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Abstract

We propose a method to approximate a class of exponential multivariate integrals using moment

relaxations. Using this approach, both lower and upper bounds of the integrals are obtained and we

show that these bound values asymptotically converge to the real value of the integrals when the

moment degree r increases. We further demonstrate the method by calculating both hypercubic and

order statistic probabilities for multivariate normal distributions.

1 Introduction

Multivariate integrals arise in statistic, physics, engineering and even finance applications. For example,

these integrals are needed to calculate probabilities over compact sets for multivariate normal random

variables. It is therefore important to compute or approximate multivariate integrals. Usual methods

include Monte Carlo schemes (see Niederreiter [5] for details) and some cubature formulae as shown

in de la Harpe and Pache [2]. However, there are still many open problems currently and research on

multivariate integrals is very much active due to its importance as well as its difficulties.

Contributions and Paper Outline

In this paper, we attempt to approximate a class of exponential integrals, which is useful to calculate

probabilities of multivariate normal random variables. Specifically, our contributions and structure of

the paper are as follows:
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(1) In Section 2, we provide a general framework to calculate lower and upper bounds for the expo-

nential integrals mentioned above. These bounds are calculated by solving specific semidefinite

programming problems constructed from appropriate sequences of moments.

(2) In Section 3, we prove that the two monotone sequences of lower and upper bounds generated

by these semidefinite programming problems will asymptotically converge to the real value of the

integral. The proof is due to some results from the problem of moments.

(3) In Section 4, computational results are reported for probabilities of multivariate random variables

and their order statistics over a hypercube. These results show that the proposed method is indeed

applicable for this class of integrals.

2 General Framework

2.1 Recursive Formula

The class of multivariate exponential integrals considered in this paper has the form

ρ =
∫

Ω
g(x)eh(x)dx (1)

where x ∈ Rn, g, h ∈ R[x], the ring of real polynomials and Ω ⊂ Rn is a compact set defined as

Ω = {x ∈ Rn : b(1)
1 ≤ x1 ≤ b

(2)
1 , b

(1)
i (x[i− 1]) ≤ xi ≤ b

(2)
i (x[i− 1]) ∀i = 2, . . . , n} (2)

where x[i] ∈ Ri is the vector of first i elements of x, i = 1, . . . , n, b(1)i , b
(2)
i ∈ R[x[i − 1]], i = 2, . . . , n,

and b(1)
1 , b

(2)
1 are constants.

Define Ωk = {x ∈ Rk : b(1)
1 ≤ x1 ≤ b

(2)
1 , b

(1)
i (x[i − 1]) ≤ xi ≤ b

(2)
i (x[i − 1]) ∀i = 2, . . . , k},

k = 1, . . . , n, we have: Ωk ∈ Rk and Ωn = Ω. Clearly, these Ωk sets are also compact in Rk for all

k = 1, . . . , n. Let us consider the measure µ(i)
h on Ri defined by

µ
(i)
h (B) =

∫
Ωi∩B

eh(x[i])dx[i] (3)

where h ∈ R[x[i]], B ∈ B(Ri), and its sequence of moments z
(i)
h = {z(i)

h (α)}:

z
(i)
h (α) =

∫
Ωi

(x[i])αeh(x[i])dx[i] (4)

for all α ∈ Ni.
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We then have ρ =
∑

α∈Nn gαz
(n)
h (α) = 〈g,z(n)

h 〉, where gα is the coefficient of monomial xα and g is

the sequence of those coefficients. Therefore, what we need to do is to calculate z(n)
h (α) for all necessary

α ∈ Ni. Using integration by parts, we have:

z
(n)
h (α) =

1
αn + 1

(Aα −Bα)

where

Aα =
∫

Ωn−1

(x[n− 1])α[n−1]
[
xαn+1

n eh(x)
]b

(2)
n (x[n−1])

b
(1)
n (x[n−1])

dx[n− 1]

and

Bα =
∫

Ω
(x[n− 1])α[n−1]xαn+1

n

∂h(x)
∂xn

eh(x)dx

We have:
∂h(x)
∂xn

=
∑

β∈Nn

βnhβ(x[n− 1])β[n−1]xβn−1
n

Therefore,

Bα =
∑

β∈Nn

βnhβ

∫
Ω
(x[n− 1])α[n−1]xαn+1

n (x[n− 1])β[n−1]xβn−1
n eh(x)dx

or

Bα =
∑

β∈Nn

βnhβ

∫
Ω

xα+βeh(x)dx =
∑

β∈Nn

βnhβz
(n)
h (α + β)

