
Warwick RSE

“The Angry Penguin“, used under creative commons licence
from Swantje Hess and Jannis Pohlmann.

Version Control with Git

- Linus Torvalds, Inventor of Linux (and Git)

"I'm an egotistical bastard, and I name all my
projects after myself. First 'Linux', now 'Git'".

Part 1 - Motivations

• Version control

• Record changes that you make to a file or system of files

• Allows you to keep a log of why/by whom those
changes were made

• Allows you to go back through those changes to get
back to old versions

• Help deal with merging incompatible changes from
different sources

• Similar term “Source Code Management”

Overview

• “I didn’t mean to do that!”

• Can go back to before you made edits that haven’t
worked

• “What did this code look like when I wrote that?”

• Can go back as far as you want to look at old versions that
you used for papers or talks

• “How can I work on these different things without them
interfering?”

• Branches allow you to work on different bits and then
merge them at the end

Why use version control?

• “I want a secure copy of my code”

• Most version control systems have a client-server
functionality. Can easily store an offsite backup.

• Many suitable free services, and can easily set up your
own

• “How do I work with other people collaboratively?”

• Most modern version control systems include specific
tools for working with other people.

• There are more powerful tools to make it even easier too

Why use version control?

• “My funder wants me to”

• More and more funding bodies want code to be
managed and made available online

• Version control is a good way of doing it

Why use version control?

• Not a backup

• If you use a remote server are safe against disk failure etc

• But other people can still wipe out your work

• Not a collaborative editing tool

• You can merge changes from many people

• But it is hard work, not intended to handle editing the same files

• Not magic

• Some language awareness, has to be conservative

• Wont fix all your problems

What version control is not

• Version control is literally as old as computers

• Earliest computers programmed by setting
switches and “plugboards”

• People wrote down the settings that they used in
lab notebooks

• Same as they did for setting up experiments

• Starts getting more troublesome as computers get
bigger

How did we get here?

• United States National
Archives Records Service
punch card storage
warehouse in 1959

• ~100MB / Forklift pallet

• Stored both programs and
data

• Important programs would be
kept in archives and
repunched when changed

• Old versions kept for some
time

Version Control 30/11/2017

How did we get here?

• 1982 - Revision Control System (RCS - various
commands)

• 1990 - Concurrent Versions System (CVS)

• 2000 - Subversion (SVN)

• 2000 - Bitkeeper (BK)

• 2005 - Git (GIT)

• Others (Mercurial, GNU Arch, ArX etc.)

How did we get here?

Part 2 - Basic Git

• The basic idea of git version control is that you
create a repository that holds files and directories

• Repositories are created in a specific directory and
all files and directories within a repository must be
in that directory or a subdirectory of it

• You cannot create a repository within a repository

• Files can only be in one repository at a time

• Be careful about creating a git repository where
you don’t intend to!

Repositories

Repositories

Version Control 12/12/2017

chris@Maximillian:~$ mkdir demo
chris@Maximillian:~$ cd demo/
chris@Maximillian:~/demo$ git init
Initialized empty Git repository in /home/chris/demo/.git/

• It is very important to note that repositories are held in
directories, they aren’t directories

• There can be files and directories within the directory
that holds a git repository that are not in the repository

• You manually add files and directories that you want in
the repository

• If you add a file in a directory then the directory and
just that file is added

• If you add a directory directly then all files in the
directory are added

Repositories

Adding

Version Control 12/12/2017

chris@Maximillian:~/demo$ mkdir src
chris@Maximillian:~/demo$ touch src/demo.f90
chris@Maximillian:~/demo$ git add src/
chris@Maximillian:~/demo$

• Git records changes as a series of commits

• Each commit represents a state of the repository
that can be recovered in future

• In general you might not want every change that
you have made to every file to be part of a commit

• You flag files when you want to include them in
the next commit by adding them again

• Formally this adds them to the staging area

Staging and Commits

• It’s important that there are four states that a file (or directory) can
be in

• Untracked - Not in the repository, can be added

• Up to date - file is in repository and is in the same state as the
last commit

• Unstaged - file is in repository, is in a different state to the stored
version but is not flagged as being part of the next commit

• Staged - file has been added to the staging area as being part
of the next commit

• A single file can have both staged and unstaged changes if you
have added the file and then changed it

Staging and Commits

• Note that the state of the file is recorded when you
add it

• Even if you make further changes they will not
be contained in the next commit

• You have to add the file again to record further
changes

• To remove a file from the staging area you reset it

Staging and Commits

Staging and Commits
chris@Maximillian:~/demo$ git commit

Message subject

Message body
Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.

