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Abstract 
We show that dramatic reductions in the maximum utilization of congested links in a network 

(“hot spots”) can be achieved using the dual solution of the multi-commodity flow problem to 

set the link weights. Using a modern Linear Programming (LP) software package the time 

required to compute solutions is up to two orders of magnitude faster than schemes reliant on 

search techniques. Approximate solutions using split routing and single path routing are 

shown to produce near-optimal results. Single path solutions allow the use of MPLS over 

OSPF with a vastly reduced administrative overhead. We also show that sub-optimal (but 

vastly improved) solutions can be found so that MPLS need not be deployed at all.  

 

1. INTRODUCTION 
Many present-day routers use the OSPF or IS-IS protocol [1] for directing 

Internet traffic. These protocols route traffic on the shortest path between an origin 

and destination pair as defined by a suitable distance metric.  Since this does not take 

account of the set of traffic demands, many situations occur in which the links on 

shortest path routes become congested while links on other paths remain relatively 

free [2].  For best effort traffic, this is not usually a problem. For traffic requiring 

guarantees on delay and jitter, however, congestion cannot be tolerated. The traffic 

needs to be “spread” so that as many links as possible are moderately loaded – some 

sort of constraint based routing is needed.  One proposed solution is to use the traffic 

engineering capabilities of a new protocol such as Multi-Protocol Label Switching 

(MPLS) [2][3]. This is a powerful, but administratively more expensive solution, 

particularly if the explicit routing is invoked.  

On the other hand, if the present routing protocol could be used to perform 

constraint based routing considerable savings in administrative overhead may be 

achieved. This is exactly what Fortz and Thorup proposed in their seminal work [4]. 

They showed constraint based routing of a similar quality to that of MPLS can be 

obtained just by “setting” the OSPF weights. To find this set of weights they use a 

sophisticated, computationally expensive search procedure. 



In contrast, we proposed constraint based routing using an alternative 

approach [5] in which we used the dual solution of an LP formulation to determine 

the set of OSPF weights. The primal solution was then used to determine a set of 

splitting ratios.  The prime advantage of this method was its potential to be very fast; 

the disadvantage was that splitting ratios were required, leading to implementation 

difficulties. 

Each of these approaches focused on achieving a near optimal solution. As 

such, they were computationally intensive and required the changing of many OSPF 

weights. In contrast, Fortz and Thorup [6] recently published a paper in which they 

assert that any solution where many weight changes are made is not a practical 

solution for network managers. Obviously, as traffic demands change over time the 

weights have to change to keep the allocation of resources nearly optimal. In practice 

though, network managers are prepared to relax the optimality condition to minimize 

disruption to the network.  This means network managers need a tool that allows 

them, firstly, to assess the effect that a weight change will have on a network before 

making the change; and secondly, to run an optimization program that effects the 

maximum change (towards a better solution) with the minimum number of weight 

changes.  

 Fortz and Thorup posed the question, “why are weight changes bad?”[6]. 

Their answer: weight changes have to be flooded throughout a network. The routers 

then have to recalculate new routes, which, if there are many weight changes, means 

that many flows have packets rerouted mid-flow. This in turn leads to out-of-order 

packets and subsequent degradation in TCP performance. The period of ensuing 

disruption could last for seconds and may take even longer before the network returns 

to equilibrium. Nevertheless, the true value of weight setting methods is that it is 

unnecessary to have a prescribed route for individual flows, with the attendant 

overhead that this involves.   

 Just as Fortz and Thorup [6] demonstrated a method to improve the routing of 

flows across the network with just a few weight changes, we show that by using the 

LP approach similar improvements in performance can also be achieved. The 

advantage of our method is that it is up to two orders of magnitude faster because of 

the use of advanced basis techniques and the incredible speeds available from modern 

LP solvers. 

