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 Challenges in current communication systems

 Mathematical models versus practical imperfection

 Block structures versus global optimality

 Complexity and performance of optimization

 Sequential decision in resource allocation

 Why deep learning?

 No need for models for data-driven method

 End-to-end loss optimization for global optimality

 Reducing complexity and improve performance of physical layer processing 

and resource allocation

Motivation
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 Z.-J. Qin, H. Ye, G. Y. Li, and B.-H. Juang, “Deep learning in physical layer communications,” IEEE Wireless
Commun., vol. 26, no. 2, pp. 93-98, April 2019.

 H.-T. He, S. Jin, C.-K. Wen, F.-F. Gao, G. Y. Li, and Z.-B. Xu, “Model-driven deep learning for physical layer
communications,” IEEE Wireless Commun, vol. 26, no. 5, pp. 77- 83, Oct. 2019.

 W. Tong and G. Y. Li “Nine critical issues in AI and wireless communications to ensure successful 6G,” IEEE
Wireless Commun., vol. 29, no. 4, pp. 140 – 145, Aug. 2022.



DL in  Physical Layer Communications
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Example 1: H. Ye, G. Y. Li, and B.-H. F. Juang, “Power of deep learning for channel estimation and signal detection
in OFDM systems,” IEEE Wireless Commun. Lett., vol. 7, no. 1, pp. 114 – 117, Feb. 2018.
Example 2: H.-T. He, C.-K. Wen, S. Jin, and G. Y. Li, “Model-driven deep learning for MIMO detection,” IEEE
Trans. Signal Process., vol. 68, pp. 1702-1715, March 2020.
Example 3: H. Ye, L. Liang, G. Y. Li, and B.-H. F. Juang, “Deep learning-based end-to-end wireless communication
systems with GAN as unknown channels,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3133-3143, May 2020.

Example 1

Example 2 Example 3



DL for Wireless Resource Allocation 

 L. Liang, H. Ye, G.-D. Yu, and G. Y. Li, “Deep learning based wireless resource allocation with application in
vehicular networks,” Proc. IEEE, vol. 108, no. 2, pp. 341-356, Feb. 2020.

 H. Ye, G. Y. Li, B.-H. F. Juang, “Deep reinforcement learning based resource allocation for V2V
communications,” IEEE Trans. Veh. Tech., vol. 68, no. 4, pp. 3163-3173, April 2019.
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Information Content of English 
and Semantic Encoding 

Encoding English Words Letter-by-Letter

 In English, on average there are 4.5 letters per word

 5.5 characters per word if including space

 5 bits to encode each letter (26 letters)

 27.5 bits/word (5X5.5=27.5) Need a codebook of 26 letters

Encoding English Words Word-by-Word

 171,476 English words (from Google)

 18 bits/word ( 17 171,476 18) Need a codebook of 171,476 words

Encoding English Semantically

 For example, only 1 bit if answering a YES or NO question

 …. More Efficient!  Need an extremely huge codebook

7



From Symbol to Semantic Transmission
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 Three Levels of Communications: Shannon and Weaver

 Transmission of symbols (Shannon Paradigm) 

following Shannon limit & well-developed near limit

 Semantic exchange of source information

semantic communications (transmission of intelligence)

 Effects of semantic information exchange 

 Semantic Communications:  Significantly improved efficiency!

 C. E. Shannon and W. Weaver, The Mathematical Theory of Communication. The University of Illinois Press, 1949.
 H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled semantic communication systems,” IEEE Trans. 

Signal Process. vol. 69, pp. 2663-2675, 2021, Apr. 2021.



Communications for AI: Federated Learning
• FL enabled by and applied in communications

• What are critical applications?
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Z.-J. Qin, G. Y. Li, and H. Ye “Federated learning and wireless communications,” IEEE Wireless Commun., vol. 28, no. 5,

pp. 134 – 140, Oct. 2021.
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DL in  for Conventional Communications
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Example 3
Example 2

Example 1



Channel Estimation (CE) and Signal Detection (SD)

 Related works:

 MMSE for channel estimation  [1]

 Neural networks and DL in equalization [2] and decoding [3]

 Challenges:

 Nonlinear distortion and interference 

 Innovations: 

 DL for joint channel estimation and symbol detection

 DL-based method: robust and insensitive to nonlinear distortion and 

interference

[1] Y. G. Li, L. J. Cimini, and N. R. Sollenberger, “Robust channel estimation for OFDM   systems with rapid dispersive 
fading channels,” IEEE Trans. Commun., vol. 46, no. 7, pp. 902-915, Jul. 1998.