On branch master

Initial commit

Changes to be committed:
new file: src/demo.f90

• First line is the subject. Keep it to <= 50 characters

• Second line should be blank

• Subsequent lines are the “body” of the message

• Should limit body lines to <=72 characters

• As many as you want, but be concise

Git commit message
Message subject

Message body

• When you save the file and exit your editor git will give
you a summary of what’s just happened

• In this case, it’s created the file “demo.f90” as I wanted it
to

• If you quit your editor without saving this cancels the
commit

• “demo.f90” is now under version control, and I can always
get back to this version

After writing message
[master (root-commit) b1f73f2] Message title
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 src/demo.f90
chris@Maximillian:~/demo$

1. “git init”

2. Create files, make changes etc

3. “git add {filenames}” or “git add .” to add
everything

4. “git commit”

5. Write a useful commit message

6. Return to step 2

Basic Workflow

Part 3 - Additional
Commands

• Gives information about the current state of the
repository

• This example shows one file with changes and one
file that is in the directory but not in the repository

git status
chris@Maximillian:~/demo$ git status
On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working
directory)
 modified: src/demo.f90

Untracked files:
 (use "git add <file>..." to include in what will be committed)
 src/new.f90

no changes added to commit (use "git add" and/or "git commit -a")

git log
chris@Maximillian:~/demo$ git log
commit edbdc5538c842e88c5af5177e707f863fb6deb2f (HEAD -> master)
Author: Chris Brady <c.s.brady@warwick.ac.uk>
Date: Tue Sep 24 17:16:51 2019 +0100

 Changes to demo, added new

 This commit makes changes to demo.f90
 Adds new.f90

commit b1f73f21f4419595112c0b07f575427ab6efb6ab
Author: Chris Brady <c.s.brady@warwick.ac.uk>
Date: Tue Sep 24 14:34:39 2019 +0100

 Message title

 Message body
chris@Maximillian:~/demo$

• Shows the list of commits. Gives unique commit id
for each

• Using the command “git diff” followed by a commit ID
shows you the changes between the current state of the
code and the one referred to in the by the commit ID

• If you don’t specify a commit ID it shows the
difference between the current state and the last
commit

• If you specify two commit IDs then it shows the
differences between the commits

• Adding a list of filenames at the end allows you to see
the differences in only specific files

git diff

• The result of the command is in “git-diff” format

• Lines with a + have been added since the
specified commit

• Lines with a - have been removed

• Lines without a symbol are only there for context
and are unchanged

git diff

git diff output

• Example git diff output

• Added new lines to demo.f90

• new.f90 is a new file

chris@Maximillian:~/demo$ git diff
b1f73f21f4419595112c0b07f575427ab6efb6ab
diff --git a/src/demo.f90 b/src/demo.f90
index e69de29..f434032 100644
--- a/src/demo.f90
+++ b/src/demo.f90
@@ -0,0 +1,3 @@
+MODULE demo_mod
+
+END MODULE demo_mod
diff --git a/src/new.f90 b/src/new.f90
new file mode 100644
index 0000000..e69de29

git apply

• Diff output is a standard format

• Can share it as file called a “patch”

• git diff > output.patch

• Apply patches with “git apply {filename}”

• Can in theory apply to different code state, not
always smoothly

• Undoing changes in git can be a mess

• Distributed system, so if code has ever been out
of your control you can’t just go back

• Reverts are in general simply changes that put
things back to how they used to be