  In this paper, we explore three solutions simplified from our original optimal 

solution [5] to allow easy implementation. The simplest of these only uses weight 

setting to move traffic off congested links in OSPF based networks. Nevertheless, the 

reduction in the maximum link utilization of a network with only a few weight 

changes is impressive and quite comparable to the results produced in [6]. The second 

uses only single-path routing and assumes a mechanism to choose a single path for 

flows when alternate shortest paths are available. The third is a hybrid solution of 

both equal-cost-multi-path (ECMP) and single paths.  All three options are 

complementary to MPLS deployment, providing mechanisms that come close to 

optimal routing with much reduced administrative routing of individual LSPs (Label 

Switched Paths). The pure weight setting solution, however, does not require the use 

of MPLS at all 

 

 

2. LP FORMULATION OF PROBLEM 
 We have formulated a particularly simple objective for our IP routing 

problem: we want to route as much traffic as possible down the cheapest route 



without overloading any of the links. This can be formulated as a multi-commodity 

flow problem. The commodity in this case is a flow of data traffic (a traffic demand) 

between an origin-destination pair. The cost of a link, (or more correctly, the cost per 

unit of flow) is set according to some predefined rule, and to prevent links becoming 

overloaded, each link has a “hard” capacity. We should note that “overloaded” means 

“greater than a given utilization for a particular link”. For some links this may be 

close to 100%; for others with stringent delay requirements, it may be closer to 20%.   

This problem is now described mathematically. For each commodity k, kP  

denotes the collection of all directed paths from the origin node to the destination 

node, f(P) is the flow on one of these paths, and )(Pijδ  equals one if arc (i,j) is 

contained in the path P and is zero otherwise. This results in the following path-flow 

formulation of the LP problem. 
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where d
k
 is the size of the flow for each commodity, and k= 1…K  and all 0f(P) ≥ . 

 The size of the set of paths, kP , was actually set to ten, because few, if any, 

flows were ever found on paths with a path number greater than seven or eight. The 

constraints in (2) are known as the “bundle” constraints as they tie together all the 

flows by restricting the amount of flow on a particular link (i,j). If the capacities were 

sufficiently large, this problem would revert to K single commodity flow problems, 

the solution of which is to send every flow down its shortest path. This is precisely 

what happens in intra-domain routing using the OSPF protocol. If the network was 

lightly loaded, (ie capacities were sufficiently large) this routing method would be 

perfectly adequate. In fact, when a network is first dimensioned, one expects shortest 

path routing to provide good capacity management. 

When the traffic demands begin to change and the network is no longer 

adequately dimensioned, areas of severe congestion (“hot spots”) begin to occur. We 

must then solve the above LP formulation to find new feasible routes for the traffic 

demands. In the next section, we show that by using both forms of the LP solution, 

namely the “primal” and the “dual”, a practical routing solution using the OSPF 

protocol can be implemented.  

  

 



3. THE COMPLEMENTARY SLACKNESS CONDITIONS AND 

SHORTEST PATH ROUTING 

The complementary slackness conditions have very interesting consequences for the 

routing problem. The path flow formulation contains a dual variable ijω  for each link 

and another dual variable 
k

σ  for each commodity k = 1…K. We define the reduced 

cost as  
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The path flow complementary slack conditions are stated in Ahuja et al [7] and are 

valid at optimality. 
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It is further stated in [7] that eqns.(8) and (9) imply that: 
k

σ is the shortest path distance from origin node  to destination node (commodity k) 

with respect to the modified costs ijijc ω+  and in the optimal solution every path from 

source node to destination node that carries a positive flow must be a shortest path 

with respect to the modified costs.   

 

3.1 Shortest Path Routing Using the Link Dual Prices 
Routers make their routing decisions independently, based on shortest path 

calculations which are in turn based on a set of link weights (costs) for the whole 

network. From the results above we can see that if the modified costs, ijijc ω+ , were 

used as the OSPF weights, then a traffic demand would automatically be routed on a 

path of cost 
k

σ .  For demands where only one shortest path of cost 
k

σ  exists, the 

actual routing solution is identical to the primal LP solution. Setting the OSPF 

weights to the modified costs will also initiate cases in which demands have multiple 

shortest paths of cost 
k

σ . For these cases the actual routing solution is more 

complicated and requires the calculation of node splitting ratios. 