[2] S. Chen, G. Gibson, C. Cown, and P. Grant, ”Adaptive equalization of finite nonlinear channels using multilayer 
perceptrons,” Signal Process., vol. 20, no. 2, pp. 107–119, Jun. 1990.

[3] E. Nachmani, Y. Beery, and D. Burshtein, “Learning to decode linear codes using deep learning,” 54’th Annual 
Allerton Conf. On Commun., Control and Computing, Mouticello, IL, Sept. 2016.
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Traditional CE and SD
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DL-based CE and SD

 Input: received pilot OFDM block + received data OFDM block

Output: recovered data

H. Ye, G. Y. Li, and B.-H. F. Juang, “Power of deep learning for channel estimation and signal detection in OFDM 
systems,” IEEE Wireless Commun. Lett., vol. 7, no. 1, pp. 114 – 117, Feb. 2018. 
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DL-based CE and SD: Impact of Pilot Number

64 pilots:

 Better than LS

 Comparable to 
LMMSE

8 pilots:

 Better than LMMSE
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DL in  for Conventional Communications
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Example 3

Example 2

Example 2



 MIMO System:

y = Hx + n

 Goal: estimating x from received signal y and channel matrix H

 Conventional Detectors:

 Optimal detector: ML detector, high complexity 

 Linear detectors: ZF, LMMSE, low complexity but poor performance 

 Iterative detectors: AMP-based detector, EP-based detector, excellent 

performance, moderate complexity, performance degradation with ill-

conditioned channel matrix

 Motivation: deep learning to perform iterative detection

Model-Driven DL for MIMO Detection

H.-T. He, C.-K. Wen, S. Jin, and G. Y. Li, “Model-driven deep learning for MIMO detection,” IEEE Trans. Signal
Process., vol. 68, pp. 1702-1715, March 2020.

17



 OAMP algorithm for MIMO detection:

 Obtained a Network by Unfolding OAMP Algorithm

OAMP for MIMO Detection 
(Orthogonal Approximate Message Passing)

18

J. Ma and L. Ping, “Orthogonal OAMP,” IEEE Access, vol. 5, no. 14, pp. 2020 – 2033, Jan. 2017



 Architecture:

 Iterative Algorithm:

 Tainable Parameters: Only two parameters for each iteration! 

Modified OAMP-Net for MIMO Detection
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DL in  for Conventional Communications
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Example 1

Example 2 Example 3



 Architecture:

 Representing both transmitter and receiver by DNNs

 Leaning to encode transmit symbols at transmitter

 Learning to recover transmit symbols at receiver

 Merits:

 Achieving global optimum

 Universal solution to different channels

 Beating current state-of-arts

Why End-to-End Learning?
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E2E based on Conditional GAN

 Using CNN to address curse of dimentionity

 Conditional GAN: modelling the channel output distribution

 Surrogate of real channel when training the transmitter

 Received pilots as a part of conditioning for unknown channel

22

H. Ye, L. Liang, G. Y. Li, and B.-H. F. Juang, “Deep learning based end-to-end wireless communication systems with
GAN as unknown channel,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3133-3143, May 2020.
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DRL for RA in V2X Communications 

 Requirements of V2V

 Stringent latency and reliability 

 Small payload

 Requirements of V2I

 High data rate

 Large payload

 Resource Allocation

 Fixing V2I resource allocation

 Selecting spectrum and power level for each V2V link

 Objectives: Satisfying Constraints of V2V and V2I

24

H. Ye, G. Y. Li, B.-H. F. Juang, “Deep reinforcement learning based resource allocation for V2V communications,”
IEEE Trans. Veh. Tech., vol. 68, no. 4, pp. 3163-3173, April 2019.



DRL for RA for V2X
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 Agent: Every V2V link

 State 𝑠𝑡: V2V channel, interference, V2I channel, neighbors,…

 Action 𝑎𝑡: sub-channel selection and transmission power level

 Environment: 

 Everything outside the V2V link: wireless channels + other V2V links.

