Deep Learning for Future Wireless Communications

Professor Geoffrey Ye Li Department of Electrical and Electronics Engineering Impeial College London London, UK

Contributed by Prof. Hao Ye, University of Califonia at Santa Cruze Prof. Fred Juang, Georgia Institute of Technology Prof. Le Liang and Shi Jin, Southeast University Prof. Chao-Kai Wen, National Sun Yatsen University Prof. Zhijin Qin, Tsinghua University Prof. Shenglong Zhou, Beijing Jiaotong University

Outline

I. Motivation

- **II.** Physical Layer Processing
- III. Resource Allocation
- **IV. DL-enabled Semantic Communications**
- v. Communications and Federated Learning
- vi. Conclusion Remarks

Motivation

Challenges in current communication systems

- □ Mathematical models versus practical imperfection
- □ Block structures versus global optimality
- □ Complexity and performance of optimization
- □ Sequential decision in resource allocation

Why deep learning?

- □ No need for models for data-driven method
- □ End-to-end loss optimization for global optimality
- Reducing complexity and improve performance of physical layer processing and resource allocation

Block Structure or End-to-End?

- Z.-J. Qin, H. Ye, G. Y. Li, and B.-H. Juang, "Deep learning in physical layer communications," IEEE Wireless Commun., vol. 26, no. 2, pp. 93-98, April 2019.
- H.-T. He, S. Jin, C.-K. Wen, F.-F. Gao, G. Y. Li, and Z.-B. Xu, "Model-driven deep learning for physical layer communications," *IEEE Wireless Commun*, vol. 26, no. 5, pp. 77-83, Oct. 2019.
- ➢ W. Tong and G. Y. Li "Nine critical issues in AI and wireless communications to ensure successful 6G," IEEE Wireless Commun., vol. 29, no. 4, pp. 140 − 145, Aug. 2022.

DL in Physical Layer Communications

Example 1: H. Ye, G. Y. Li, and B.-H. F. Juang, "Power of deep learning for channel estimation and signal detection in OFDM systems," *IEEE Wireless Commun. Lett.*, vol. 7, no. 1, pp. 114 – 117, Feb. 2018.
Example 2: H.-T. He, C.-K. Wen, S. Jin, and G. Y. Li, "Model-driven deep learning for MIMO detection," *IEEE Trans. Signal Process.*, vol. 68, pp. 1702-1715, March 2020.
Example 3: H. Ye, L. Liang, G. Y. Li, and B.-H. F. Juang, "Deep learning-based end-to-end wireless communication

systems with GAN as unknown channels," IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3133-3143, May 2020.

DL for Wireless Resource Allocation

- L. Liang, H. Ye, G.-D. Yu, and G. Y. Li, "Deep learning based wireless resource allocation with application in vehicular networks," *Proc. IEEE*, vol. 108, no. 2, pp. 341-356, Feb. 2020.
- > H. Ye, G. Y. Li, B.-H. F. Juang, "Deep reinforcement learning based resource allocation for V2V communications," *IEEE Trans. Veh. Tech.*, vol. 68, no. 4, pp. 3163-3173, April 2019.

Information Content of English and Semantic Encoding

Encoding English Words Letter-by-Letter

- In English, on average there are 4.5 letters per word
- 5.5 characters per word if including space
- 5 bits to encode each letter (26 letters)
- <u>27.5 bits/word</u> (5X5.5=27.5)

Need a codebook of 26 letters

Encoding English Words Word-by-Word

- 171,476 English words (from Google)
- <u>18 bits/word ($2^{17} < 171,476 < 2^{18}$)</u>

Need a codebook of 171,476 words

Encoding English Semantically

- For example, only 1 bit if answering a YES or NO question
- More Efficient!

Need an extremely huge codebook

From Symbol to Semantic Transmission

- Three Levels of Communications: Shannon and Weaver
 - Transmission of symbols (Shannon Paradigm) following Shannon limit & well-developed near limit
 - Semantic exchange of source information semantic communications (transmission of intelligence)
 - Effects of semantic information exchange
- Semantic Communications: <u>Significantly improved efficiency</u>!

C. E. Shannon and W. Weaver, *The Mathematical Theory of Communication*. The University of Illinois Press, 1949.
 H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, "Deep learning enabled semantic communication systems," *IEEE Trans. Signal Process.* vol. 69, pp. 2663-2675, 2021, Apr. 2021.

