
Warwick RSE

“The Angry Penguin“, used under creative commons licence
from Swantje Hess and Jannis Pohlmann.

Task Parallelism

12/12/2022

Task parallelism

• Split up problem into separate tasks

• Explore parameter space

• Multiple Monte-Carlo realisations

• Run each task on a separate processor of your
computer

• Or separate computers

Task parallelism
• Scales very well

• Only limit on scaling is number of tasks and
number of processors

• If you have one processor available per task
then you can get all of your tasks done in the
same time as one task

• Slight wrinkle if each task is so quick that it takes
as long to start the task as it does for it to run

GNU Parallel
• Installed on the clusters and the task farm

• Will need the module “parallel” on the cluster systems

• Most other large systems have it installed as well and it
can easily be installed on any Linux system

• sudo apt-get install parallel

• yum install parallel/dnf install parallel

• brew install parallel

GNU Parallel
• Very good official tutorial at https://www.gnu.org/software/

parallel/parallel_tutorial.html

• Idea is that you create a program that takes parameters
through the command line and then tell parallel how to
build command lines to run several copies at the same time

• Put together program name, parameters etc.

• Has a number of job slots (usually the number of processors
that you have)

• Runs tasks in sequence on each job slot until it runs out of
task

https://www.gnu.org/software/parallel/parallel_tutorial.html
https://www.gnu.org/software/parallel/parallel_tutorial.html
https://www.gnu.org/software/parallel/parallel_tutorial.html

GNU Parallel

• Very simple Parallel script

• “echo” is a command line utility that just prints
its arguments

#!/bin/bash

parallel echo ::: A B C D E F

A

B

C

D

E

F

GNU Parallel

• “parallel” just runs the GNU parallel program

• “echo” here just prints the parameters that it is given but in
general would be the program that you want to run in parallel
(including any command line arguments that don’t change)

• “:::” separates the command that you want to run from the
parameters that you want to run it with

• The last bit is the list of parameters that you want to pass to
your program separated by spaces (you can change the
separator if you want)

#!/bin/bash

parallel echo ::: A B C D E F

GNU Parallel

• Putting in multiple argument sources calls the program with
every possible combination of the sources (Cartesian Product)

#!/bin/bash

parallel echo ::: A B C ::: D E F ::: G H I

A D G

A D H

A D I

A E G

A E H

A E I

A F G

A F H

A F I

B D G

B D H

B D I

…

…

…

GNU Parallel

• You can specify where to put the command line
argument that Parallel generates using {}

#!/bin/bash

parallel echo HELLO {} ::: A B C

HELLO A

HELLO B

HELLO C

GNU Parallel

• If you use multiple argument sources then you can
choose which one to use using {number}

#!/bin/bash

parallel echo {1} Says hello to {2} ::: A B C ::: D E F

A Says hello to D

A Says hello to E

A Says hello to F

B Says hello to D

B Says hello to E

B Says hello to F

C Says hello to D

C Says hello to E

C Says hello to F

GNU Parallel

• You can get the job number for each parallel job using
{#}. The job number goes up from 1 as each job is run

#!/bin/bash

parallel echo {1} is job number {#} ::: A B C

A is job number 1

B is job number 2

C is job number 3

GNU Parallel

• If you need a unique ID then you can use the uuidgen
command line program to generate one

• Your UUIDs will be different to these

#!/bin/bash

runfunc(){

 echo $1 has uuid `uuidgen`

}

export -f runfunc

parallel runfunc ::: A B C

A has uuid 536b2247-64fb-49cd-af9b-258ca52c6200

B has uuid fef2fce0-26fb-4553-9c5e-7a6c8b07cd58

C has uuid bc58cea0-8ffb-4733-9650-441f3587023d

GNU Parallel

• You can use Parallel to run

• Any shell command (ls, cat, echo etc.)

• Any program that can be run from the command
line

• bash functions if they are exported using “export
-f”

GNU Parallel
• Lots of other options but you can already see how you can

use Parallel to run a wide variety of jobs

• Details for our cluster

• https://wiki.csc.warwick.ac.uk/twiki/bin/view/HPC/
ClusterUserGuide#Serial_jobs

• You can easily make pretty much any modern language
take command line parameters

• Can combine with input files (specified by name) for
more sophisticated control

https://wiki.csc.warwick.ac.uk/twiki/bin/view/HPC/ClusterUserGuide#Serial_jobs
https://wiki.csc.warwick.ac.uk/twiki/bin/view/HPC/ClusterUserGuide#Serial_jobs

GNU Parallel
• This covers the basics of how to get GNU parallel to

start up many different tasks

• There is a lot more that you can do, see the tutorial
linked earlier

• There is also often stuff that you want to do to make
Parallel play nicely with a cluster

• Good example in the Sulis documentation at https://
sulis-hpc.github.io/advanced/ensemble/
gnuparallel.html

https://sulis-hpc.github.io/advanced/ensemble/gnuparallel.html
https://sulis-hpc.github.io/advanced/ensemble/gnuparallel.html
https://sulis-hpc.github.io/advanced/ensemble/gnuparallel.html
https://sulis-hpc.github.io/advanced/ensemble/gnuparallel.html