 

3.1.2 Finding the Node Splitting Ratios 
Each router has a forwarding table in which each entry contains a destination 

and the link(s) a packet should take to reach that destination. If there is more than one 

shortest “modified cost” path available from a particular node to a particular 

destination one must assign a “splitting ratio” in the forwarding table that specifies the 

proportion of the incoming flow that should be sent on each outgoing link. Using the 

primal solution we find that for node “n” the splitting ratio for traffic destined for 

node “t” on link (n,j) is given by 
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for (n,j) nA∈ , where
nA  is the set of all outgoing links at node “n” and tD  is the set of 

flows going to t that pass through node “n”. We note here that k

shP is the set of shortest 

“modified cost” paths that each flow can take to destination node “t” from node “n” 

and the general Boolean operator
ijδ (P) is equal to one if a link (i,j) lies on a path “P” 

and zero otherwise.  

The splitting ratios are calculated and distributed to each node. In [5] we 

proposed a scheme in which the exact splitting ratios could be implemented.  

Unfortunately, there are no commercial routers that support this method thus we have 

proposed some routing schemes that can be implemented using present-day 

equipment. These are discussed in the next sections. 

 

4. RESULTS 

4.1 Three Approximate Splitting Ratio Cases 

 
Topology       Total 

Demand 
OSPF  

Max 

Utilization 

(Orig.) 

OSPF 

Max. 

Utilization 

(Duals) 

“1-0” 

Max. 

Utilization 

Hybrid 

Utilization 
No.of 

Splitting 

ratios 

S 11,111 244% 131% 114% 104%     155 

D 9,370 258% 120% 113% 107%     190 

M 7,652 202% 112% 111% 107%      191 

Table 1. Absolute Maximum Link Utilizations for with Link Metrics Inversely 

Proportional to Capacity 

Legend:  S – capacities very similar (400-600 units) 

    M - capacities quite different (200-800 units) 
   D – capacities much different (100-900 units) 

 
The test network was a 56 node, 200 link (unidirectional) network consisting of 

two USA 28 node networks joined together. The total number of O-D pairs was 3080. 

For each O-D pair, ten paths were selected. The average capacity of each link was 500 

units hence the total capacity of the network was 100,000 units. The cost of each link 

was set to the inverse of its capacity, which is the default metric recommended by 

Cisco. The set of link capacities were chosen randomly. We used the same topology 

with three different sets of capacities (S, D, M) that stand for “same”, “different” and 

“much different”. The upper and lower limits of the capacities of the link metrics are 

shown in the legend.  

For each case (S, D, M) a demand matrix was generated multiple times. The 

total demand was chosen so that the LP problem would be feasible but the shortest 

path (routing problem) would produce overloaded links. The intention was to simulate 

networks that are in dire need of capacity management. In the (S) case the average 

total demand was 11,111 units and in the (D) and (M) case it was 9370 and 7652 units 

respectively (see Table 1). Thus in the LP solution the maximum utilization is 100%, 

and in a heavily loaded case we expect a number of links to have this utilization. 

We then calculate the maximum link utilization when each set of traffic 

demands is routed down the shortest paths. For the (S) case this yields the figure 

244%. Similar results hold true for the (D) and (M) case. Thus, we see that by using a 

routing scheme that implements the LP solution we completely improve the 



maximum utilization by up to 150%. This is reasonably obvious; what is important is 

how close our approximate routing schemes are to the exact case. We discuss the 

three cases below. 