• Git log will show original commits and reverts

• Command is “git revert”

Reverting to undo bad changes

• Lots of flexibility, but mostly you want to do

• git revert {lower_bound_commit_id}..
{upper_bound_commit_id}

• Lower bound is exclusive

• Upper bound is inclusive

git revert
chris@Maximillian:~/demo$ git revert
edbdc5538c842e88c5af5177e707f863fb6deb2f
[master ab680cb] Revert "Changes to demo, added new"
 2 files changed, 3 deletions(-)
 delete mode 100644 src/new.f90

• When git revert operates, it creates a new commit
undoing each commit that you want to revert

• You get an editor pop-up for each with a default
message that says

• Revert “{original commit message}”

• No real need to change them

git revert

• Git works by recording changes rather than entire states

• You can get back to a known state by either playing states forward
from the initial check in or undoing states from the end

• There isn’t just a single state that can be returned to

• That’s why it is hard to edit the history of a git repository

• If you go back in history and remove a part of the history then the
future changes may make no sense

• You can fix this but it is a lot of work, hence the general idea is that
reverting works by adding new commits that undo changes rather
than changing history

Version Control 30/11/2017

Incremental Changes

Part 4 - Branches

• If you are working on multiple features then branches are
useful

• Branches are code versions that git keeps separate for you

• Changes to one branch do not affect any other

• There is a default branch called “master” created when you
create the repository

• A git repository is always working on one branch or another
(sometime a temporary branch, but ignore this here)

• Adds and commits are always to the branch that you are
working on

git branch

• To create a branch, just type “git branch {name}”

• A new branch is created based on the last commit in
the branch that you are on

• Simply creating a branch does not move you to it. You
are still exactly where you are before

• You can check what branch you are on by typing “git
branch” with no parameters

git branch
chris@Maximillian:~/demo$ git branch version2
chris@Maximillian:~/demo$ git branch
* master
 version2
chris@Maximillian:~/demo$

• To move between branches, you use “git checkout
{branch_name}”

• This will tell you that it has switched to the named
branch if it has managed to do so

git checkout
chris@Maximillian:~/demo$ git checkout version2
Switched to branch 'version2'

• Once branches have changed relative to each other you can no longer
carry changes between them

• If you make changes in a branch and then try to move to another
branch, without committing the changes you will get an error message

• Either

• commit the changes in the branch that you are on

• use git-stash (https://git-scm.com/docs/git-stash)

Changing branches
chris@Maximillian:~/demo$ git checkout master
error: Your local changes to the following files would be overwritten
by checkout:
 src/new.f90
Please commit your changes or stash them before you switch branches.
Aborting

https://git-scm.com/docs/git-stash

• If you’re using branches to develop features (a very common
way of working) you’ll want to bring them back together to
form a single version with all the features

• Termed “merging”

• “git merge {other_branch_name}” brings the other branch’s
content into this branch

• If you’re lucky, you’ll see what’s at the top and the merge is
automatic (fast-forward merge)

Bringing branches back
chris@Maximillian:~/demo$ git merge version2
Updating edbdc55..cdd8285
Fast-forward
 src/new.f90 | 6 ++++++
 1 file changed, 6 insertions(+)

• If git can’t work out how to combine the changes
between the versions then it’ll put diff markers
into the file to say what’s changed and where

Manual Merge

• You have to go through and remove these
markers, leaving a single working version of the
code

• Commit the finished version using “git add” and
“git commit” as normal (or “git merge --continue”
in newer versions of git)

• There are tools to help, but it’s never fun

Manual Merge

Part 5 - Remotes

• Git is a distributed, networked version control system.

