
Warwick RSE

“The Angry Penguin“, used under creative commons licence
from Swantje Hess and Jannis Pohlmann.

Technologies

12/12/2022



Technologies
• Many people here will not be writing their own 

software


• Many of the people that are don’t want to make major 
changes to it to use new resources


• The idea of going through the technologies here is to 
make you aware of what is available if you do want to 
write software to take advantage of parallel computers 
specifically


• We’ll discuss what training is available more specifically



Terminology
• Before we can go through the technologies used 

in big computing we need to make some terms 
clear


• Some of these are terms that you will be familiar 
with but have technical meanings that you should 
be clear on


• Some of them will (likely) be less familiar


• You might want to refer to this in future



Basics
• Node - Individual computer in a cluster or taskfarm


• Processor - Generically a part of a computer that performs 
general purpose computational tasks


• Core - The smallest units of a processor that are capable of 
general purpose computational tasks.


•  4 core processor is capable of performing 4 independent 
tasks simultaneously at full speed


• Socket - The number of processors that can be plugged into a 
node


• 2 socket nodes have 2 processors plugged in them, each 
processor will in general have many cores



Computer Internals
• Process - Technical term for an individual program 

running on a computer. Available cores are split 
between processes by the scheduler


• Scheduler - An operating system program that 
ensures that all processes have fair access to the 
cores by determining what is running at any given 
time


• Not the same as a queuing system - this is much 
lower level and deals with core system 
processes as well



Computer Internals

• Thread - A part of an individual process that can 
run separately, usually on another core


• You will often hear the term multithreaded for 
programs that use this to break up their tasks


• Fabric - Fancy term for the network that connects 
nodes in a cluster



Parallelism in Computers
• We talked about some real world things that 

demonstrate parallelism and some of the problems


• With computers things are harder because 
resources on a computer are not like physical 
objects


• Only one person can “hold” a letter


• It is perfectly possible for two programs to try 
and use the same resource at the same time



Parallelism in Computers
• At the simplest level - output files


• If two programs try to write to the same output file then one 
of two things can happen


• “Race Condition” - What appears in the file will depend on 
exactly which program happens to write in which order


• “Mutual Exclusion” - One program will get exclusive use of 
the resource and the other will have to wait (called file 
locking for files)


• Much easier to use separate files!



Parallelism in Computers
• The same is true with memory, but now between 

threads rather than processes (processes don’t share 
memory) 


•  You can read from memory (or a file) just fine in 
parallel


• Multiple threads trying to write to the same memory 
without control cause a race condition again


• Once again having different processors only writing 
to their own bits of memory is the easiest way of 
avoiding this



Parallelism in Computers
• Languages and libraries for parallel programming 

introduce objects (generally called Mutexes) to 
control mutual exclusion to resources


• This works but


• Access to the excluded resources has to queue


• You have to write the locking and unlocking of 
the mutexes carefully or performance will suffer 
unacceptably



Deadlocking
• Deadlocking is a kind of pathological mutual exclusion


• For example imagine that you have two files each of 
which need to be available to a program before it can 
proceed


• Program A locks file 1, Program B locks file 2 neither 
of them have both files so neither can proceed


• Deadlocking is a real problem in parallel 
programming (of all kinds) if you share resources



Shared vs Distributed Memory

• We mentioned that a single program shares memory no matter how 
many threads it has but that different processes don’t share memory


• You can make different processes talk to each other in various ways 
but most of them are some kind of message based system


• One program sends a message, the other one receives it


• This is often called “distributed” memory as opposed to “shared” 
memory and it can be generalised to running programs that 
communicate across different computers using the network 
between them


• You cannot (really) use threads to parallelise across multiple nodes



Data flow
• Latency - the time between a program asking for data and it 

being made available, usually measured in seconds (or 
milliseconds etc.)


• So asking for data from a hard drive has a higher latency than 
asking for data from memory


• High latency is bad


• Bandwidth - the rate at which data is transferred once it is 
flowing, usually measured in GB/s (or MB/s etc.)