 

4.1.1 The “Duals” Case 
As we pointed out in section 3, using dual prices and exact splitting ratios 

would yield an optimal solution that is unlikely to be implemented in practice.  The 

first of the three approximations to the optimal solution, the “Duals” case is shown in 

Table 1. The OSPF weights are set to the modified costs, splitting ratios are ignored 

completely and the link utilizations are calculated using shortest path routing. This 

results in a reduction of the maximum utilization of between 90% and 138%.  The 

maximum utilization for the optimal case is 100%. 

4.1.2 The  “1-0” Case 
To more closely approach optimality, we can use an approximate set of 

splitting ratios that we label  “1-0 splits”.  A good proportion of the splitting ratios are 

already ‘1-0’. Splitting ratios that are not ”1-0” are termed “decimal” splits.  It just 

remains to round up those that are greater than 0.5 to 1.0 and round down those that 

are less than 0.5 to 0.0 . Ties are broken randomly. We see that in the (S) case (Table 

1) the maximum utilization is now reduced to 114%. This is a single path routing 

scheme and requires the “1-0” splits to be distributed to the routers. We see from 

Table 1 that the number of splitting ratios is small therefore this is not a prohibitive 

amount of state information. 

4.1.3 The Hybrid Case 
Finally we have a hybrid routing solution, a combination of ECMP and 1-0 

routing. The decimal splits are deemed  “50-50” if the split ratio is less than 0.75 or 

greater than 0.25. In this case the ECMP facility will split the flow in two. If the split 

ratio is greater than 0.75 or less than 0.25, the split ratio is deemed “1-0”. Again ties 

are broken randomly. For cases of “n” way splitting (n>2), of which none were 

observed here, a similar (but slightly more complicated) procedure is used. This 

hybrid solution yields a maximum utilization only a few per cent from optimal (see 

Table 1). 

 We found, in all our tests using inverse capacity as the link cost that the 

number of splitting ratios was in the order of 200 (see table 1). In contrast when we 

used unit costs there were a plethora of equal cost paths generated. This means that 

the number of splitting ratios is high to start off with and gets still higher (roughly 

1000) thus the first two “cases” above are far less optimal. Fortz and Thorup [6] also 

only use inverse capacity as their starting cost as this was deemed to be the best 

performer.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

4.2 A (Re)-Routing Method 
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Figure 1. Max Utilization of the three cases vs α, the capacity scaling coefficient for the 56 

Node Graph (S)  

 

 
 We will now show (as in [6]) that it is possible to route a significant 

proportion of a given set of traffic demands with only a few weight changes. We take 

an (S) topology network with a set of demands totalling 11,193 units of flow. In 

Figure 1 the link capacities are scaled by a coefficient α and the network is optimised 

for each separate value of α. The starting value αs is just above the maximum 

utilization found when this set of demands is routed down the shortest paths. This 

means all flows use shortest paths, no links are full and there are no dual prices.  Our 

aim is to successively shift the flows off the congested links by lowering the 

“effective capacity” of the links.  

For each value of α we solve our LP formulation thus in the actual network the 

best possible maximum utilization would be α. Reference to Figure 1 shows that our 

approximate solutions have similar maximum utilizations until α = 1.3. For α < 1.3, 

the “duals” case actually gets worse and for α < 1.1 the “1-0” case gets slightly worse. 

The hybrid case is nearly optimal for all values of α. For α = 1 the maximum 

utilizations of the three cases are almost the same as those found in Table 1 for the (S) 

(ave.) case. 

 

 

 

 



 

 

 

 

 

 

      α Coeff. No.of Duals 
    Total No. 
Split Ratio Timing (s) 

2.6 0 0 0.18 

2.4 1 1 0.23 

2.2 1 1 0.14 

2 1 1 0.151 

1.8 1 1 0.151 

1.6 2 31 0.17 

1.4 4 17 0.541 

1.2 10 58 1.252 

1 24 166 7.1 

 

Table 2 The capacities are scaled by a coefficient α and the network is optimised. 56 node 

(S) case. 11,193 units of flow. 
 

