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• Overview

• Radar-communication co-existence

• Semantic communication for multiple users

2



Overview - background

• Traditional communication system 

• Bit-based

• Block-wise optimization

• Trade-off between system performance and complexity

• Reaches Shannon capacity limit

• Deep learning based communications system

• Data-driven

• End-to-end learning based optimization

• Global optimization
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Overview - background

• Co-channel interference

• Caused by multiple communications signals transmitted 

on the same channel or frequency band. 

• Hard to mitigate
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Overview - motivation

• Challenges in learning based communications system

• Co-channel interference (avoid, mitigate or tolerate?)

• Operate independently 

• Operate over the same frequency and time

• Learning based model 

• Generalization ability to different channel conditions

• Limited training datasets

• Model size
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Overview - focus
• In this presentation:

• Radar-communication co-existence [1]

• Unsupervised Principle Component Analysis (PCA) assisted 

deep learning based signal detector

• Semantic communication [2]

• Knowledge distillation (KD) for generalizability enhancement
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Radar-communication co-existence

• Carrier frequency has been moving towards radar band 

because of increasing transmission rate

• Radar has been utilized in civilian application, such as 

traffic control, vehicle cruise

• Radar-communication co-existence is proposed to improve 

spectrum efficiency.
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Radar-communication co-existence

• Generally , there are two types of co-existence

• Operate independently 

• Resource allocation and co-design of both systems are required 

to cooperatively manage and share the spectrum

• No mutual interference

• Operate over the same time and frequency

• Cause mutual interference due to spectral overlap

• Redesign one system to better withstand the other

• Interference mitigation required 
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Radar-communication co-existence

• Learning based signal detection

• Leverage neural networks’ pattern recognition ability

• Directly recover signals from observed symbols

• No need to mitigate interference

• However, Offline training is required
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System model

• Radar-communication coexistence

• Channel model : 𝑦 = ℎ𝑥 +𝑚𝑟 + 𝑛

Our goal is to recover 𝑥 fromreceived 𝑦 in the 

presence of radar interference 𝑟
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Learning based signal detector

• Preprocessed by Principal Component Analysis (PCA)

• Originally for dimensionality reduction

• Learn the best rotation angle based on the density of points, and 

transform to new coordinate system, to make symbols less intersect. 
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Constellations of 16QAM signals in the presence of radar interference 

(a) SIR = 30 dB (b) SIR = 10 dB (c) SIR = 10 dB  with preprocessing by PCA.

(a) (b) (c)



Learning based signal detector

• Learning based detector: 

• Fully connected deep neural networks (FCDNN)

• Symbol-by-symbol detector

• Input : Symbol and PCA features 

• Output: a predicted symbol

• Long short-term memory (LSTM)

• Sequence detector

• Input : a sequence of symbols and PCA features 

• Output: a sequence of predicted symbols
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Simulation results
• Performance in the presence of radar interference

• Better performance for FCDNN with PCA features.

• Generally, learning-based detector performs better.

15Symbol error rate of 16QAM signals in the presence 

of LFM interference when the SNR is 40 dB.

Symbol error rate of 16QAM signals with detectors having 

different features when the SNR is 40 dB.
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Semantic communication

Based on Shannon and Weaver, communication can be 

categorized into:

• Level 1: Transmission of symbols (bits)

• Level 2: Semantic information exchange (semantics)

• Level 3: Effectiveness of information exchange (tasks/goals)

Semantic communication focus on the precision of the 

recovered information, instead of aiming for the accuracy at 

bit level
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Related works

• H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled semantic 

communication systems,” IEEE Transactions on Signal Processing, 2021

• Proposed DeepSC, a transformer based semantic communication model

• H. Xie and Z. Qin, “A lite distributed semantic communication system for internet of things,” 

IEEE Journal on Selected Areas in Communications, 2021

• Proposed L-DeepSC, a light-weight DeepSC with small size

• G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” in NIPS 

Deep Learning and Representation Learning Workshop, 2015.

• First proposed and adopted knowledge distillation in neural network
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System model

Based on DeepSC, we proposed 

a semantic communication for 

multiple users, 

• Semantic encoder-decoder

• Channel encoder-decoder

• Co-channel semantic interference

• Loss function: 
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Challenge

• How well can the model generalize on 

unseen interference?

• Easy to overfit on the training data

• How well can the model perform by 

training with limited dataset?

• Difficult to obtain well-labelled 

dataset with all patterns included.

• How light can the model be with 

negligible performance loss?

• Model complexity
20

Physical 

Channel

Semantic Transmitter Semantic Receiver

Interfering 

Channel

Co-channel Interfering User 1

Co-channel Interfering User N

Desired User

Interfering 

Channel

+



Motivation

• Why Knowledge distillation ?

• Learning from Teacher VS Learning from labelled data 

• Teacher’s soft information contain more generalized features

• Labelled data only contain hard label information

• Expensive to obtain well labelled data

• Model compression without losing generalizability

• Potentially more control on the optimization of different blocks

• Better data privacy
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Proposed method

• Knowledge distillation for semantic communications with co-channel 

interference 

• Teacher :Pretrained, large model, over-parameterized

• Student : Light model, guided by Teacher
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Proposed method

• Knowledge distillation for semantic communication

• Knowledge : Soft information computed by 

• Distillation loss: 

• KL divergence between Student and Teacher
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Proposed method

• Knowledge distillation for semantic communication

• Overall loss: 

• Combining hard-label cross-entropy loss and distillation loss
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Proposed method

• Knowledge distillation for semantic communications

• Model compression 

• Reduce the redundant layers

• Post-dynamic quantization for model weights
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Simulation

• Learning based baselines
• DeepSC [1]

• L-DeepSC [2] structure as Teacher, 

Student 1 and Baseline 1

• Baseline 1, 2, 3

• Same structure as Student 1, 2, 3 

but without knowledge distillation

• Conventional communication 

systems
• Huffman and LDPC

• 5-Bit and LDPC

26[1] H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled semantic communication systems,” IEEE Transactions on Signal Processing, 2021

[2] H. Xie and Z. Qin, “A lite distributed semantic communication system for internet of things,” IEEE Journal on Selected Areas in Communications, 2021



Simulation

• Teacher 

• Pretrained with extensive dataset

• Student 

• Limited training dataset with limited 

regime of SNR, no interference 

samples

• With knowledge distillation

• Baselines

• Same datasets with Students

• Without knowledge distillation

27



Simulation

• Performance metrics

• BLEU [1]

• Compare the sentence differences

• Difficult to distinguish synonyms or polysemy

• Sentence similarity [2]

• Sentences with similar meaning tend to have closer vector 

distance

• Use pretrained BERT to map the sentences into semantic 

vector space and compare their semantic vectors.

28[1] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for automatic evaluation of machine translation,” in Proceedings of the 40th Annual 

Meeting of the Association for Computational Linguistics. Jul. 2002

[2] H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled semantic communication systems,” IEEE Transactions on Signal Processing, 2021



Simulation results

29

BLEU score and sentence similarity of the 

semantic communications with one multi-user

interference when the SNR is 18 dB

BLEU score of the semantic communications 

with one multi-user interference



Simulation results

• Complexity analysis

• Knowledge distillation leads to an increase of training time

• Model compression reduces the model size and inference time 
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Conclusion

• Distilled models perform better than the non-distilled 

baselines and the conventional communications system

• Knowledge distillation can reduce performance loss while 

compressing the model

• Post-training dynamic quantization has a very limited effect 

on the system performance
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Thank you
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