoing branches of the
node. Figure 2 shows an example of a decision tree.

Split nodes might have k branches depending on whether the logical test is
over binary, nominal, or real values attributes. The decision as to which branch
is selected for an example is determined by the logical expression at the node.105

In the simplest case, this expression considers one feature, and thus the outcome
of the test is determined by the value of that feature in the given example.

The way in which split nodes are selected amounts to minimising a cost
function, the definition of which can vary depending on the type of induction al-
gorithm used. For the case of the inductive learning algorithm used in Trepan,110

generally, the split selection is based on an evaluation measure called informa-
tion gain.

Given a set of features X = {X1, . . . , Xn}, the information gain IG of a
feature Xi w.r.t. a set of samples S is defined as

IG(Xi, S) := H(S)�
kX

j=1

|Sj |
|S| H(Sj) . (1)

where Sj is the subset of samples in S that have value j of feature Xi, and H(S)115

is the entropy of the information contained in S. The entropy H(S) is defined
as

H(S) := �
X

c2C

|Sc|
|S| log2

|Sc|
|S| .

where Sc is the subset of example in S that belong to a class c. The perfor-
mance of decision trees used to solve classification tasks is measured by means
of accuracy, i.e., the fraction of predictions by the model that agree with the120

ground truth. In binary classification, accuracy can also be calculated in terms
of true/false positives and negatives.
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Bringing in Background Knowledge

8

} Background knowledge modelled in ontologies
} Taxonomy as concept hierarchy (e.g. biology, medicine, 

library catalogues, product catalogues)
} Ontology adds logic (constraints, additional information, e.g. 

family tree, Gene Ontology, general knowledge: DBPedia, 
SUMO)

} Hypothesis: general concepts are easier to process
for humans 
} Quantified as Information Content IC

concepts have been found to be easier to understand and learn [17], and we test
this assumption empirically below.

Definition 3.1. Given an ontology T , the information content of a feature Xi

is defined as:

IC(Xi) :=

8
<

:
1�

log (|subConcepts(Xi)|)
log (|sub(T )|) if Xi 2 sub(T )

0 otherwise.

where subConcepts(Xi) is the set of specialisations for Xi, and sub(T ) is the set
of subconcepts that can be built from the axioms in the TBox T of the ontology
(see Section 2.4).270

It can readily be seen that the values of IC are smaller for features associ-
ated to more general concepts, and larger for those associated to more specific
concepts instead.

Example 2. Let us consider the concepts Entity, and LoanApplicant defined in
the ontology in Figure 1 and the refinements in Example 1. The cardinality of275

sub(T ) is 13. The cardinality of subConcepts(Entity) and subConcepts(LoanApplicant)
is 12 and 2 respectively. Then: IC(Entity) = 0.04, and IC(LoanApplicant) = 0.73.

Having a way to compute the information content of a feature Xi, we now
propose to update the information gain used by Trepan to give preference to
features with a lower information content.280

Definition 3.2. The information gain given the information content IC of a
feature Xi is defined as:

IG
0(Xi, S|IC) :=

(
(1� IC(Xi))IG(Xi, S) if 0 < IC(Xi) < 1

0 otherwise.

where IG(Xi, S) is the information gain as defined in Eq. 1.

According to the above equation, IG
0 of a feature is decreased by a certain

proportion that varies depending on its information content, and is set to 0
either when the feature is not present in the ontology or when its information
content is maximal.285

Our assumption that using features associated with more general concepts
in the creation of split nodes can enhance the understandability of the tree, is
based on users being more familiar with more general concepts rather than more
specialised ones. To validate this hypothesis we ran a survey-based online study
with human participants. Before proceeding to the details of the study and the290

results, as a prerequisite we introduce two measures for the understandability of
a decision tree—an objective, syntax-based and a subjective, performance-based
one—in the following section.
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Trepan Reloaded: Idea

9

} Prefer general features for split nodes
} New reward function for selecting split features:

Trepan Trepan Reloaded
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Evaluation

10

} User experiment
} Human performance and subjective ratings

} Online, 63 subjects, age 33 (±12.23), 46f/17m 

} Datasets
} Finance: Kaggle Loan Dataset (selected by 34 subjects)
} Medical: Cleveland Heart Disease Data (selected 29 subjects)

} Technical factors
} Tree syntactic complexity for n leaves and b branches

4. Understandability of Decision Trees

Understandability depends not only on the characteristics of the tree itself,295

but also on the cognitive load experienced by users in using the decision model
to classify instances, and in understanding the features in the model itself.
However, for practical processing, understandability of decision trees needs to be
approximated by an objective measure. We compare here two characterisations
of the understandability of decision trees, approaching the topic from these two300

di↵erent perspectives:

• Understandability based on the syntactic complexity of a decision tree.

