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b-counterfactuals explain a 
single prediction by identifying 
‘close possible worlds’ in which 
an individual receives the 
prediction they desired.

‘Mr Jones would have received 
his loan, if his annual salary had 
been $35,000 instead of the 
$32,000 he currently earns.’

State of the Art Method 1: b-counterfactuals
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The CLEAR Project

b-counterfactuals explain a 
single prediction by identifying 
‘close possible worlds’ in which 
an individual receives the 
prediction they desired.

‘Mr Jones would have received 
his loan, if his annual salary had 
been $35,000 instead of the 
$32,000 he currently earns.’

Suppose Mr Jones was assigned a probability of 0.75 for defaulting on a loan.

A satisfactory explanation also needs to explain:
I. why Mr Jones was assigned a score of 0.75. This would include identifying the 

contribution that each feature made to the score.
II. how the features interact with each other. 

State of the Art Method 1: b-counterfactuals
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Local Interpretable Model-Agnostic Explanations

The LIME algorithm: 
Consider a model m whose prediction y for observation x is to  
be explained.

(1) generates a dataset of synthetic observations; 
(2) labels the synthetic data by passing it to the model m;
(3) weights the synthetic observations based on Euclidean 

distance from x 
(4) produces a locally weighted linear regression. 

The regression coefficients are meant to explain prediction y.

State of the Art Method 2: LIME

Riberio et al. (2016) 

Class 0 Class 1
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LIME does not measure its fidelity
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Regression scores:
setosa 0.54
versicolor 0.47
virginica -0.02

LIME does not measure its fidelity
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In addition:

Measure its fidelity. It must know when it does not know

A satisfactory explanation consists in showing patterns of counterfactual dependence.

It needs to include an equation relating a prediction Y to its features X

Key Requirements for Satisfactory Explanation

(Woodward 2003)



Counterfactual Local Explanations viA Regression

The CLEAR Project

• with b-counterfactuals and the corresponding regression equation;

• using the values of b-counterfactuals to significantly improve the 

fidelity of its regressions;

• that report their fidelity

Provides local explanations:



b-perturbation: the minimum change to a feature f needed to change the AI system's prediction to 
a desired class (all other features being kept constant)

Mr Jones would have received his loan if his salary had been $35,000 instead of $32,000

b-counterfactual = $35,000     b-perturbation = $3000.

The CLEAR Project

The CLEAR Method:
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The CLEAR Method:
1. Determine 𝒙 ‘s actual b-perturbations. 

2. Generate synthetic observations that are then labelled by the AI system.

3. Create a balanced neighbourhood data set (including b-counterfactuals). 

4. Perform a step-wise regression  – including 2nd degree terms and interaction terms.
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The CLEAR Method:
1. Determine 𝒙 ‘s actual b-perturbations. 

2. Generate synthetic observations that are then labelled by the AI system.

3. Create a balanced neighbourhood data set (including b-counterfactuals). 

4. Perform a step-wise regression  – including 2nd degree terms and interaction terms.

5. Estimate the b-perturbations 

CLEAR generates a logistic regression equation (step 4):

(1 + 𝑒−𝒘
𝑇𝒙) −1 = 0.69

&      𝒘𝑇𝒙 = - 0.8 + 1.73 Glucose + 0.25 BloodPressure + 0.31 Glucose2

For 𝒙 to be on the decision boundary 𝒘𝑇𝒙 = 0.
The estimated b-perturbation is obtained by substituting:
𝒘𝑇𝒙 = 0 and the value of BloodPressure in 𝒙 0= 0.31 Glucose2 + 1.73 Glucose -04

Glucose = 0.025 

b-perturbation = 0.025 – 0.537 = -0.512  

MLP on toy diabetes dataset   𝒙 = {Glucose: 0.537, BloodPressure: 3.1} 𝑃MLP(𝒙 𝜖 𝑐𝑙𝑎𝑠𝑠1)= 0.69
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The CLEAR Method:
1. Determine 𝒙 ‘s actual b-perturbations. 

2. Generate synthetic observations that are then labelled by the AI system.

3. Create a balanced neighbourhood data set (including b-counterfactuals). 

4. Perform a step-wise regression  – including 2nd degree terms and interaction terms.

5. Estimate the b-perturbations 

6. Measure the fidelity of the regression coefficients.

fidelity error = | estimated b-perturbation - b-perturbation | (step 5  - step 1)

estimated b-perturbation  (step 5)   = -0.512
actual b-perturbation (step 1) = -0.557
fidelity error =  0.045
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The CLEAR Method:
1. Determine 𝒙 ‘s actual b-perturbations. 

2. Generate synthetic observations that are then labelled by the AI system.

3. Create a balanced neighbourhood data set (including b-counterfactuals). 

4. Perform a step-wise regression  – including 2nd degree terms and interaction terms.

5. Estimate the b-perturbations 

6. Measure the fidelity of the regression coefficients.

fidelity error = | estimated b-perturbation - b-perturbation | (step 5  - step 1)

7. Iterate to best explanation. 
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An Example of CLEAR’s Output:

paying next month
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CLEAR has much higher fidelity than LIME

% of perturbations with fidelity error < 0.25 σ

Different configurationsNum. variables vs % Fidelity



SHAP
- based on Game Theory concept of Shapley values
- identifies the ‘marginal contribution’ each feature makes to a prediction
- used by consultancies and banks (eg RBS)
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SHAP (SHapley Additive exPlanations)

But
- makes major assumptions (eg linearity, ignores the complex topography of AI systems)
- often answers the wrong question (wrong baseline)
- does not measure fidelity 

PAY0
PAY2LIMIT

BAL
PAY6BILL

ATM4
Others

base value = 0.27 output value = 0.68
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SHAP explanations often appear to be poor
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Next Steps

• apply to time series

• identify multi-feature b-counterfactuals

• user trial