Communications for AI: Federated Learning

- FL <u>enabled by</u> and <u>applied</u> in communications
- What are critical applications?

Z.-J. Qin, G. Y. Li, and H. Ye "Federated learning and wireless communications," IEEE Wireless Commun., vol. 28, no. 5, pp. 134 – 140, Oct. 2021.

Outline

- I. Motivation
- **II.** Physical Layer Processing
- III. Resource Allocation
- **IV. DL-enabled Semantic Communications**
- v. Communications and Federated Learning
- vi. Conclusion Remarks

DL in for Conventional Communications

Channel Estimation (CE) and Signal Detection (SD)

Related works:

- □ MMSE for channel estimation [1]
- □ Neural networks and DL in equalization [2] and decoding [3]

Challenges:

□ Nonlinear distortion and interference

Innovations:

- DL for joint channel estimation and symbol detection
- DL-based method: robust and insensitive to nonlinear distortion and interference
- [1] Y. G. Li, L. J. Cimini, and N. R. Sollenberger, "Robust channel estimation for OFDM systems with rapid dispersive fading channels," *IEEE Trans. Commun.*, vol. 46, no. 7, pp. 902-915, Jul. 1998.
- [2] S. Chen, G. Gibson, C. Cown, and P. Grant, "Adaptive equalization of finite nonlinear channels using multilayer perceptrons," *Signal Process.*, vol. 20, no. 2, pp. 107–119, Jun. 1990.
- [3] E. Nachmani, Y. Beery, and D. Burshtein, "Learning to decode linear codes using deep learning," 54'th Annual Allerton Conf. On Commun., Control and Computing, Mouticello, IL, Sept. 2016.

Traditional CE and SD Robust Channel Estimation for OFDM Systems with Rapid Dispersive Fading Channels

Ye (Geoffrey) Li, Senior Member, IEEE, Leonard J. Cimini, Jr., Senior Member, IEEE,

ig has been n studied. use of the

channel statistics. Computer simulation demonstrates that the performance of OFDM systems using coherent demodulation

DL-based CE and SD

Input: received pilot OFDM block + received data OFDM block
 Output: recovered data

H. Ye, G. Y. Li, and B.-H. F. Juang, "Power of deep learning for channel estimation and signal detection in OFDM systems," *IEEE Wireless Commun. Lett.*, vol. 7, no. 1, pp. 114 – 117, Feb. 2018.

DL-based CE and SD: Impact of Pilot Number

DL in for Conventional Communications

Model-Driven DL for MIMO Detection

> MIMO System:

 $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n}$

- **Goal**: estimating **x** from received signal **y** and channel matrix **H**
- Conventional Detectors:
 - □ Optimal detector: ML detector, high complexity
 - □ Linear detectors: ZF, LMMSE, low complexity but poor performance
 - Iterative detectors: AMP-based detector, EP-based detector, excellent performance, moderate complexity, performance degradation with illconditioned channel matrix
- Motivation: deep learning to perform iterative detection

H.-T. He, C.-K. Wen, S. Jin, and G. Y. Li, "Model-driven deep learning for MIMO detection," *IEEE Trans. Signal Process.*, vol. 68, pp. 1702-1715, March 2020.

OAMP for MIMO Detection (Orthogonal Approximate Message Passing)

> OAMP algorithm for MIMO detection:

$$\hat{\mathbf{x}} = \int \mathbf{x} \mathcal{P}(\mathbf{x}|\mathbf{y}, \mathbf{H}) d\mathbf{x}$$

Algorithm 1: OAMP algorithm for MIMO detection

Input: Received signal y, channel matrix **H**, noise level σ^2 .

Output: Recovered signal \mathbf{x}_t .

Initialize: $\tau_t \leftarrow 1$, $\mathbf{x}_t \leftarrow 0$

$$\mathbf{r}_t = \hat{\mathbf{x}}_t + \mathbf{W}_t (\mathbf{y} - \mathbf{H} \hat{\mathbf{x}}_t), \tag{8}$$

$$\hat{\mathbf{x}}_{t+1} = \mathbb{E}\left\{\mathbf{x} | \mathbf{r}_t, \tau_t\right\},\tag{9}$$

$$v_t^2 = \frac{\|\mathbf{y} - \mathbf{H}\hat{\mathbf{x}}_t\|_2^2 - M\sigma^2}{\operatorname{tr}(\mathbf{H}^T\mathbf{H})}$$
(10)

$$\tau_t^2 = \frac{1}{N} \operatorname{tr}(\mathbf{B}_t \mathbf{B}_t^T) v_t^2 + \frac{1}{N} \operatorname{tr}(\mathbf{W}_t \mathbf{W}_t^T) \sigma^2.$$
(11)

