Version Control with Git

“The Angry Penguin®, used under creative commons licence
m Swantje Hess and Jannis Pohlmann.
<!
-

Warwick RSE

"I'm an egotistical bastard, and | name all my

projects after myself. First ‘Linux’, now 'Git"".

Linus Torvalds, Inventor of Linux (and Git)

Part 1 - Motivations

Overview

* Version control
e Record changes that you make to a file or system of files

» Allows you to keep a log of why/by whom those
changes were made

« Allows you to go back through those changes to get
back to old versions

* Help deal with merging incompatible changes from
different sources

e Similar term “Source Code Management”

Why use version control?

e "I didn't mean to do that!”

« Can go back to before you made edits that haven't
worked

e “What did this code look like when | wrote that?”

* Can go back as far as you want to look at old versions that
you used for papers or talks

* "How can | work on these different things without them
interfering?”

* Branches allow you to work on different bits and then
merge them at the end

Why use version control?

* “| want a secure copy of my code”

* Most version control systems have a client-server
functionality. Can easily store an offsite backup.

* Many suitable free services, and can easily set up your
own

* "How do | work with other people collaboratively?”

* Most modern version control systems include specific
tools for working with other people.

* There are more powerful tools to make it even easier too

Why use version control?

e "My funder wants me to”

* More and more funding bodies want code to be
managed and made available online

* Version control is a good way of doing it

What version control is not

* Not a backup

 If you use a remote server are safe against disk failure etc

e But other people can still wipe out your work
* Not a collaborative editing tool

« You can merge changes from many people

e Butitis hard work, not intended to handle editing the same files
 Not magic

 Some language awareness, has to be conservative

« Wont fix all your problems

How did we get here?

* Version control is literally as old as computers

» Earliest computers programmed by setting
switches and “plugboards”

* People wrote down the settings that they used in

ab notebooks
e Same as they did for setting up experiments

 Starts getting more troublesome as computers get
bigger

How did we get here?

United States National
Archives Records Service
punch card storage
warehouse in 1959

~100MB / Forklift pallet

Stored both programs and
data

Important programs would be
kept in archives and
repunched when changed

Old versions kept for some
time

Version Control

30/11/2017

How did we get here?

e 1982 - Revision Control System (RCS - various
commands)

* 1990 - Concurrent Versions System (CVS)
e 2000 - Subversion (SVN)
» 2000 - Bitkeeper (BK)

« 2005 - Git (GIT)

e Others (Mercurial, GNU Arch, ArX etc.)

Part 2 - Basic Git

Repositories

e The basic idea of git version control is that you
create a repository that holds files and directories

» Repositories are created in a specific directory and
all files and directories within a repository must be
in that directory or a subdirectory of it

* You cannot create a repository within a repository
* Files can only be in one repository at a time

* Be careful about creating a git repository where
you don't intend to!

Repositories

$ mkdir demo
$ cd demo/
$ git init
Initialized empty G1t repository in /home/chris/demo/.git/

Version Control 12/12/2017

Repositories

* |tis very important to note that repositories are held in

directories, they aren't directories

* There can be files and directories within the directory
that holds a git repository that are not in the repository

* You manually add files and directories that you want in
the repository

* |f you add afile in a directory then the directory and
just that file is added

* |f you add a directory directly then all files in the
directory are added

$ mkdir src

$ touch src/demo.f90
$ git add src/

$

Version Control 12/12/2017

Staging and Commits

* Git records changes as a series of commits

e Each commit represents a state of the repository
that can be recovered in future

* |n general you might not want every change that
you have made to every file to be part of a commit

* You flag files when you want to include them in
the next commit by adding them again

e Formally this adds them to the staging area

Staging and Commits

 It's important that there are four states that a file (or directory) can
be in

e Untracked - Not in the repository, can be added

« Up to date - file is in repository and is in the same state as the
last commit

« Unstaged - file is in repository, is in a different state to the stored
version but is not flagged as being part of the next commit

« Staged - file has been added to the staging area as being part
of the next commit

« Asingle file can have both staged and unstaged changes if you
have added the file and then changed it

Staging and Commits

* Note that the state of the file is recorded when you

add it

e Even if you make further changes they will not
be contained in the next commit

* You have to add the file again to record further
changes

* To remove a file from the staging area you reset it

Staging and Commits

Message body

Git commit message

* Firstline is the subject. Keep it to <= 50 characters
* Second line should be blank

* Subsequent lines are the "body” of the message

e Should limit body lines to <=72 characters

* As many as you want, but be concise

After writing message

[master (root-commit) blf/73f2] Message title
1 file changed, O insertions(+), © deletions(-)

create mode 100644 src/demo.f90
; $

 When you save the file and exit your editor git will give
you a summary of what's just happened

e |nthis case, it's created the file "demo.f20" as | wanted it

to

* If you quit your editor without saving this cancels the

commit

* "demo.f90” is now under version control, and | can always
get back to this version