 Receiving action 𝑎𝑡 , sending reward 𝑟𝑡 to agents, transiting to new state 𝑠𝑡+1

 Reward: V2I capacity, V2V capacity,  & latency constraint



DRL for RA for V2X: Latency Constraints

26

 Better than existing one
 Much better than random



Multi-Agent Reinforcement Learning (MARL)
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 Local observation 𝑍𝑡
(𝑘)

= 𝑂 𝑆𝑡 , 𝑘 of the underlying environment state 𝑆𝑡

 Joint actions of all agents: 𝐀t = (𝐴𝑡
1
, 𝐴𝑡

2
, … , 𝐴𝑡

𝐾
), taken simultaneously

 Receives same/distinctive rewards: 𝑅𝑡+1
(𝑘)

L. Liang, H. Ye, and G. Y. Li, “Spectrum sharing in vehicular networks based on multi-agent reinforcement learning,” 
IEEE J. Sel. Areas Commun.,  vol. 37, no. 10, pp.2282-2292, Oct. 2019.



Learn to Feed Back and Allocate Resource

28

L. Wang, H. Ye, L. Liang, and G. Y. Li, “Learn to compress CSI and allocate resources in vehicular networks,”
IEEE Trans. Commun. vol. 68, no. 6, pp. 3640 – 3653, June 2020.

BS
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Conventional Communications

30

 Only considering the accurate data recovery

 Removing Information redundancy in entropy-domain

 Transmitting all information, including useless and irrelevant, to the receiver

Channel 
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Semantic Communications

31

 Considering Feature networks and action networks

 Removing Information redundancy in semantic domain

 Transmitting only useful and relevant information to the receiver

Feature
Decoding

Feature
Coding

Image

Text,
Speech

…

Channels

Take 
Action

Features

Feature Decoding 
& Take Action

Z.-J. Qin, X.-M. Tao, J.-H. Lu, and G. Y. Li, “Semantic communications: Principles and challenges,”
https://arxiv.org/abs/2201.01389.

https://arxiv.org/abs/2201.01389


Semantic Communications
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W. Tong and G. Y. Li “Nine critical issues in AI and wireless communications to ensure successful
6G,” IEEE Wireless Commun., vol. 29, no. 4, pp. 140 – 145, August 2022.



Semantic Transceiver 
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 Transceiver

 Transmitter

 Receiver

 Channels

 Physical channel noise is caused by the physical channel impairment

– AWGN, fading channels…

 Semantic channel noise refers to misunderstanding

– Caused by interpretation error  and disturbance in estimated information.

H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled semantic communication systems,” 
IEEE Trans. Signal Process. vol. 69, pp. 2663-2675, 2021, Apr. 2021.



Loss Function

34

 Loss function used to train the transceiver

 Cross-Entropy: Through reducing the loss value of channel encoder, the 
network can learn the syntax, phrase, the meaning of words 

 Mutual Information: maximizing achieved data rate 



Two-Step Training

35

 Maximizing mutual information

 Train the whole model



 Semantic spectral efficiency (S-SE, suts/s/Hz)

 Taking text transmission for instance

 Defined as the effectively transmitted semantic information per second, i.e.,

− : average amount of semantic information per sentence

− : average number of word per sentence

− : number of transmitted semantic symbols per word

− : semantic similarity

S-SE based Resource Allocation
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 Semantic unit (sut)

 A measure of semantic information, the basic unit of semantic information

L. Yan, Z. Qin, R. Zhang, Y. Li, and G. Y. Li, “Resource allocation for text semantic communications,” IEEE Wireless
Commun. Lett., vol. 11, no. 7, pp. 1394 – 1398, Jul. 2022.



 S-SE maximization problem

Problem Formulation
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Revising Existing Modules

38
P.-W. Jiang, C.-K. Wen, J. Shi, and G. Y. Li, “Wireless semantic transmission via revising modules in 

conventional communications,” to appear in IEEE Wireless Commun.

● Semantic Segmentation and Extraction for Source Coding

● Joint Design and Training for Channel Coding

● Minimizing Semantic Errors in Physical Modules

● Resource Allocation for Semantic Needs of Various Users

semantized
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Federated Learning: Convergence Issues

• What if there are transmission errors in Step 2?

• Convergence if no aggregation in Step 2 for some clients due to communication issues?

• How to save communication resource?

40



FedGiA 

 Prior Arts

○ Gradient descent (GD)-based FL: FedAvg [1], FedProx [2], ...

○ ADMM-based FL: exact ADMM [3], inexact ADMM [4]

○ Strong assumptions to guarantee convergence

 A Novel Algorithm: FedGiA

○ Communication and computation-efficient

○ More private and realistic

○ Mild assumptions to ensure better convergence

41

[1] B. McMahan, et al., “Communication-efficient learning of deep networks from decentralized data,” in AISTATS, 2017, pp. 1273-1282.