If we now examine Table 2 we see that the number of dual prices is small until α 

approaches 1. Moreover from Figure 1 we have seen that the “duals” case is a good 

approximation to the optimal solution for α >1.3. Therefore we conclude that we can 

effect large changes in maximum utilization by using only a few dual prices to reset 

the OSPF weights. This is entirely consistent with the reported findings of [6]. The 

difference in our case is that our calculation time is much faster. 

 

4.2.1 Calculation Times 

The strength of the above method as a routing or capacity management tool is 

that the parts that take the most time only need to be carried out once while the parts 

that need to be repeated multiple times take little time at all.  For each calculation 

these steps need to carried out: 

(1) Generating the paths for each flow for a given topology. 

 (2) Reading and writing of an input file. 

(3) Running the LP program until the desired level of accuracy (α). 

(4) Calculating the splitting ratios. 

(5) Running the shortest path calculation for the three approximations to 

calculate the link utilizations 

We will consider two cases, one of 56 nodes and one of 90 nodes (300 links). 

In either case steps (1) and (2) need only be carried out once thus our calculation time 

for any capacity management “tool” we may envisage is the sum of steps (3), (4) (5). 

For 56 nodes (S), step (1) took three minutes, step (2) took 20 s, step 3 took 

between 0.4 and 10 s (see Table 2), step (4) took 6 s and step  (5) took 0.3 s each.  We 

should note for the “duals” approximation splitting ratios need not be calculated. 

For 90 nodes (S), step (1) took 30 minutes, step (2) took 1 m, step 3 took 

between 0.4 and 30 s, step (4) took 15 s and step  (5) took 1 s each.  The resultant 

improvement in maximum utilization was similar to the 56 node case. 

By Examining Table 2 we see that the maximum utilization for the 56 node 

network can be halved in 1-2 seconds using the “duals” case, steps (3) and (5). Only 



two dual prices are needed. We performed the same calculation for the 90 node 

network and halved the maximum utilization in only six seconds. This is two orders 

of magnitude faster than Fortz and Thorup’s calculation for a similar size network [6] 

(using a 1.7 GHz Pentium 4).  We believe this has important implications for the 

construction of a much improved network management tool along the lines of that 

described in [8]. 

 

4.3 “Hot Spot” Remover 

This method works well because even heavily loaded networks often only have a 

small fraction of their links congested (though some heavily so) thus few dual prices 

and few splitting ratios are generated. Those highly congested links are known as “hot 

spots” and are caused by changes in the original demand matrix.  

It is precisely these ‘hot spots” or “bottlenecks” that cause the QoS to degrade 

rapidly in a network. So we see that, as in [6], our primary purpose is not to achieve 

optimality (though our approximations can be good) but to remove “hot spots” with as 

few weight changes as possible.  It is here that our method works particularly well. It 

is a natural solution for this problem. Each iteration of the dual Simplex method 

(which with CPLEX 7.1 [9] is very fast) will detect the most congested link, remove 

the largest flow and find a feasible path for it. In addition, the new path is a shortest 

modified cost path hence we can input these new link costs directly as the OSPF 

weights.  

By examining Table 2, we can see a poignant example of the power of this 

method. Only one dual price is needed to lower the maximum utilization from 2.6 to 

1.8. Furthermore, there is only one splitting ratio and four alternate paths (this is 

gleaned from the solution file). It turns out, however, that 81 flows are rerouted. 81 

misrouted flows out of 3080 is a tiny fraction and would cause little problem if spread 

across the network, but 81 flows routed on a heavily loaded link would cause a severe 

bottleneck. 
   