Obtained a Network by Unfolding OAMP Algorithm

J. Ma and L. Ping, "Orthogonal OAMP," IEEE Access, vol. 5, no. 14, pp. 2020 – 2033, Jan. 2017

Modified OAMP-Net for MIMO Detection

Tainable Parameters: Only two parameters (γ_t, θ_t) for each iteration! **ITP Lab**

DL in for Conventional Communications

Why End-to-End Learning?

> Architecture:

- □ Representing both transmitter and receiver by DNNs
- □ Leaning to encode transmit symbols at transmitter
- □ Learning to recover transmit symbols at receiver

> Merits:

- □ Achieving global optimum
- Universal solution to different channels
- □ Beating current state-of-arts

E2E based on Conditional GAN

- Using CNN to address curse of dimentionity
- Conditional GAN: modelling the channel output distribution
- Surrogate of real channel when training the transmitter
- Received pilots as a part of conditioning for unknown channel

H. Ye, L. Liang, G. Y. Li, and B.-H. F. Juang, "Deep learning based end-to-end wireless communication systems with GAN as unknown channel," *IEEE Trans. Wireless Commun.*, vol. 19, no. 5, pp. 3133-3143, May 2020.

Outline

- I. Motivation
- **II.** Physical Layer Processing
- **III.** Resource Allocation
- **IV. DL-enabled Semantic Communications**
- v. Communications and Federated Learning
- vi. Conclusion Remarks

DRL for RA in V2X Communications

Requirements of V2V

 \succ

- □ Fixing V2I resource allocation
- □ Selecting spectrum and power level for each V2V link

Objectives: Satisfying Constraints of V2V and V2I

H. Ye, G. Y. Li, B.-H. F. Juang, "Deep reinforcement learning based resource allocation for V2V communications," *IEEE Trans. Veh. Tech.*, vol. 68, no. 4, pp. 3163-3173, April 2019.

DRL for RA for V2X

- > **Agent:** Every V2V link
 - □ State s_t : V2V channel, interference, V2I channel, neighbors,...
- Action *a_t*: sub-channel selection and transmission power level
 Environment:
 - □ Everything outside the V2V link: wireless channels + other V2V links.
 - □ Receiving action a_t , sending reward r_t to agents, transiting to new state s_{t+1}
- **Reward:** V2I capacity, V2V capacity, & latency constraint

DRL for RA for V2X: Latency Constraints

Multi-Agent Reinforcement Learning (MARL)

▶ Local observation $Z_t^{(k)} = O(S_t, k)$ of the underlying environment state S_t

- > Joint actions of all agents: $\mathbf{A}_{t} = (A_{t}^{(1)}, A_{t}^{(2)}, \dots, A_{t}^{(K)})$, taken simultaneously
- ▶ Receives same/distinctive rewards: $R_{t+1}^{(k)}$

L. Liang, H. Ye, and G. Y. Li, "Spectrum sharing in vehicular networks based on multi-agent reinforcement learning," *IEEE J. Sel. Areas Commun.*, vol. 37, no. 10, pp.2282-2292, Oct. 2019.

Learn to Feed Back and Allocate Resource

L. Wang, H. Ye, L. Liang, and G. Y. Li, "Learn to compress CSI and allocate resources in vehicular networks," *IEEE Trans. Commun.* vol. 68, no. 6, pp. 3640 – 3653, June 2020.

Outline

- I. Motivation
- **II.** Physical Layer Processing
- III. Resource Allocation
- **IV.** DL-enabled Semantic Communications
- v. Communications and Federated Learning
- vi. Conclusion Remarks

Conventional Communications

- Only considering the accurate data recovery
- Removing Information redundancy in entropy-domain
- > Transmitting all information, including useless and irrelevant, to the receiver

Semantic Communications

- Considering Feature networks and action networks
- Removing Information redundancy in semantic domain
- Transmitting only useful and relevant information to the receiver

Z.-J. Qin, X.-M. Tao, J.-H. Lu, and G. Y. Li, "Semantic communications: Principles and challenges," <u>https://arxiv.org/abs/2201.01389</u>.