[2] T. Li, et al., “Federated optimization in heterogeneous networks,” Proc. - Int. Conf. Mach. Learn., vol. 2, pp. 429-450, 2020.

[3] Q. Li, et al., “Robust federated learning using ADMM in the presence of data falsifying byzantines” CoRR, 2017.

[4] S. Yue, et al., “Inexact-ADMM based federated meta-learning for fast and continual edge learning,” in ACM Mobihoc, 2021, pp. 91-100.

S.-L. Zhou and G. Y. Li, “FedGiA: An efficient hybrid algorithm for federated learning,” IEEE Trans. Signal Process., vol. 71, pp. 1493-

1508, 2023.



 Similarity and Dissimilarity with FedGiA

○ Similarity:

Aggregation only at certain iterations

ADMM update for a subset of users (ADMM clients)

○ Dissimilarity:

Partial device participation: No parameter updating for non-ADMM clients

Solving subproblem inexactly for ADMM clients

 Convergence: under the same assumptions  

○ Two assumptions as FedGiA, plus 

○ A new assumption: ADMM clients selected with a certain probability

 Potential Application

○ Over-the-Air Computing: no aggregation for bad channel clients)

42

S.-L. Zhou and G. Y. Li, “Federated learning via inexact ADMM,” IEEE Trans. Pattern Anal. Mach. Intell., early
access.

FL via Inexact ADMM
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FL via Inexact ADMM – Algorithm

𝒌𝟎

𝒘𝒊
𝒌𝟎+𝟏 → 𝒘𝒊

𝒌𝟎+𝟐 → ⋯ → 𝒘𝒊
𝟐𝒌𝟎−𝟏 →𝒘𝒊

𝟐𝒌𝟎

𝒌𝟎 + 𝟏 𝒌𝟎 + 𝟐 𝟐𝒌𝟎 − 𝟏⋯

Inexact ADMM 

𝟐𝒌𝟎 𝟐𝒌𝟎 + 𝟏 𝟐𝒌𝟎 + 𝟐 𝟑𝒌𝟎 − 𝟏⋯

𝒘𝒊
𝟐𝒌𝟎+𝟏 → 𝒘𝒊

𝟐𝒌𝟎+𝟐 → ⋯ → 𝒘𝒊
𝟑𝒌𝟎−𝟏 →𝒘𝒊

𝟑𝒌𝟎

𝟑𝒌𝟎

𝒊 ∈ 𝑪𝟐

𝒊 ∈ 𝑪𝟏

Inexact ADMM 

Partial device participation: 

Much more realistic but more challenging to establish the convergence !!!
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 Assumptions

○ Every 𝐹𝑖 : gradient Lipschitz continuous with constant 𝑟𝑖

○ Level set w: F w ≤ c : bounded by a given constant c

○ Every client chosen at least once for 𝑠0𝑘0 steps, where 𝑠0 is a given integer

 Global convergence

Let 𝑤∗ be any accumulating point of sequence {𝑤𝜏𝑘} and 𝜎 > max
𝑖
3𝑟𝑖/𝑚 . Then

○ 𝛻𝐹 𝑤∗ = 0, implying 𝑤∗ is optimal if F is convex

○ 𝐹 𝑤𝜏𝑘 → 𝐹 𝑤∗

○ min
𝑗=1,…,𝑘

| 𝛻𝐹 𝑤𝜏𝑗 |2 = 𝑂(𝑘0/𝑘)

 Impact and implication

○ No need for convexity, thus enabling to process more applications

○ Providing a lower bound for setting parameter 𝜎

○ 𝑘0 should not be chosen too large for quick convergence

FL via Inexact ADMM – Convergence

Can be ensured in a 
high probability !!!



Decentralized Federated Learning

45

H. Ye, L. Liang, and G. Y. Li, “Decentralized learning with unreliable communications,” IEEE J. Select. Topics in Signal 
Process., vol. 16, no. 3, pp. 487 – 500, April 2022.

(a) Centralized FL                                                                 (b) Decentralized FL



Soft DSGD

46



Asymptotic Convergence Rate

47

Soft-DSGD with unreliable commun. needs fewer commun. rounds 
than DSGD with reliable commun.

since reliable commun. requires retransmission!

Same convergence rate asymptotically  with unreliable communications and  
with reliable communications!
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Conclusion Remarks

 Lots of Work in the past 5 years
 Semantic Communications: a Popular Area
 Future Trend: AI for wireless Wireless for AI

49
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