Now consider Aα, we have: Aα = A2
α −A1

α where

Ai
α =

∫
Ωn−1

(x[n− 1])α[n−1][b(i)n (x[n− 1])]αn+1eh(x[n−1],b
(i)
n (x[n−1]))dx[n− 1], i = 1, 2

Let

g
(n−1)
i,α (x) = xα[n−1][b(i)n (x)]αn+1, x ∈ Rn−1, i = 1, 2

and

h
(n−1)
i (x) = h(x, b(i)n (x)), x ∈ Rn−1, i = 1, 2

All of these four functions are polynomials in R[x[n − 1]]. Define two measures µ(n−1)
1 ≡ µ

(n−1)

h
(n−1)
1

and

µ
(n−1)
2 ≡ µ

(n−1)

h
(n−1)
2

over Ωn−1 on Rn−1 as defined in (3). With their two respective sequences of moments

z
(n−1)
1 ≡ z

(n−1)

h
(n−1)
1

and z
(n−1)
2 ≡ z

(n−1)

h
(n−1)
2

as defined in (4), we have:

Aα =
∑

β∈Nn−1

(
g
(n−1)
2,α

)
β
z
(n−1)
2 (β)−

∑
β∈Nn−1

(
g
(n−1)
1,α

)
β
z
(n−1)
1 (β)
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Thus we have:

z
(n)
h (α) =

∑
β∈Nn−1

(
g
(n−1)
2,α

)
β

αn + 1
z
(n−1)
2 (β)−

∑
β∈Nn−1

(
g
(n−1)
1,α

)
β

αn + 1
z
(n−1)
1 (β)−

∑
β∈Nn

βnhβ

αn + 1
z
(n)
h (α + β) (5)

Equation (5) shows that in order to calculate z
(n)
h , we need to calculate z

(n−1)
i , i = 1, 2, which can then

be calculated by some other moment sequences in lower dimensions. Let denote h(n)
1 to be the function

h and define

h
(k)
i (x) = h

(k+1)
di/2e (x, b(2−di/2e+bi/2c)

k+1 (x)), x ∈ Rk, k = 1, . . . , n− 1, i = 1, . . . , 2n−k (6)

For each function h(k)
i , a measure µ(k)

i and its moments sequence z
(k)
i are also defined over Ωk in Rk as

in (3) and (4) respectively. We also need to define the function g(k)
i,α. Let define

g
(k)
i,α(x) = xα[k][b(i)k+1(x)]αk+1+1, x ∈ Rk,α ∈ Nk, i = 1, 2 (7)

Then we have:

z
(k)
i (α) =

∑
β∈Nk−1

(
g
(k−1)
2,α

)
β

αk + 1
z
(k−1)
2i (β)−

∑
β∈Nk−1

(
g
(k−1)
1,α

)
β

αk + 1
z
(k−1)
2i−1 (β)−

∑
β∈Nk

βk(h
(k)
i )β

αk + 1
z
(k)
i (α + β) (8)

or z(k)
i (α) = R

(k)
i (z(k)

i ,z
(k−1)
2i ,z

(k−1)
2i−1 ,α) for all α ∈ Rk, k = 2, . . . , n, and i = 1, . . . , 2n−k.

For k = 1 and i = 1, . . . , 2n−1, we have:

z
(1)
i (α) =

(b(2)
1 )α+1

α+ 1
eh

(1)
i (b

(2)
1 ) − (b(1)

1 )α+1

α+ 1
eh

(1)
i (b

(1)
1 ) −

∑
β∈N

β(h(1)
i )β

α+ 1
z
(1)
i (α+ β) = R

(1)
i (z(1)

i , α) (9)

With the general recursive formula presented in (8) and (9), the sequence of moments z
(n)
h (or z

(n)
1 ) can

now be calculated.