 
 

5. DISCUSSION – THE ADVANTAGE OF SPEED  
One great advantage of this technique for calculating OSPF weights over that 

presented by Fortz and Thorup [6] is the speed of calculation.  The LP calculation 

presented here takes only a few tens of seconds, as opposed to tens of minutes.  Since 

the aim of these techniques is to provide a tool for network operators to investigate 

changes to the routing parameters, this speed is not directly critical to the operation of 

the network.  Nevertheless, it does provide significant improvements.  The first of 

these is the ability to be interactive.  Network operators who wish to calculate new 

weights with this technique could do so, view the effects and then choose to calculate 

alternative sets in an interactive fashion. The second advantage is in performing 

“what-if” analysis with a number of variable parameters, eg a new range of predicted 

demands.  This tool could be used to calculate weights for dozens or even hundreds of 

scenarios in a reasonable time; minutes to hours rather than days to weeks. 

This technique is sufficiently fast that it would be possible to incorporate it in 

an online mechanism to react to network changes.  This, however, is not likely to be 

desirable in the normal situation due to the adverse effects of the routing changes 

caused by changing OSPF weights.  Still, if a tool is being used to calculate the link 

weights, it could be useful to have answers available quickly in a network emergency 



caused by a truly unanticipated or especially dramatic change in network conditions 

eg the formation of a sudden hot-spot. 

 

6. IMPLEMENTATION  

In our previous paper [5], we discussed the implementation of a traffic 

management system (ie managing a changing set of traffic demands) that needed 

splitting ratios. It turns out that this was not likely to be implemented. In this paper we 

have proposed three solutions (cases) using approximations to splitting ratios. We 

believe all three solutions can be practically implemented.  We assume here that a 

practical size OSPF network is approximately 50 nodes and that the timing of the 

implementation of the routing decisions is a human factor. 

 

6.1 The “Duals” Case 
This technique provides  “hot spot removal” (as in [6]) for standard OSPF 

networks and so has clear application to the management of common backbone 

networks. All that is required is that the new weights (the modified costs) be 

distributed to all the routers. Statistics for the traffic matrix would be gathered using 

Netflow [10] or Service Level Agreements (SLA).  

It is also possible to run MPLS and route the LSPs using OSPF. Using the 

Interior Gateway Protocol (IGP) for routing LSPs is common in many MPLS 

deployments. This has the advantage that complex explicit routing protocols are no 

longer needed and traffic matrix statistics are much easier to gather. 

 

6.2 The “1-0” Case 
The “1-0” splitting option is not easily applicable to pure OSPF-based IP routing.  

The best application for the “1-0” routing case is using MPLS. Although LSPs can be 

all administratively routed, it is simpler to allow the majority of LSPs to route 

following the IGP and only administratively route a few to obtain some routing 

improvement. The 1-0 case supports this situation directly because it provides weights 

that go a long way towards optimising the routing of the majority of LSPs that follow 

the IGP.  Those flows that have alternative paths can be administratively confined to 

one path using loose source routing [11].  This has the potential to provide nearly 

optimal routing with minimal administrative state information requirements. 

 

6.3 The Hybrid Case  

This case is closest to optimal routing.  This could also be implemented using 

MPLS in two different ways.  The first would be the same as the “1-0” case with the 

addition that, where ECMP splitting is required, multiple LSPs would have to be 

defined, one source-routed to each of the available paths. Then the traffic could be 

split between these paths at the entrance to the network using an IGP.   The second 

technique would be not to use MPLS at all for the majority of traffic, but to route it 

using the IGP following the paths calculated with the (nearly) optimal weights. MPLS 

would be reserved for those flows on paths that required 1-0 splitting.  This technique 

has similarities to those networks where MPLS is reserved for traffic that has a 

particular status separate from the bulk of best effort traffic, such as VPN traffic or 

higher QoS class traffic. 

 

 

 



CONCLUSION 
Previous work formulated the routing problem as a multi-commodity flow 

problem and showed that, when the dual solution values are assigned to the OSPF 

metrics and the primal solution is used to calculate node-splitting ratios, constraint 

based routing can be performed using the OSPF protocol. This paper extends this 

work by showing that simplified versions of this mechanism can provide nearly 

optimal routing with direct practical application to commonly deployed routing 

protocols.  The techniques presented here have significant speed advantages over 

similar techniques proposed elsewhere. 
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