Semantic Communications

Weaver (Semantic) Channel

W. Tong and G. Y. Li "Nine critical issues in AI and wireless communications to ensure successful 6G," *IEEE Wireless Commun.*, vol. 29, no. 4, pp. 140 – 145, August 2022.

Semantic Transceiver

Transceiver

• Channels

- Physical channel noise is caused by the physical channel impairment
 - AWGN, fading channels...
- Semantic channel noise refers to misunderstanding
 - Caused by interpretation error and disturbance in estimated information.

H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, "Deep learning enabled semantic communication systems," *IEEE Trans. Signal Process.* vol. 69, pp. 2663-2675, 2021, Apr. 2021.

Loss Function

Loss function used to train the transceiver

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{CE}}(\mathbf{s}, \mathbf{\hat{s}}; \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\chi}, \boldsymbol{\delta}) - \lambda \mathcal{L}_{\text{MI}}(\mathbf{x}, \mathbf{y}; T, \boldsymbol{\alpha}, \boldsymbol{\beta})$$

Cross-Entropy: Through reducing the loss value of channel encoder, the network can learn the syntax, phrase, the meaning of words

$$\mathcal{L}_{CE}(\mathbf{s}, \mathbf{\hat{s}}; \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\chi}, \boldsymbol{\delta}) = -\sum_{i=1}^{N} q(w_i) \log (p(w_i)) + (1 - q(w_i)) \log (1 - p(w_i))$$

Mutual Information: maximizing achieved data rate

$$\mathcal{L}_{\mathrm{MI}}(\mathbf{X}, \mathbf{Y}; T) = \mathbb{E}_{p(x, y)} \left[f_T \right] - \log \left(\mathbb{E}_{p(x)p(y)} \left[e^{f_T} \right] \right)$$

Two-Step Training

- Maximizing mutual information
- Train the whole model

S-SE based Resource Allocation

> Semantic unit (sut)

□ A measure of semantic information, the basic unit of semantic information

Semantic spectral efficiency (S-SE, suts/s/Hz)

- □ Taking text transmission for instance
- Defined as the effectively transmitted semantic information per second, i.e.,

$$\Phi = \frac{I/L}{k}\xi$$

- *I* : average amount of semantic information per sentence
- L : average number of word per sentence
- -k : number of transmitted semantic symbols per word
- $-\xi$: semantic similarity

L. Yan, Z. Qin, R. Zhang, Y. Li, and G. Y. Li, "Resource allocation for text semantic communications," *IEEE Wireless Commun. Lett.*, vol. 11, no. 7, pp. 1394 – 1398, Jul. 2022.

Problem Formulation

S-SE maximization problem

$$\begin{aligned} \max_{\boldsymbol{\alpha}_{n},k_{n}} \sum_{n=1}^{N} \sum_{m=1}^{M} \boldsymbol{\alpha}_{n,m} \frac{I}{k_{n}L} \boldsymbol{\xi}_{n,m} \\ \text{s.t. } \mathbf{C}_{1} : \boldsymbol{\alpha}_{n,m} \in \{0,1\}, \, \forall n \in \mathbf{N} , \, \forall m \in \mathbf{M} \\ \mathbf{C}_{2} : \sum_{n=1}^{N} \boldsymbol{\alpha}_{n,m} \leq 1, \, \forall m \in \mathbf{M} \\ \mathbf{C}_{3} : \sum_{m=1}^{M} \boldsymbol{\alpha}_{n,m} \leq 1, \, \forall n \in \mathbf{N} \\ \mathbf{C}_{4} : k_{n} \in \{1, 2, \dots, K\} \\ \mathbf{C}_{5} : \boldsymbol{\xi}_{n,m} \geq \boldsymbol{\xi}_{\text{th}} \\ \mathbf{C}_{6} : \boldsymbol{\Phi}_{n,m} \geq \boldsymbol{\Phi}_{\text{th}} \end{aligned}$$

Solutions

- $\xi_{n,m}$ is obtained by running DeepSC
- I/L can be omitted for the same task
- Exhaustive searching and Hungarian algorithm

Revising Existing Modules

- Semantic Segmentation and Extraction for Source Coding
- Joint Design and Training for Channel Coding
- Minimizing Semantic Errors in Physical Modules
- Resource Allocation for Semantic Needs of Various Users

P.-W. Jiang, C.-K. Wen, J. Shi, and G. Y. Li, "Wireless semantic transmission via revising modules in conventional communications," to appear in *IEEE Wireless Commun*.