2.2 Moment Relaxation

Let consider the measure µ(k)
i and its corresponding sequence of moments z

(k)
i . For any nonnegative

integer r, the r-moment matrix associated with µ
(k)
i (or equivalently, with z

(k)
i ) Mr(µ

(k)
i ) ≡ Mr(z

(k)
i )

is a matrix of size
(
k+r

r

)
. Its rows and columns are indexed in the canonical basis {(x[k])α} of R[x[k]],

and its elements are defined as follows:

Mr(z
(k)
i )(α,β) = z

(k)
i (α + β), α,β ∈ Nk, |α|, |β| ≤ r. (10)
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Similarly, given θ ∈ R[x[k]], the localizing matrix Mr(θz
(k)
i ) associated with z

(k)
i and θ is defined by

Mr(θz
(k)
i )(α,β) :=

∑
γ∈Nk

θγz
(k)
i (α + β + γ), α,β ∈ Nk, |α|, |β| ≤ r, (11)

where θ = {θγ} is the vector of coefficients of θ in the canonical basis {(x[k])α}.

If we define the matrix Mγ
r (z(k)

i ) with elements

Mγ
r (z(k)

i )(α,β) = z
(k)
i (α + β + γ), α,β,γ ∈ Nk, |α|, |β| ≤ r,

then the localizing matrix can be expressed as Mr(θz
(k)
i ) =

∑
γ∈Nk θγM

γ
r (z(k)

i ).

Note that for every polynomial f ∈ R[x[k]] of degree at most r with its vector of coefficients denoted

by f = {fγ}, we have:

〈f ,Mr(z
(k)
i )f〉 =

∫
f2dµ(k)

i , 〈f ,Mr(θz
(k)
i )f〉 =

∫
θf2dµ(k)

i . (12)

This property shows that necessarily, Mr(z
(k)
i ) � 0 and Mr(θz

(k)
i ) � 0, whenever µ(k)

i has its support

contained in the level set
{
x ∈ Rk : θ(x) ≥ 0

}
. If the sequence of moments is restricted to those moments

used to construct the moment matrix Mr(z
(k)
i ) (up to moments of degree 2r), then the second necessary

condition is reduced to Mr−dd/2e(θz
(k)
i ) � 0, where d is the degree of the polynomial θ. For more details

on moment matrices, local matrices, and these necessary conditions, please refer to Laurent [4] and

references therein.

Let us define

θ
(k)
i (x) = (b(2)

i (x[i− 1])− xi)(xi − b
(1)
i (x[i− 1])),x ∈ Rk ∀k ≥ i (13)

for all i = 2, . . . , n. Similarly, define

θ
(k)
1 (x) = (b(2)

1 − x1)(x1 − b
(1)
1 ),x ∈ Rk ∀k ≥ 1. (14)

For a fixed i (i = 1, . . . , n), the polynomials θ(k)
i depends on the first i variables x1, . . . , xi exactly the

same for all k ≥ i. Thus they all have the same degree di for all k ≥ i.

We also have Ωk = {x ∈ Rk : θ(k)
i (x) ≥ 0 ∀i = 1, . . . , k} for all k = 1, . . . , n. Thus necessary

conditions for moment matrices of all measures µ(k)
i can be written as follows:

Mr(z
(k)
i ) � 0, Mr−ddj/2e(θ

(k)
j z

(k)
i ) � 0 ∀k = 1, . . . , n, ∀i = 1, . . . , 2n−k,∀j = 1, . . . , k (15)
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Combining these necessary conditions and the recursive formulae for z
(k)
i in (8) and (9), we can find

lower and upper bounds for ρ by solving the two following semidefinite programming problems:

P l
r
4
=



inf 〈g,z(n)
1 〉

s.t. Mr(z
(k)
i ) � 0 k = 1, . . . , n, i = 1, . . . , 2n−k

Mr−ddj/2e(θ
(k)
j z

(k)
i ) � 0 k = 1, . . . , n, i = 1, . . . , 2n−k, j = 1, . . . , k

z
(1)
i (α) = R

(1)
i (z(1)

i , α) i = 1, . . . , 2n−1, α ∈ A(1)
i,r

z
(k)
i (α) = R

(k)
i (z(k)

i ,z
(k−1)
2i ,z

(k−1)
2i−1 ,α) k = 2, . . . , n, i = 1, . . . , 2n−k,α ∈ A(k)

i,r


(16)

and

Pu
r
4
=



sup 〈g,z(n)
1 〉

s.t. Mr(z
(k)
i ) � 0 k = 1, . . . , n, i = 1, . . . , 2n−k

Mr−ddj/2e(θ
(k)
j z

(k)
i ) � 0 k = 1, . . . , n, i = 1, . . . , 2n−k, j = 1, . . . , k

z
(1)
i (α) = R

(1)
i (z(1)

i , α) i = 1, . . . , 2n−1, α ∈ A(1)
i,r

z
(k)
i (α) = R

(k)
i (z(k)

i ,z
(k−1)
2i ,z

(k−1)
2i−1 ,α) k = 2, . . . , n, i = 1, . . . , 2n−k,α ∈ A(k)

i,r


(17)

where A(k)
i,r is the set of all α ∈ Rk that the recursive formulae can be expressed by moments of degree

up to 2r (used to construct the moment matrices Mr).

Clearly, Z(P l
r) ≤ ρ ≤ Z(Pu

r ) and we will prove that these lower and upper bounds asymptotically

converge to ρ when r tends to infinity in the next section.

3 Convergence

In order to prove the convergence of Z(P l
r) and Z(Pu

r ), we need to prove the recursive formulae in (8)

and (9) define moment sequences for all measures µ(k)
i .

Lemma 1 Let h(k)
i and g

(k)
i,α be defined as in (6) and (7) respectively, and let z

(k)
i be the moment

sequences of some Borel measures ψ(k)
i on the compact sets Ωk, which satisfy (8) and (9). Then dψ(k)

i =

dµ(k)
i for all k = 1, . . . , n and i = 1, . . . , 2n−k.

Proof. We will prove the lemma by induction. Let consider the case k = 1, we have, according to (9):

z
(1)
i (α) =

∫
xαdψ(1)

i =
[
xα+1

α+ 1
eh

(1)
i (x)

]b
(2)
1

b
(1)
1

−
∫

xα+1

α+ 1
(h(1)

i )′(x)dψ(1)
i (18)

We also have: ∫
xαdµ(1)

i =
[
xα+1

α+ 1
eh

(1)
i (x)

]b
(2)
1

b
(1)
1

−
∫

xα+1

α+ 1
(h(1)

i )′(x)dµ(1)
i (19)
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Let consider the signed measure φ(1)
i on Ω1 that satisfies dφ(1)

i = dψ(1)
i − dµ(1)

i , from (18) and (19), we

have: ∫
xαdφ(1)

i = −
∫

xα+1

α+ 1
(h(1)

i )′(x)dφ(1)
i (20)

Consider the polynomial p(x) =
∑d

j=1 fjx
j , we have: p′(x) =

∑d−1
j=0 fj+1(j+ 1)xj . From Equation (20),

we obtain the following equation:∫ [
p′(x) + p(x)(h(1)

i )′(x)
]
dφ(1)

i = 0 (21)