Basic Workflow

1. "gitinit”
2. Create files, make changes etc

1

3. "git add {filenames}" or “git add ."” to add
everything

4. "git commit”
5. Write a useful commit message

* 6. Return to step 2
D

Part 3 - Additional
Commands

git status

$ git status
On branch master

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working
directory)

Untracked files:
(use "git add <file>..." to include in what will be committed)

no changes added to commit (use "git add" and/or "git commit -a")

e Gives information about the current state of the
repository

* This example shows one file with changes and one
file that is in the directory but not in the repository

git log

; $ git log
commit edbdc5538c842e88c5af5177e7@7f863fb6deb2f (HEAD ->
Author: Chris Brady <c.s.brady@warwick.ac.uk>
Date: Tue Sep 24 17:16:51 2019 +0100

Changes to demo, added new

This commit makes changes to demo.f90
Adds new.f90

commit blf/73f211f4419595112c0Ob0®7f575427abbefbbab
Author: Chris Brady <c.s.brady@warwick.ac.uk>
Date: Tue Sep 24 14:34:39 2019 +0100

Message title

Message body

Shows the list of commits. Gives unique commit id
for each

git dift

* Using the command “git diff’ followed by a commit ID
shows you the changes between the current state of the
code and the one referred to in the by the commit ID

 If you don't specity a commit ID it shows the
difference between the current state and the last
commit

* If you specify two commit IDs then it shows the
differences between the commits

« Adding a list of filenames at the end allows you to see
the differences in only specific files

* The result of the command is in “git-dift” format

e Lines with a + have been added since the
specified commit

e Lines with a - have been removed

* Lines without a symbol are only there for context
and are unchanged

git diff output

$ git diff
b1f73f21f4419595112c®b®7f575427ab6efb6ab
diff --git a/src/demo.f90 b/src/demo.f90
index e69de29..f434032 100644
--- a/src/demo.f90
+++ b/src/demo.f90
@@ -0,0 +1,3 @@

diff --git a/src/new.f90 b/src/new.f90
new file mode 100644
index 0000000..e69de29

« Example git diff output
Added new lines to demo.f90

e Nnew.f90 is a new file

git apply

» Diff outputis a standard format
* Can share it as file called a “patch”
e git diff > output.patch
* Apply patches with “git apply {filename}”

* Canintheory apply to different code state, not
always smoothly

Reverting to undo bad changes

* Undoing changes in git can be a mess

* Distributed system, so it code has ever been out
of your control you can't just go back

e Reverts are in general simply changes that put
things back to how they used to be

* Gitlog will show original commits and reverts

« Command is “git revert”

git revert

$ git revert
edbdc5538c842e88c5af5177e7®7f863fb6deb2f
[master ab680cb] Revert "Changes to demo, added new"
2 files changed, 3 deletions(-)
delete mode 100644 src/new.f90

* Lots of flexibility, but mostly you want to do

git revert {lower_bound_commit_id}..
{upper_bound_commit_id}

e Lower bound is exclusive

* Upper bound is inclusive

git revert

 When git revert operates, it creates a new commit
undoing each commit that you want to revert

* You get an editor pop-up for each with a default
message that says

* Revert “{original commit message}”

* No real need to change them

Incremental Changes

« Git works by recording changes rather than entire states

* You can get back to a known state by either playing states forward
from the initial check in or undoing states from the end

* There isn't just a single state that can be returned to
e That's why it is hard to edit the history of a git repository

 If you go back in history and remove a part of the history then the
future changes may make no sense

* You can fix this but it is a lot of work, hence the general idea is that
reverting works by adding new commits that undo changes rather
than changing history

Version Control 30/11/2017

Part 4 - Branches

git branch

* If you are working on multiple features then branches are

useful

* Branches are code versions that git keeps separate for you
* Changes to one branch do not affect any other

* There is a default branch called "master” created when you
create the repository

« A gitrepository is always working on one branch or another
(sometime a temporary branch, but ignore this here)

* Adds and commits are always to the branch that you are
working on

git branch

$ git branch version?2
$ git branch

version?2

* To create a branch, just type “git branch {name}"

e A new branch is created based on the last commit in
the branch that you are on

* Simply creating a branch does not move you to it. You
are still exactly where you are before

* You can check what branch you are on by typing “git
branch” with no parameters

git checkout

; $ git checkout version2
Switched to branch 'version2'

* To move between branches, you use “git checkout
{branch_name}’

* This will tell you that it has switched to the named

branch if it has managed to do so

Changing branches

$ git checkout master

error: Your local changes to the following files would be overwritten
by checkout:

src/new. 90

Please commit your changes or stash them before you switch branches.
Aborting

* Once branches have changed relative to each other you can no longer
carry changes between them

* If you make changes in a branch and then try to move to another
branch, without committing the changes you will get an error message

* Either
e committhe changes in the branch that you are on

* use git-stash (https://qgit-scm.com/docs/git-stash)

https://git-scm.com/docs/git-stash

Bringing branches back

$ git merge version?2

Updating edbdc55..cdd8285

Fast-forward
src/new.f90 | 6
1 file changed, 6 1insertions(+)