• Understandability based on users’ performances, reflecting the cognitive
load in carrying out tasks using a decision tree.

On the one hand, it is desirable to provide a technical characterisation of un-305

derstandability that can give a certain control over the process of generating
explanations. For instance, in Trepan, experts might want to stop the extrac-
tion of decision trees that do not overcome a given tree size limit, do have a
stable accuracy/fidelity, but have an increasing syntactic complexity.

Previous work attempting to measure the understandability of symbolic de-310

cision models (e.g., [23]), and decision trees in particular [40], proposed syntactic
complexity measures based on the tree structure. The syntactic complexity of a
decision tree can be measured, for instance, by counting the number of internal
nodes, leaves, the number of symbols used in the splits (relevant especially for
m-of-n splits), or the number of branches that decision nodes have.315

For the sake of simplicity, we focus on the combination of two syntactic
measures: the number of leaves n in a decision tree, and the number of branches
b on the paths from the root of the tree to all the leaves in the decision tree.
Based on the results in [40], we define the syntactic complexity of a decision tree
as:

U(n, b) := ↵
n

k
+ (1� ↵)

b

k2
. (2)

with ↵ 2 [0, 1] being a tuning factor that adjusts the weight of n and b, and
k = 5 being the coe�cient of the linear regression built using the results in [40].

On the other hand, the syntactic complexity of decision trees does not nec-
essarily capture the ease with which actual people can use the resulting trees.
A direct measure of user understandability is how accurately a user can employ320

a given decision tree to perform a decision. An often more precise measure of
cognitive di�culty in mental processing is the reaction time (RT) or response
latency [15]. RT is a standard measure used by cognitive psychologists and has
even become a staple measure of complexity in the domain of design and user
interfaces [54]. In the following section we describe an experiment measuring325

the cost of processing in terms of accuracy, and RT (among other variables) for
di↵erent types of decision trees.

11
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Experiments 1
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} Classification task
} Determine class of 

given case with DT
} 6 samples (2 each 

small/medium/large)
} Also rating 

confidence and 
understandability
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Experiments 2
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} Inspection task
} Determine if a 

given statement is 
true in a DT

} 6 samples (2 each 
small/medium/large)

} Also rating 
confidence and 
understandability
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Results Experiments 1 & 2
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} Correctness of responses: mixed-effect logistic regression (task, 
ontology, syntactical complexity)

} Responses with ontology are more often correct
} Higher syntactic complexity makes task harder
} Subjective understandability very similar
} All effects significant at p < 0.01
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Figure 5: Estimated main e↵ects ontology presence (a) and of syntactic complexity (b) on the

accuracy of subjects’ responses.

5.2. Results

Classification and Inspection Tasks. We fitted a mixed-e↵ects logistic regres-
sion model [3] predicting the correctness of the responses in the classification415

and inspection tasks. The independent fixed-e↵ect predictors were the syntactic
complexity of the tree, the presence or absence of an ontology in the tree gener-
ation, the task identity (classification vs. inspection), and the domain (financial
vs. medical), as well as all possible interactions between them, as well as a ran-
dom e↵ect of the identity of the participant. A backwards elimination of factors420

revealed significant main e↵ects of the task identity, indicating that responses
were more accurate in the classification task than they were in the inspection
(z = �3.00, p = .0027), of the syntactic complexity (z = �3.47, p = .0005), by
which more complex tree produced less accurate responses, and of the presence
of the ontology (z = 3.70, p = .0002), indicating that trees generated using the425

ontology indeed produced more accurate responses (Figure 5a). We did not ob- Added syntactic
complexity analy-
sis in classification
task.

serve any significant interactions/e↵ect of the domain identity. The estimated
e↵ect of the syntactic complexity on accuracy is illustrated in Figure 5b).

