Continual Learning Augmentation

Daniel Philps

Rothko Investment Strategies City, University of London

Motivations for CL...

- Address Catastrophic forgetting in a noisy real-world context
- Continual Learning: Open-world learning for <u>states</u> not tasks
- Memory-augmentation of well-understood learners (including LSTM)
- Interpretable: Have an interpretable way of using memories

Continual Learning Augmentation (CLA) Results...

Outperformance in Developed Market Equities

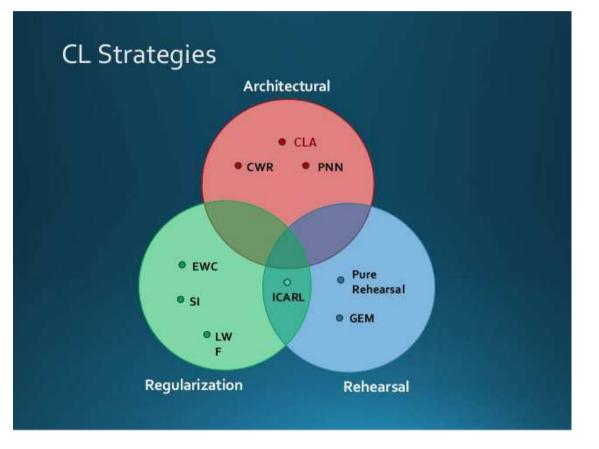
L/S Tests. ACW Universe. 2003-2017 annualized			
Base Learner	Simple	CLA Augmented	
OLS	-0.3%	+5.1%	
FFNN	+2.9%	+7.2%	

Outperformance in Emerging Market Equities

L/S Tests. EM Universe. 2007-2017 annualized			
Base Learner	Simple	CLA Augmented	
LSTM	-5.0%	+0.9%	
FFNN	-1.94%	+2.1%	

Continual Learning (CL)...

Dealing with Catastrophic Forgetting



Maltoni Lomonaco, 2019

ELASTIC WEIGHT CONSOLIDATION (EWC)

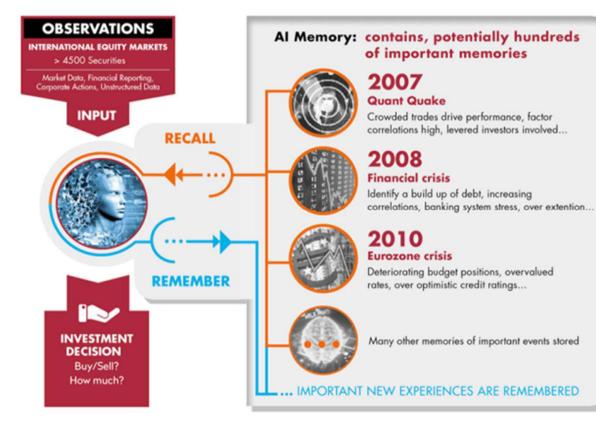
 slow down the learning for the weights that were important to previous task(s)

• θ_A^* refers to the configuration of θ that performs

well at A

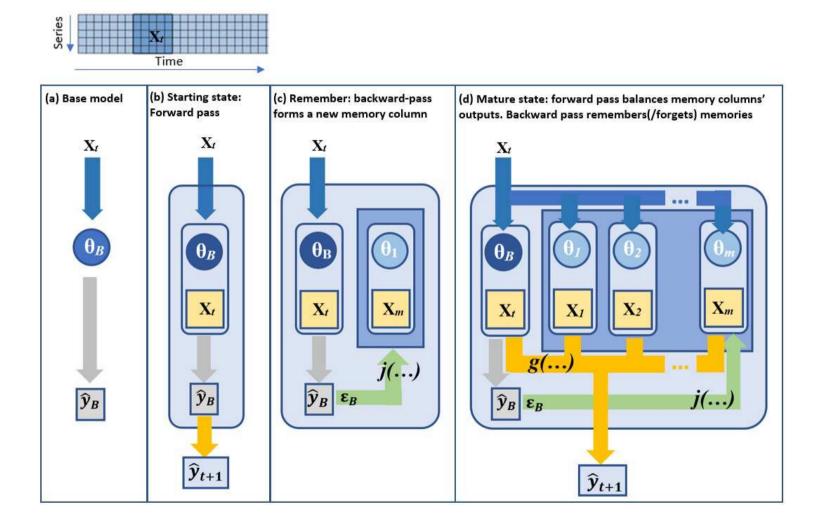
Kirkpatrick et al 2017

CL: A real world application...