* |f you're using branches to develop features (a very common
way of working) you'll want to bring them back together to

form a single version with all the features

e Termed “merging”

» "git merge {other_branch_name}" brings the other branch’s

content into this branch

 If you're lucky, you'll see what's at the top and the merge is

automatic (fast-forward merge)

Manual Merge

NE setup particle temperature(part species)

HEAD
REAL (hum), DIMENSION{(l-ng:, ng:), INTENT(IN) :: temperature
NTEGER, INTENT({IN direction
[YPE(particle _species), POINTI
REAL (hum), DIMENSION{(l-ng:,

[YPE(particle species), POINTEI
““““ > non-thermal
[YPE(particle_list), POINTE]
REAL (hum) :: mass, temp local
REAL (num), DIMENSION(3) :: drift local
[YPE(particle), POINTER :: current
NTEGER(18) :: ipart
coddir
[YPE(parameter pack) :: parameters

* |f git can't work out how to combine the changes

between the versions then it'll put diff markers
into the file to say what's changed and where

Manual Merge

* You have to go through and remove these
markers, leaving a single working version of the

code

 Committhe finished version using “git add” and
"git commit” as normal (or “git merge --continue”
in newer versions of git)

e There are tools to help, but it's never fun

Part 5 - Remotes

Git remote server

» Gitis a distributed, networked version control system.

e Has commands to control this
» Collectively called "git remote” commands

* You can clone a remote repository and it remembers that it's
attached to that remote

« Alocal repository can be told that it's a local copy of an
remote repository

* There may be access controls on a remote server and you
will be asked for a username and password. You should
know these if you need them

git remote adao

$ git remote add upstream https://github.com/
csbrady-warwick/DemoRepo.git

* You can have multiple named remote repositories
“connected” to a single local repository

 Each one has a unigue name
e The default remote repository is called “origin”

e "upstream” is quite common for when you are
tracking another repository

https://github.com/csbrady-warwick/DemoRepo.git

git clone

$ cd demo2/
$ git clone https://github.com/LMFDB/

Imfdb.git

Cloning into 'lmfdb'.

remote: Enumerating ob]ects 109, done.

remote: Counting objects: 100% (109/109), done.

remote: Compressing objects: 100% (79/79), done.

remote: Total /6570 (delta 67), reused 55 (delta 30), pack-reused
76461

Receiving objects: 100% (/6570/76570), 30.21 MiB | 12.79 MiB/s, done.
Resolving deltas: 100% (57913/57913), done.

%

git branch -a

$ git branch -a
fatal: not a git repos1tory (or any of the parent directories): .git
$ cd 1mfdb/
$ git branch -a

-> origin/master

Running “git branch -a” also tells you about remote branches

Once again, there exists a “master” branch, which is now a local reference to

“remotes/origin/master”

You do not by default have copies of all of those remote branches

You get them using “git checkout”

Updating /78ac/59c0..e6t722579
Fast-forward
ILmfdb/genus2 curves/main.py

$ git pull

Imfdb/genus?2 curves/templates/g2c browse.html

Imfdb/genus2 curves/templates/g2c search results.html 48

3 files changed, 49 1insertions(+), 22 deletions(-)

%

* |f you have a copy of a repository that is less
recent than the version on the remote server you

can update it using “git pull”

* Pullis a per branch property. You are pulling the
specific branch that you are on

git fetch / git merge

* Behind the scenes, “git pull” is a combination of
« "git fetch” - pull data from remote server
» "git merge” - merge the changes in that data
» All of the problems that can happen in a merge

» Added difficulty that now can be changes due to
other developers

* The opposite of pull
* Pushes your changes to a code to the remote server

* Will not generally work unless git can automatically
merge those changes with the version on the server

. “git pull” then “git push”

* Be careful! If not your repository people might not like
you doing it

e Shouldn't be able to if you shouldn't

git push

. $ git push
Enumerating objects: 7, done.
Counting objects: 100% (/7//7), done.
Delta compression using up to 32 threads
Compressing objects: 100% (2/2), done.
Writing objects: 100% (4/4), 363 bytes | 363.00 KiB/s, done.
Total 4 (delta 1), reused O (delta 0)
remote: Resolving deltas: 100% (1/1), completed with 1 local object.
To https://github.com/csbrady-warwick/DemoRepo.git

bd@4fad..f304c/c master -> master
; $

* If it works, should see something like that

* Push can be a much more complicated command if you want
to push different local branches or the name of the local
branch and the remote branch are different

e Read the documentation

Github

 GITHUB IS NOT GIT!

» By far the most popular public remote git server platform at the
moment

 Easyto use
* Gives a lot of help for setting up remote repositories
« Same basic stuff that we've talked about here

* Provides a lot of nice extra features for developers
e Support forums

e |ssue trackers

The Ena