• Has commands to control this

• Collectively called “git remote” commands

• You can clone a remote repository and it remembers that it’s
attached to that remote

• A local repository can be told that it’s a local copy of an
remote repository

• There may be access controls on a remote server and you
will be asked for a username and password. You should
know these if you need them

Git remote server

• You can have multiple named remote repositories
“connected” to a single local repository

• Each one has a unique name

• The default remote repository is called “origin”

• “upstream” is quite common for when you are
tracking another repository

git remote add
chris@Maximillian:~/demo$ git remote add upstream https://github.com/

csbrady-warwick/DemoRepo.git

https://github.com/csbrady-warwick/DemoRepo.git

• To clone a remote repository, you need to have a URL for the remote server

• This is a github repository, so big green button

• Command is then “git clone {remote_url}”

• Creates new functioning local repository in a subdirectory of where you ran
the command

git clone
chris@Maximillian:~$ cd demo2/
chris@Maximillian:~/demo2$ git clone https://github.com/LMFDB/
lmfdb.git
Cloning into 'lmfdb'...
remote: Enumerating objects: 109, done.
remote: Counting objects: 100% (109/109), done.
remote: Compressing objects: 100% (79/79), done.
remote: Total 76570 (delta 67), reused 55 (delta 30), pack-reused
76461
Receiving objects: 100% (76570/76570), 30.21 MiB | 12.79 MiB/s, done.
Resolving deltas: 100% (57913/57913), done.
chris@Maximillian:~/demo2$

• Running “git branch -a” also tells you about remote branches

• Once again, there exists a “master” branch, which is now a local reference to
“remotes/origin/master”

• You do not by default have copies of all of those remote branches

• You get them using “git checkout”

git branch -a
chris@Maximillian:~/demo2$ git branch -a
fatal: not a git repository (or any of the parent directories): .git
chris@Maximillian:~/demo2$ cd lmfdb/
chris@Maximillian:~/demo2/lmfdb$ git branch -a
* master
 remotes/origin/HEAD -> origin/master
 remotes/origin/beta
 remotes/origin/dev
 remotes/origin/master
 remotes/origin/prod
 remotes/origin/web
chris@Maximillian:~/demo2/lmfdb$

• If you have a copy of a repository that is less
recent than the version on the remote server you
can update it using “git pull”

• Pull is a per branch property. You are pulling the
specific branch that you are on

git pull
chris@Maximillian:~/demo2/lmfdb$ git pull
Updating 78ac759c0..e6f722579
Fast-forward
 lmfdb/genus2_curves/main.py | 3 ++
 lmfdb/genus2_curves/templates/g2c_browse.html | 20 ++++++++++
+--
 lmfdb/genus2_curves/templates/g2c_search_results.html | 48 ++++++++++
++++++++------------
 3 files changed, 49 insertions(+), 22 deletions(-)
chris@Maximillian:~/demo2/lmfdb$

• Behind the scenes, “git pull” is a combination of

• “git fetch” - pull data from remote server

• “git merge” - merge the changes in that data

• All of the problems that can happen in a merge

• Added difficulty that now can be changes due to
other developers

git fetch / git merge

• The opposite of pull

• Pushes your changes to a code to the remote server

• Will not generally work unless git can automatically
merge those changes with the version on the server

• “git pull” then “git push”

• Be careful! If not your repository people might not like
you doing it

• Shouldn’t be able to if you shouldn’t

git push

• If it works, should see something like that

• Push can be a much more complicated command if you want
to push different local branches or the name of the local
branch and the remote branch are different

• Read the documentation

git push
chris@Maximillian:~/demo2/DemoRepo$ git push
Enumerating objects: 7, done.
Counting objects: 100% (7/7), done.
Delta compression using up to 32 threads
Compressing objects: 100% (2/2), done.
Writing objects: 100% (4/4), 363 bytes | 363.00 KiB/s, done.
Total 4 (delta 1), reused 0 (delta 0)
remote: Resolving deltas: 100% (1/1), completed with 1 local object.
To https://github.com/csbrady-warwick/DemoRepo.git
 bd04fad..f304c7c master -> master
chris@Maximillian:~/demo2/DemoRepo$

• GITHUB IS NOT GIT!

• By far the most popular public remote git server platform at the
moment

• Easy to use

• Gives a lot of help for setting up remote repositories

• Same basic stuff that we’ve talked about here

• Provides a lot of nice extra features for developers

• Support forums

• Issue trackers

Github

The End