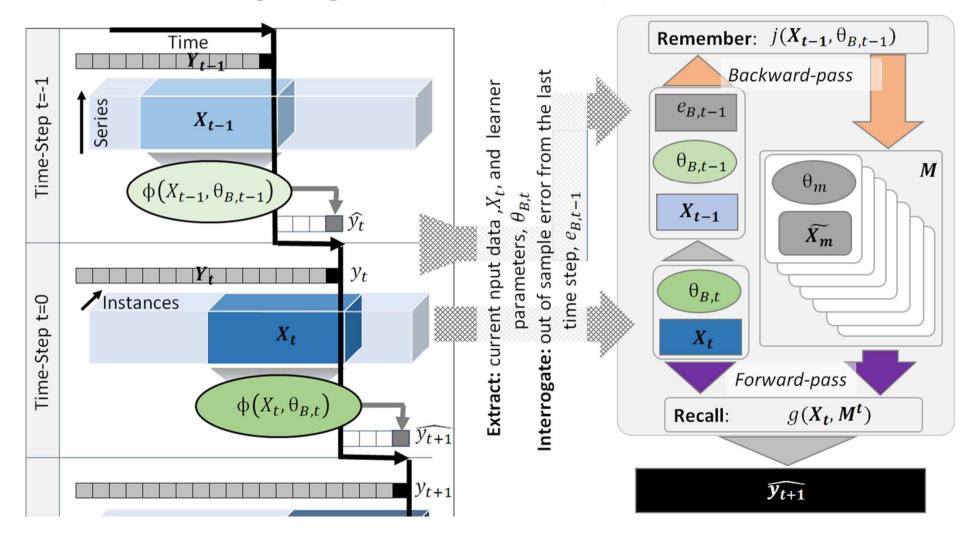


CLA Architecture...

Continual Learning Augmentation (CLA) Architecture...

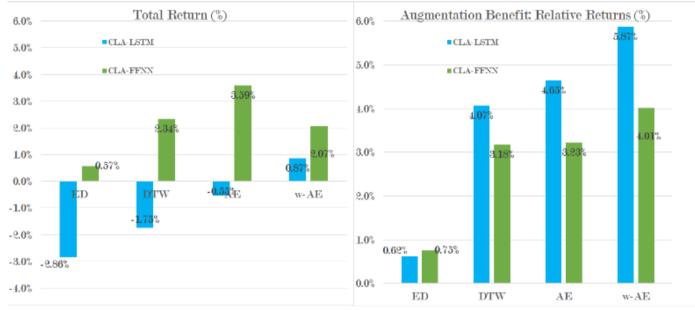


Continual Learning Augmentation (CLA) Architecture...



Results...

Simulation's Emerging Market Equities Stock Selection Figure 6.7: Summary of Test Results



Note: LSTM vs FFNN, Long Short tests: Plot of median augmentation benefit by distance measure.

- CLA-FFNN performs best
- CLA-LSTM, most augmented

- ED, poorest performer vs DTW
- wAE best performer

Figure 6.9: Monotonicity of Augmentation: CLA-LSTM Median Test Deciles

Note: Augmentation benefit monotonicity is noted in all distance measures by a positive slope coefficient: RR_p of each decile portfolio of CLA-LSTM, annualised over the study term. Decile 1 relates to a portfolio of stocks in the lowest 10% returns forecasted by CLA-LSTM at each rebalance date, simulated as described.

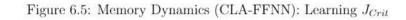
- Monotonic returns
- Notably for AE approaches

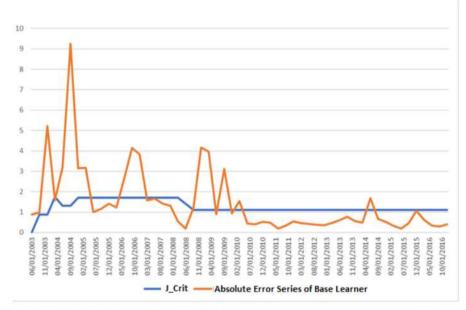
Remember-gate...

Learning to Remember

Algorithm 1 Remember Gate j**Require:** Initialise memory structure M**Require:** Initialise J_{Crit} **Require:** Train base learner $\theta_{B,t=0}$ # Step through time, period by period for all time steps t=1 in T do # Base learner is run... $\hat{y}_t \leftarrow \phi(X_{t-1}, \theta_{B,t-1})$ $\# y_t$ becomes observable # # CLA backpass starts $\epsilon_{B,t} = L(\hat{y}_t, y_t)$ if $|\epsilon_{B,t}| \geq J_{Crit}$ then $X_m \leftarrow X_{t-1}$ store raw training instances append learner memory $(X_m, \theta_{B,t-1})$ to M end if # CLA Learns J_{Crit} sensitivity $J_{Crit} \leftarrow$ learn and update J_{Crit} # CLA backpass ends # $\theta_{B,t} \leftarrow (X_t, \theta_{B,t})$ overwrite base learner end for

- Learn to remember: Jcrit over time
- Non-parametric learning threshold approach





Note: J_{Crit} is learned over time to define change points in the absolute error series ϵ_B of the base learner. It is notable that, as time passes, the error series becomes more stable, and as a result, j_{Crit} . This is consistent with the central limits described earlier in this thesis.

As time progresses ... learning to remember becomes more stable

Recall-gate Distance measures...