We analysed the response time of the correct responses in a linear mixed-
e↵ect regression model [3], with the log response time as the independent vari-430

able. As before, we included as possible fixed e↵ects the task identity (classifica-
tion vs inspection), the domain (medical vs financial), the syntactic complexity
of the tree, and the presence or absence of ontology in the trees’ generation,
as well as all interactions between them. In addition, we included the identity
of the participant as a random e↵ect. A step-wise elimination of factors re-435

vealed main e↵ects of task identity (F (1, 593.87) = 20.81, p < .0001), syntactic
complexity (F (1, 594.51) = 92.42, p < .0001), ontology presence (F (1, 594.95) =
51.75, p < .0001), as well as significant interactions between task identity and

16
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Results Experiments 1 & 2
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} Response time (correct responses): mixed-effect linear regression 
(task, ontology, syntactical complexity)

} Correct responses quicker with ontologies
} Higher syntactic complexity makes task harder
} Confidence results similarly significant
} All effects significant at p < 0.01

ONTOLOGY effect plot
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Figure 6: Estimated main e↵ects of ontology presence (a) and estimated two-way interactions

between task and syntactic complexity on response time (b).

syntactic complexity (F (1, 594.24) = 4.06, p = .0044), and task identity and
domain (F (2, 107.48) = 5.03, p = .0008).440 Added syntactic

complexity anal-
ysis in inspection
task.

Figure 6a plots the estimated interaction between syntactic complexity and
task identity on the response times. Overall, across both cases the more complex
trees result in longer response times (as was evidenced by the main e↵ect of
syntactic complexity). However, the interaction indicates that this e↵ect is445

significantly more marked in the inspection task than it is in the classification
task. This is in line with our intuition that the inspection task requires a more
detailed examination of the decision tree, and it is therefore more sensitive to
its complexity. Crucially and in line with what we observed in the accuracy
analysis, we find that those trees that were generated using an ontology were450

processed faster than those that were generated without one (see Figure 6b).
We analysed the user confidence ratings using a linear mixed-e↵ect regres-

sion model, with the confidence rating as the independent variable. We included
as possible fixed e↵ects the task identity (classification vs inspection), the do-
main (medical vs financial), the size of the tree, and the presence or absence455

of ontology in the trees’ generation, as well as all interactions between them.
In addition, we included the identity of the participant as a random e↵ect.
A step-wise elimination of factors revealed a main e↵ect of ontology presence
(F (1, 689) = 14.38, p = .0002), as well as significant interactions between task
identity and syntactic complexity (F (2, 689) = 46.39, p < .0001), and task iden-460

tity and domain (F (2, 110.67) = 3.11, p = .0484). These results are almost
identical to what was observed in the response time analysis: users show more
confidence on judgements performed on trees that involved an ontology, the
e↵ect of syntactic complexity is most marked in the inspection task, and the
di↵erence between domains only a↵ects the classification task.465

Finally, we also analysed the understandability ratings using a linear mixed-

17
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Experiments 3
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} Comparison task 
(subjective)

} Rating which DT is more 
understandable

} 3 samples

} Result: DT with 
ontology subjectively 
more understandable
(p<0.01)
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Experiments 4 
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} Empowerment 
(actionability)

} Determine how you 
could change the 
outcome for a given 
case with a given DT
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Results Experiments 4
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} Evaluation
} Sematic similarity of 

free text answers
} SpaCy with pre-trained word 

embeddings
} Analysed for similarity with 

pre-defined answers

} Ontology significantly 
increases correctness and 
reduces response time
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Conclusions
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} Explanation generation with  Trepan Reloaded
} Integrate semantic background knowledge 
} Hypothesis: general concepts are more understandable

} Experimental results
} Human performance and subjective understandability 

improved significantly in all tasks
} Hypothesis robustly confirmed

} Ontologies makes DecisionTrees
more effective for human use

} Future work
} Apply with more ontologies and different use cases
} Automate ontology selection and mapping
} Fine tune understandability for different domains and tree 

structures
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Thank you!
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