Outline

- I. Motivation
- **II.** Physical Layer Processing
- III. Resource Allocation
- **IV. DL-enabled Semantic Communications**
- v. Communications and Federated Learning
- vi. Conclusion Remarks

Federated Learning: Convergence Issues

- What if there are transmission errors in Step 2?
- Convergence if no aggregation in Step 2 for some clients due to communication issues?
- How to save communication resource?

FedGiA

D Prior Arts

- Gradient descent (GD)-based FL: FedAvg [1], FedProx [2], ...
- ADMM-based FL: exact ADMM [3], inexact ADMM [4]
- Strong assumptions to guarantee convergence

A Novel Algorithm: FedGiA

- Communication and computation-efficient
- More private and realistic
- Mild assumptions to ensure better convergence

[1] B. McMahan, et al., "Communication-efficient learning of deep networks from decentralized data," in AISTATS, 2017, pp. 1273-1282.
[2] T. Li, et al., "Federated optimization in heterogeneous networks," Proc. - Int. Conf. Mach. Learn., vol. 2, pp. 429-450, 2020.
[3] Q. Li, et al., "Robust federated learning using ADMM in the presence of data falsifying byzantines" CoRR, 2017.
[4] S. Yue, et al., "Inexact-ADMM based federated meta-learning for fast and continual edge learning," in ACM Mobihoc, 2021, pp. 91-100.

S.-L. Zhou and G. Y. Li, "FedGiA: An efficient hybrid algorithm for federated learning," *IEEE Trans. Signal Process.*, vol. 71, pp. 1493-1508, 2023.

FL via Inexact ADMM

D Similarity and Dissimilarity with FedGiA

• **Similarity**:

Aggregation only at certain iterations

ADMM update for a subset of users (ADMM clients)

• **Dissimilarity**:

Partial device participation: No parameter updating for non-ADMM clients Solving subproblem inexactly for ADMM clients

Convergence: under the same assumptions

- Two assumptions as FedGiA, plus
- A new assumption: ADMM clients selected with a certain probability

Potential Application

• Over-the-Air Computing: no aggregation for bad channel clients)

S.-L. Zhou and G. Y. Li, "Federated learning via inexact ADMM," IEEE Trans. Pattern Anal. Mach. Intell., early access.

FL via Inexact ADMM – Algorithm

Partial device participation:

Much more realistic but more challenging to establish the convergence !!!

FL via Inexact ADMM – Convergence

□ Assumptions

- Every F_i : gradient Lipschitz continuous with constant r_i
- Level set $\{w: F(w) \le c\}$: bounded by a given constant c
- Every client chosen at least once for s_0k_0 steps, where s_0 is a given integer

Global convergence

Let w^* be any accumulating point of sequence $\{w^{\tau_k}\}$ and $\sigma > \max_i 3r_i/m$. Then

- $\nabla F(w^*) = 0$, implying w^* is optimal if F is convex
- $\circ \ F(w^{\tau_k}) \to F(w^*)$
- $\circ \min_{j=1,...,k} ||\nabla F(w^{\tau_j})||^2 = O(k_0/k)$

Impact and implication

- **No need for convexity,** thus enabling to process more applications
- $\circ~$ Providing a lower bound for setting parameter σ
- $\circ k_0$ should not be chosen too large for quick convergence

Can be ensured in a

high probability !!!

Decentralized Federated Learning

H. Ye, L. Liang, and G. Y. Li, "Decentralized learning with unreliable communications," *IEEE J. Select. Topics in Signal Process.*, vol. 16, no. 3, pp. 487 – 500, April 2022.

Soft DSGD

Before communication

After communication

Asymptotic Convergence Rate

Soft-DSGD with unreliable commun. needs fewer commun. rounds than DSGD with reliable commun. since reliable commun. requires retransmission!

Outline

- I. Motivation
- **II.** Physical Layer Processing
- III. Resource Allocation
- **IV. DL-enabled Semantic Communications**
- v. Communications and Federated Learning
- vi. Conclusion Remarks

Conclusion Remarks

- > Lots of Work in the past 5 years
- **Semantic Communications: a Popular Area**
- ➢ Future Trend: AI for wireless → Wireless for AI