We now prove that Equation (21) is also true for all continuous funtion f(x) = xg(x), where g is

continuously differentiable on Ω1. We have, polynomials are dense in the space of continuously differ-

entiable functions on Ω1 under the sup-norm max{supx∈Ω1
|f(x)|, supx∈Ω1

|f ′(x)|} (see Coatmélec [1]

for details on simultaneous approximation). Therefore for any ε > 0, there exist pε ∈ R[x] such that

supx∈Ω1
|g(x) − pε(x)| ≤ ε and supx∈Ω1

|g′(x) − p′ε(x)| ≤ ε. Equation (21) is true for the polynomial

p(x) = xpε(x), thus∫ [
f ′(x) + f(x)(h(1)

i )′(x)
]
dφ(1)

i =
∫

[x(g(x)− pε(x))]
′ dφ(1)

i +
∫
x [g(x)− pε(x)] (h

(1)
i )′(x)dφ(1)

i

We have: [x(g(x)− pε(x))]
′ = (g(x)− pε(x)) + x(g′(x)− p′ε(x)), thus

| [x(g(x)− pε(x))]
′| ≤ (1 + sup

x∈Ω1

|x|)ε ∀x ∈ Ω1

Similarly,

|x [g(x)− pε(x)] (h
(1)
i )′(x)| ≤ sup

x∈Ω1

|x(h(1)
i )′(x)|ε ∀x ∈ Ω1

So we have:

|
∫ [

f ′(x) + f(x)(h(1)
i )′(x)

]
dφ(1)

i | ≤ ε(1 + sup
x∈Ω1

|x|+ sup
x∈Ω1

|x(h(1)
i )′(x)|)

∫
|dφ(1)

i |

The constant term M = (1+supx∈Ω1
|x|+supx∈Ω1

|x(h(1)
i )′(x)|)

∫
|dφ(1)

i | is finite and the above equation

is true for all ε > 0, thus we have for all f(x) = xg(x):∫ [
f ′(x) + f(x)(h(1)

i )′(x)
]
dφ(1)

i = 0 (22)

For an arbitrary polynomial g(x) =
∑d

j=0 gjx
j , define G(x) =

∑d
j=0

gj

j+1x
j+1, we have G′(x) = g(x).

Let consider f(x) = G(x)e−h
(1)
i (x), we have: f(x)

x is a continuously differentiable function and f ′(x) =

g(x)e−h
(1)
i (x) − f(x)(h(1)

i )′(x). Using Equation (22), we obtain the following equation∫
g(x)e−h

(1)
i (x)dφ(1)

i = 0, ∀g ∈ R[x] (23)
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If we define dν(1)
i = e−h

(1)
i (x)dφ(1)

i , we then have
∫
f(x)dν(1)

i = 0 for all continuous function f in Ω1 since

polynomials are dense in the space of continuous functions. This implies that ν(1)
i is a zero measure.

In addition, e−h
(1)
i (x) > 0 for all x ∈ R, thus φ(1)

i is also a zero measure or dψ(1)
i = dµ(1)

i for all

i = 1, . . . , 2n−1.

Now assume that dψ(k−1)
i = dµ(k−1)

i , 2 ≤ k ≤ n, for all i = 1, . . . , 2n−k+1. We will prove that

dψ(k)
i = dµ(k)

i for all i = 1, . . . , 2n−k. We have: dψ(k−1)
2i = dµ(k−1)

2i and dψ(k−1)
2i−1 = dµ(k−1)

2i−1 for i : 1 ≤ i ≤

2n−k. Thus z
(k−1)
2i and z

(k−1)
2i−1 are moment sequences of two measures µ(k−1)

2i and µ(k−1)
2i−1 respectively.

According to (8), we have:

∫
xαdψ(k)

i =
∑

β∈Nk−1

(
g
(k−1)
2,α

)
β

αk + 1
z
(k−1)
2i (β)−

∑
β∈Nk−1

(
g
(k−1)
1,α

)
β

αk + 1
z
(k−1)
2i−1 (β)−

∫
xαxk

αk + 1
∂h

(k)
i (x)
∂xk

dψ(k)
i (24)

Similarly,

∫
xαdµ(k)

i =
∑

β∈Nk−1

(
g
(k−1)
2,α

)
β

αk + 1
z
(k−1)
2i (β)−

∑
β∈Nk−1

(
g
(k−1)
1,α

)
β

αk + 1
z
(k−1)
2i−1 (β)−

∫
xαxk

αk + 1
∂h

(k)
i (x)
∂xk

dµ(k)
i (25)