• So you also have a higher bandwidth asking for data from 
memory than from disk


• High bandwidth is good
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Types of parallelism



Types of Parallelism
• Ultimately to make use of big computing you are 

making use of parallelism


• Parallelism of tasks - doing multiple tasks at the 
same time


• Parallelism of data - doing the same tasks to 
multiple pieces of data


• Tools are generally specialised to one end or the 
other but generally most tools cover a range



Types of Parallelism
• In some sense it is more important to distinguish between how 

coupled the parallelism is


• Uncoupled (or embarrassing) parallelism - every task is unrelated 
to every other task. Even if running the same task on different data 
each set of data is self contained


• Contingent parallelism - you know which tasks to run based on the 
results of earlier tasks


• Read coupled - every task creates separate data but needs to refer 
to (but not modify) common data


• Tightly coupled parallelism - working with one piece of data 
requires some access to other pieces of data (classical HPC)



Types of Parallelism
• In this course we’re going to give you a very brief overview of a 

lot of technologies to let you know which one is of interest to 
you


• We’re mainly going to talk about one approach to loosely 
coupled parallelism that has wide applicability


• A specific talk this afternoon


• The aim of this section is that you are able to know where you 
should be putting your effort to do your research


• We’re loosely going to go through the technologies from most 
coupled to least
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MPI
• MPI is a library! 


• You have to write code to use it  


• You have to have an installation of an MPI library to 
compile or run a program containing MPI code.


• You can write programs that compile with and without MPI 
support but you have to do something to remove or 
replace the MPI commands


• MPI is the most common way of programming for 
distributed cluster systems



MPI
• MPI programs are separate programs that 

communicate with each other


• Generally the same program running multiple times 
although that isn’t necessary


• To exchange data between programs you write 
sending code that sends data and receiving code 
that receives the data


• Up to you to tie up sending and receiving code so that 
the program works



MPI

• MPI can be used for almost anything from just 
farming out tasks and getting results back right up 
to very tightly coupled problems where remote 
data is required regularly to continue computation


• MPI isn’t hard to learn from a computational 
perspective but mostly you don’t need to unless 
you are writing classical HPC code



Direct Threaded 
Programming



Threads
• Remember that threads are the way in which a program can be 

split up so that bits of it run on different cores


• Literally just “Take this function and run it on another core”


• You can manually create threads in various ways


• All modern operating systems have the ability to create threads 
(but it is different on any given OS)


• Most modern languages (C++/Julia/Rust etc.) have threads built 
into them


• More portable than using the OS level code



Threads
• Threads are very low level (i.e. you have to actually think about 

how the computer works)


• Problem is that creating and destroying threads is expensive


• One way or another you want to keep threads alive and give 
them new work to do (generally called a thread pool)


• Most languages with thread support don’t help you with this!


• Generally want to avoid writing threads manually!


• Lots of work and easy to make a mistake affecting either 
performance or correctness



Python Numba
• Python has a library called Numba that does many things


• The most important thing that it does is compile Python 
code


• There are quite a few things that restrict how well it 
works but in theory you can just add @jit as a decorator 
to a function and that function can become 10-50x faster


• It can also try to compile code so that it runs with threads 
by adding a parameter to @jit


• You don’t have much control and it fails as often as it 
succeeds but if it does work it can give a useful speedup



Note on Python
• Python is a very popular language but it is not well suited to parallel 

programming


• Python’s native parallelism model is a threading model related to 
Pthreads


• BUT the normal Python interpreter actually doesn’t work in parallel! 
(Others like PyPy don’t have this problem)


• Your threads will all queue up one after the other until they leave 
Python code and enter an external library of some kind


• Called the Global Interpreter Lock (GIL)


• There is work going on to remove the GIL but it isn’t clear when this is 
going to become mainstream



Note on Python
• If your code uses a lot of external library code


• Or uses the Numba JIT compiler


• then threading might help you


• Multiprocessing does work but invokes multiple Python interpreters - 
process based parallelism through the backdoor and not very fast. 
Only use it if each task takes at least 30 seconds and preferably a few 
minutes to complete. Think how long it takes until Python starts for 
you!


• If your code isn’t using libraries heavily in Python you might get the 
best effort/reward ratio from rewriting it in a compiled language rather 
than using parallelism at all



Python performance



OpenMP



OpenMP
• OpenMP is a combination of


• a set of directives that tell the compiler how to 
parallelise bits of the code


• Needs an OpenMP aware compiler to be respected 
but are ignored by a non OpenMP aware compiler


• a library that gives your code access at runtime to 
information about the number of processors, how to 
split work up etc.


• Will fail to compile on a non OpenMP aware 
compiler



OpenMP
• OpenMP allows for almost completely general parallel 

programming


• But by far the most common use of OpenMP is to split 
loops up so that different bits of the loop are handled by 
different processors


• There’s an obvious limitation to this: only loops that have 
independent iterations can be parallelised over


• If you have a loop to advance a quantity in time then you 
can’t parallelise that since iteration 2 depends on 
iteration 1, which depends on iteration 0 etc. etc.