Recall-Gate: Time-series similarity tests

i) ED: Memory contains training examples; sample over pairings $\hat{D}_{ED}(\widetilde{\boldsymbol{X}_m}, \boldsymbol{X_t}) = 1/N \sum_{N} ED(\widetilde{X}_{m,r_1(D)}, X_{t,r_2(D)})$

ii) DTW: As ED but with DTW similarity: time-deformation invariant

$$\hat{D}_{DTW}(\widetilde{\boldsymbol{X}}_{\boldsymbol{m}}, \boldsymbol{X}_{\boldsymbol{t}}) = 1/N \sum_{N} DTW(\widetilde{X}_{m, r_1(D)}, X_{t, r_2(D)})$$

Recall-Gate: Time-series similarity tests

i) ED: Memory contains training examples; sample over pairings $\hat{D}_{ED}(\widetilde{X}_m, X_t) = 1/N \sum_N ED(\widetilde{X}_{m,r_1(D)}, X_{t,r_2(D)})$

ii) DTW: As ED but with DTW similarity: time-deformation invariant

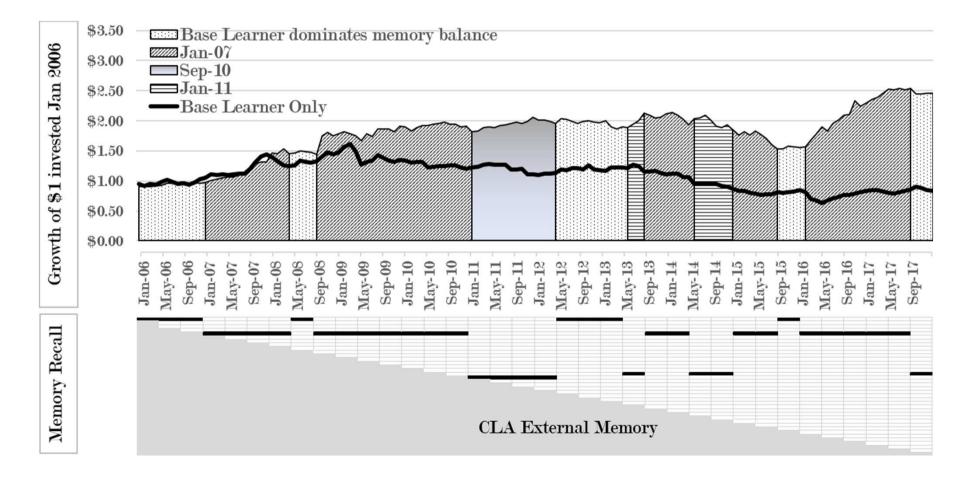
$$\hat{D}_{DTW}(\widetilde{\boldsymbol{X}}_{\boldsymbol{m}}, \boldsymbol{X}_{\boldsymbol{t}}) = 1/N \sum_{N} DTW(\widetilde{X}_{m, r_1(D)}, X_{t, r_2(D)})$$

iii) Auto-encoder (AE): AE learns a representation of training data

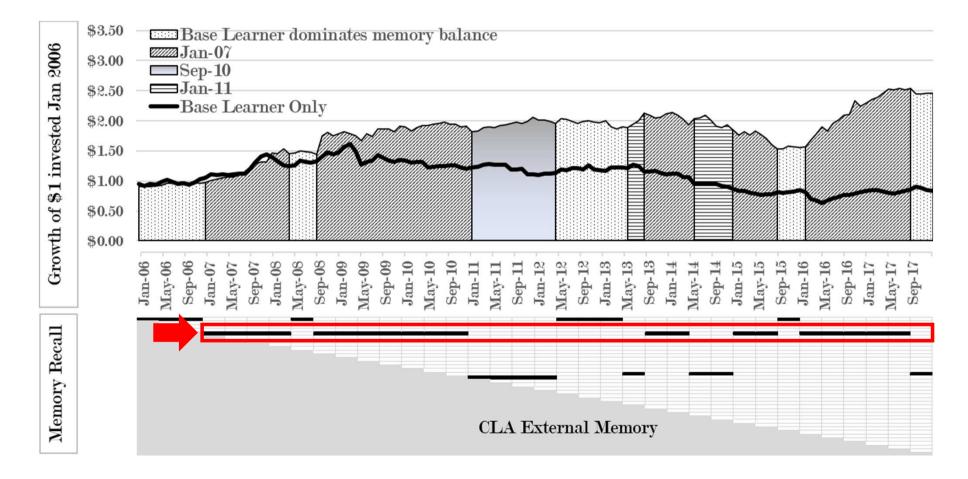
$$\hat{D}_{AE}(\widetilde{\boldsymbol{X}}_{\boldsymbol{m}}, \boldsymbol{X}_{\boldsymbol{t}}) = 1/N \ ED(\boldsymbol{X}_t, a(h(\boldsymbol{X}_t)))$$

iv) AE with DTW filter (wAE): AE similarity but using DTW loss function $\hat{D}_{wAE}(\widetilde{X}_m, X_t) = 1/N DTW(X_t, a(h(X_t)))$ Interpretability...

Interpretability: Which memory did what, when...



Interpretability: Which memory did what, when...



Making Good on LSTMs' Unfulfilled Promise

Continual Learning Augmentation (CLA):

- Addresses Catastrophic-forgetting in a noisy real-world context
- Benefits of Continual Learning but for time-series states
- Memory-augments well-understood learners (including LSTM)
- Interpretable use of memory

Tillman Weyde

City, University of London