Then if we consider the signed measure φ(k)
i on Ωk that satisfies dφ(k)

i = dψ(k)
i − dµ(k)

i , we have:∫
xαdφ(k)

i = −
∫

xαxk

αk + 1
∂h

(k)
i (x)
∂xk

dφ(k)
i (26)

Using similar arguments with simultaneous approximation of continuous functions, we obtain the fol-

lowing equation for all functions f(x) = xkg(x), x ∈ Rk, where g and ∂g
∂xk

are continuous:

∫ [
∂f(x)
∂xk

+ f(x)
∂h

(k)
i (x)
∂xk

]
dφ(k)

i = 0 (27)

For any polynomial g ∈ R[x], define G(x) = xkP (x), where P (x) ∈ R[x] and ∂G(x)
∂xk

= g(x), then with

f(x) = G(x)e−h
(k)
i (x), we again obtain∫

g(x)e−h
(k)
i (x)dφ(k)

i = 0, ∀g ∈ R[x] (28)

Similar arguments are again used and we have the measure φ(k)
i is a zero measure or dψ(k)

i = dµ(k)
i for

all i = 1, . . . , 2n−k. So the results are true for all k = 1, . . . , n. �

With this lemma, we can now prove the following convergence theorem:

Theorem 1 Let g, h ∈ R[x], Ω be the compact set defined in (2), and consider the semidefinite pro-

gramming problems P l
r and Pu

r defined in (16) and (17) respectively. Then
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(i) Optimal values Z(P l
r) and Z(Pu

r ) are finite and in addition, both problems P l
r and Pu

r are solvable

for r large enough.

(ii) As r →∞, Z(P l
r) ↑ ρ and Z(Pu

r ) ↓ ρ.

Proof. Clearly, the collection of truncated sequences of moments of µ(k)
i is a feasible solution for both

problems P l
r and Pu

r . We have:

|z(k)
i (α)| ≤

∫
Ωk

| (x[k])α eh
(k)
i (x[k])|dx[k] ≤ sup

x∈Ωk

|xαeh
(k)
i (x)|vol(Ωk)

Ωk is compact in Rk; therefore, we have u(k)
i (α) = supx∈Ωk

|xαeh
(k)
i (x)| = maxx∈Ωk

|xαeh
(k)
i (x)| is finite.

Now consider the problems P l
r and Pu

r with additional bound constraints −u(k)
i (α) − 1 ≤ z

(k)
i (α) ≤

u
(k)
i (α) + 1 for all k, i and α, we have:

(i) The feasible sets of these two modified problems are bounded and closed. The objective functions

are linear and both problems are feasible. Therefore, they are both solvable and their optimal

values are finite.

(ii) Let {z(k)
i,r } be the optimal solution of P l

r (with bound constraints), we extend these truncated

sequences with zeros to make them become infinite sequences. According to Lasserre [3], there

is a subsequence {rm} and infinite sequences {z(k)
i,∗ } such that pointwise convergence holds with

respect to the usual sup-norm. Therefore, we have:

M(z(k)
i,∗ ) � 0, M(θ(k)

j z
(k)
i,∗ ) � 0 ∀k, i, j

We also have Ωk is compact in Rk; therefore, according to Putinar [6], there exist measures ψ(k)
i

supported on Ωk such that z
(k)
i,∗ are their moment sequences assuming the representation condition

holds. In addition, {z(k)
i,∗ } satisfy the recursive formulae (8) and (9) from the pointwise convergence.

From Lemma 1, we obtain that dψ(k)
i = dµ(k)

i for all k = 1, . . . , n and i = 1, . . . , 2n−k. Thus we

have:

lim
m→∞

〈g,z(n)
1,rm

〉 = 〈g,z(n)
1,∗ 〉 = ρ

Due to the construction of truncated moment matrices and localizing matrices as well as the sets

A
(k)
i,r , clearly, a feasible solution of P l

r+1 generates a feasible solution of P l
r. Thus with r ≥ deg(g),

then 〈g,z(n)
1,r 〉 ≤ 〈g,z(n)

1,r+1〉 or we have:

〈g,z(n)
1,r 〉 ↑ ρ

Similar arguments can be applied for the modified problem Pu
r .
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So far, the results obtained are for problems P l
r and Pu

r with additional bound constraints. However,

at the limit with respect to the usual sup-norm, none of these bound constraints are tight. Thus, these

constraints can be removed when r is large enough. In other words, the problems P l
r and Pu

r have finite

optimal solutions and solvable when r is large enough and

Z(P l
r) ↑ ρ, Z(Pu

r ) ↓ ρ

�

4 Computational Results

In order to demonstrate the method, we use two different kinds of Ω sets: hypercubes and order statistic

integrals. The computational results are obtained for integrals over these sets of random multivariate

normal distribution.

4.1 Integrals over Hypercubes

If Ω is a hypercube, then b(i)k (x) = b
(i)
k are constants for all k = 2, . . . , n. We have:

g
(k)
i,α(x) = [b(i)k+1]

αk+1+1xα[k], x ∈ Rk,α ∈ Nk, i = 1, 2 (29)

The functions h(k)
i are still formulated as in (6):

h
(k)
i (x) = h

(k+1)
di/2e (x, b(2−di/2e+bi/2c)

k+1 ), x ∈ Rk, k = 1, . . . , n− 1, i = 1, . . . , 2n−k

The recursive formula simply becomes

z
(k)
i (α) =

[b(2)
k ]αk+1

αk + 1
z
(k−1)
2i (α[k − 1])−

[b(1)k ]αk+1

αk + 1
z
(k−1)
2i−1 (α[k − 1])−

∑
β∈Nk

βk(h
(k)
i )β

αk + 1
z
(k)
i (α + β) (30)

for all k = 2, . . . , n, α ∈ Rk, i = 1, . . . , 2n−k while for k = 1, it remains the same as in (9):

z
(1)
i (α) =

(b(2)
1 )α+1

α+ 1
eh

(1)
i (b

(2)
1 ) − (b(1)

1 )α+1

α+ 1
eh

(1)
i (b

(1)
1 ) −

∑
β∈N

β(h(1)
i )β

α+ 1
z
(1)
i (α+ β), ∀i = 1, . . . , 2n−1

The polynomials θ(k)
i (x) = (b(2)

i − xi)(xi − b
(1)
i ) = −b(1)i b

(2)
i + (b(1)i + b

(2)
i )xi − x2

i , x ∈ Rk have the

degree di = 2 for all k ≥ i, i = 1, . . . , n in this case.
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4.2 Order Statistic Integrals

Order statistic integrals are calculated over the set Ω = {x ∈ Rn : b(1) ≤ x1 ≤ . . . ≤ xn ≤ b(2)}. So we

have: b(2)
k = b(2) are constant for all k = 1, . . . , n while b(1)k (x) = xk−1 for all k = 2, . . . , n and b(1)1 = b(1).

The functions g(k)
2,α are defined as in (29) while g(k)

1,α are formulated as follows

g
(k)
1,α(x) = x

αk+1+1
k xα[k] = xα[k]+(αk+1+1)ek , x ∈ Rk,α ∈ Nk, (31)

where ek is the kth unit vector in Rk.

The recursive formula is then

z
(k)
i (α) =

[b(2)]αk+1

αk + 1
z
(k−1)
2i (α[k− 1])− 1

αk + 1
z
(k−1)
2i−1 (α[k− 1] + (αk + 1)ek)−

∑
β∈Nk

βk(h
(k)
i )β

αk + 1
z
(k)
i (α + β)

(32)

for all k = 2, . . . , n, α ∈ Rk, i = 1, . . . , 2n−k. For k = 1, the formula remains the same as in (9).

Finally, the polynomials θ(k)
i (x) = (b(2) − xi)(xi − xi−1) = −b(2)xi−1 + b(2)xi + xi−1xi − x2

i , x ∈ Rk

also have degree di = 2 for all k ≥ i, i = 2, . . . , n. For i = 1, the polynomial θ(k)
1 (x) is the same as in

the previous section with degree d1 = 2.