OpenMP
• OpenMP (used like this) works by creating threads and splitting 

up the work done by different iterations of a loop between 
threads


• It handles things like thread pools etc.


• If you are writing code in C/C++/Fortran that does most of it’s 
work inside loops without interdependencies then it can be 
well worth learning the basics of OpenMP


• If you get lucky then you can get parallel performance with 
very little work


• More advanced OpenMP can work with more complex parallel 
problems and even do things like move calculations to a GPU



GPUs



GPU Programming
• Not really going to cover GPU programming


• The basic idea is “threads but moreso”


• GPUs have many more cores than CPUs do


• 64 (soon to be 94) for CPUs (x2 for dual socket machines)


• 16,384 for the GeForce 4090 (slightly higher for the “Hopper” 
data centre card)


• You have to be able to program your work to split 16,384 ways to 
realise the performance


• Theoretical performance of GPUs ~ 5-10x CPUs



GPU Programming
• Most GPU programming is done using Nvidia’s proprietary 

CUDA language


• You can also use OpenMP to program GPUs (the directives 
look different though)


• There are similar but different things called OpenACC 
and OpenCL which are more meant for GPU 
programming


• There are libraries and frameworks such as Kokkos or SYCL 
that are intended to allow you to write code that will run on 
CPU or GPU



GPU Programming
• Many libraries have what is generally called GPU 

offload - i.e. it moves some of the calculation to the GPU


• Very common with libraries involved in AI and 
machine learning Tensorflow and things built on top 
of it


• Check whether your library supports GPU offload and 
how to use it but be aware that you may not get a 
performance benefit from it


• GPUs are fast but moving data on and off them isn’t!



Threaded Libraries



Libraries with internal threads
• Many libraries include their own internal threading (c.f. GPU offload)


• Classical example are libraries for linear algebra


• Plenty of other libraries do it to


• Generally this is good


• Might be faster to not use all of the cores like this though! (Even 
for good programmers it is hard to get good performance from 
splitting one task)


• Find a balance between using the available cores for threading in 
your library and for multiple tasks


• READ THE MANUAL



Libraries with internal threads
• Can also be bad if you don’t know about it


• If you don’t know that your library is creating threads then 
you might want to run one program per core yourself


• That would lead to you creating n_processors2 total 
threads which will not perform well!


• You want the total number of threads of your problems 
equal to the number of cores in the machine that you are 
running on


• READ THE MANUAL



Language Features



Languages with Parallelism
• Many languages have features above the level of 

threads to perform parallel functions


• C++ - Parallel Algorithms (sort, for_each etc.) from 
C++17 - just add an execution policy and they will 
run in parallel


• Fortran - Coarray Fortran - full distributed 
programming model - adds extra index to arrays 
that is split across processors


• Powerful but not easy to use



Languages with Parallelism
• Python, C++ and various other languages have things called futures 

and promises


• A way of packaging up work so that it can be run asynchronously 
and only actually block waiting for the result when it is wanted by 
another computation


• Asynchronously doesn’t necessarily mean on another 
processor but it certainly can do


• In some languages futures are automatically or semi-automatically 
mapped onto multiple processors (e.g. Python) in others you have 
to manually run a future in another thread (e.g. C++)


• Futures and promises are a good way of splitting up work but they 
are still fairly low level and can be hard to work with



Task Execution 
Libraries



Libraries to Run Multiple Tasks

• Since threads work by running specific functions on separate 
processors you can obviously use them for running multiple 
tasks


• You have to worry about lots of technical details like thread 
pools though


• There are libraries that deal with this for you automatically (and 
often provides more as well!)


• C++ - Intel One Threaded Building Blocks (part of their ONEAPI 
hence the name)


• Python - Multiprocessing (built in), joblib(library), Dask(library)



Libraries to Thread your Code

• Multiprocessing and joblib are almost entirely intended to work on 
separate tasks


• They can’t get around the GIL problem but they are as efficient as 
they can be using multiprocessing


• Dask is a massive library covering a lot of things that we will mention 
later


• OneTBB is more complex (it also handles parallelism over data) but if 
you want to run multiple tasks there are sections intended for that, 
especially


• parallel_invoke, parallel_for and others are intended to run over 
a set of tasks 