4.3 Computational Results for Normal Distributions

Multivariate normal distributions are used to obtain computational results for integrals over hypercubes

and order statistic integrals. The density function of a multivariate normal distribution with mean µ

and covariance matrix Σ = AA′ is

f(x) =
1

(2π)n/2 det(Σ)1/2
e−

1
2
(x−µ)′Σ−1(x−µ) (33)

Thus, in this case, g(x) =
[
(2π)n/2 det(Σ)1/2

]−1
, a constant, and h(x) = −1

2(x − µ)′Σ−1(x − µ), a

quadratic polynomials.

Algorithms for general g and h are implemented in Matlab for both hypercubic and order statistic

integrals. Semidefinite programming problems are solved using SeDuMi routines. For the case of

normal distributions, means and covariance matrices are created randomly using random vectors and

matrices with elements within the range of [−1, 1]. The two Ω sets are defined on the hypercube

{x ∈ Rn : −1 ≤ xi ≤ 1 ∀i = 1, . . . , n}.

The algorithms are run for different normal distributions in n = 1, 2, and 3-dimension space.

The moment degree starts at r = 2 and increases until the tolerance is met. The tolerance ε =

11



1
2

[
Z(Pu

r )− Z(P l
r)

]
is set to be 5 × 10−5 (4-digit accuracy). The results will be averaged from those

different distributions in each case. All computations are done under a Windows environment on a

Pentium III 1GHz with 256MB RAM.

Dimension Min. degree Max. degree Average degree Computational time (seconds)

n rmin rmax r̄ r = 2 r = 3 r = 4 r = 5

1 2 5 3.5 1.332 1.631 1.505 1.437

2 3 5 4.3 1.994 3.215 11.036 70.107

3 - - - 5.7 131.1 2289.2 -

Table 1: Computational results for hypercubic integrals

Dimension Min. degree Max. degree Average degree Computational time (seconds)

n rmin rmax r̄ r = 2 r = 3 r = 4 r = 5

1 2 5 3.5 1.332 1.631 1.505 1.437

2 3 5 4.3 2.079 3.413 12.294 79.418

3 - - - 4.8 134.6 2622.5 -

Table 2: Computational results for order statistic integrals

Table 1 and 2 show computational results for hypercubic and order statistic integrals respectively.

Minimum degree rmin is the smallest moment degree we need to use to meet the tolerance setting while

rmax is the largest moment degree. r̄ is the average value obtained from all distributions tested for each

value of n. In the case n = 1, there is not much difference between computational times for different

moment degrees and we need roughly r = 3 or r = 4 on average to obtain the desired results. These

observations are for both hypercubic and order statistic integrals even though the latter need slightly

more time to be calculated. For n = 2, the average moment degree is r̄ = 4.3 and computational times

are significantly varied from 2 seconds for r = 2 up to approximately 80 seconds for r = 5. Due to the

limit of memory needed for SeDuMi routine, we cannot run the algorithms with r = 5 in the case n = 3.

The computational times are not very favorable in this case with more than 2000 seconds needed when

r = 4.

Table 3 shows the real gaps between lower and upper bounds of integral values for some specific

normal distributions, both hypercubic and order statistic integrals. These values decrease when the
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Integral Dimension Value Error 1
2

[
Z(Pu

r )− Z(P l
r)

]
n ρ̄ r = 2 r = 3 r = 4 r = 5

Hypercubic 1 0.2665 1.4047E-04 8.1177E-07 - -

2 0.1085 1.0376E+01 1.1200E-02 6.7765E-04 4.7855E-05

3 0.0736 4.7420E-01 8.0400E-02 2.2000E-03 -

Order statistic 2 0.0670 7.8969E+00 6.3000E-03 4.2279E-04 3.2933E-05

3 0.0274 4.9390E-01 5.4000E-03 4.2253E-04 -

Table 3: Real errors for specific normal distributions

moment order increases. For example, when n = 3, we cannot solve the semidefinite programming

problems for r = 5 due to the limit of memory; however, the gap between lower and upper bounds for

r = 4 is small enough. From these results, we can see that this method is plausible to be implemented

even though the computational times for large n and r are yet very promising.
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