
Warwick Research Software Engineering

Intermediate MPI

CS Brady and H Ratcliffe
Senior Research Software Engineers

“The Angry Penguin”, used under creative commons licence

from Swantje Hess and Jannis Pohlmann.

December 4, 2020

Contents

Preface i

0.1 About these Notes . i

0.2 Disclaimer . i

0.3 Example Programs . i

1 Recap of MPI Basics 1

1.1 Parallelism and MPI . 1

1.2 A Basic MPI Program . 2

1.3 The Ring Pass . 4

1.4 Reduce Operations . 9

1.5 Non-blocking Send and Recv . 11

1.6 Other Operations . 11

2 Case Studies 14

2.1 Problem Specification - A physical problem 14

2.2 MPI Topologies . 18

2.3 Cartesian Communicator for Case Study 20

2.4 Problem Specification - A terrible prime finder 23

3 MPI Types 26

3.1 Basic Custom Types . 26

3.2 Types Describing Structures . 30

3.3 Back to the Case Study . 33

4 Non-blocking MPI Communications 38

4.1 Concepts of Non Blocking Communications 38

4.2 Non-Blocking Commands . 40

4.3 Caveats of Non-Blocking Comms . 44

4.4 Persistent Communication . 45

4.5 Latency Hiding Again . 47

4.6 Final Notes on Non Blocking Comms 48

5 Summary 50

5.1 Where to Go Now? . 50

CONTENTS

6 Glossary 52
Glossary . 52

Preface

0.1 About these Notes

These notes were written by H Ratcliffe and C S Brady, both Senior Research Software
Engineers in the Scientific Computing Research Technology Platform at the University
of Warwick for a Workshop first run in March 2019 at the University of Warwick.

This work, except where otherwise noted, is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International Li-
cense. To view a copy of this license, visit http://creativecommons.org/

licenses/by-nc-nd/4.0/.

The notes may redistributed freely with attribution, but may not be used for commercial
purposes nor altered or modified. The Angry Penguin and other reproduced material,
is clearly marked in the text and is not included in this declaration.

The notes were typeset in LATEXby H Ratcliffe.
Errors can be reported to rse@warwick.ac.uk

0.2 Disclaimer

0.3 Example Programs

Several sections of these notes benefit from hands-on practise with the concepts and
tools involved. Test code and guided examples are available on Github at
https://github.com/WarwickRSE/Intermediate_MPI

i

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:rse@warwick.ac.uk
https://github.com/WarwickRSE/Intermediate_MPI

Chapter 1

Recap of MPI Basics

A more in-depth version of this section is available in our Introductory MPI course,
https://warwick.ac.uk/research/rtp/sc/rse/training/intrompi.

1.1 Parallelism and MPI

Parallelism relies on the ability to break a problem up into elements that different
processors can work on. Ultimately this depends on the layout of your data. If your
problem wants multiple processors to work on a single chunk of memory the solution
is something like OpenMP, OpenSHMEM or other shared memory options. If you can
distribute the data over processors so they each have some part of the problem, the
solution is MPI. This is useful for problems which “aren’t too coupled”, so that mostly
the processors work independently and only sometimes communicate.

MPI has plenty of advantages. It will work on any CPU based system for which an
MPI aware compiler and MPI library can be built. It will scale well to the very largest
machines, with large MPI codes working well on millions of cores. Overheads are quite
low, with very little setup and teardown of messages and no costly locking of memory
since each processor has its own memory. MPI also forces the developer to consider the
locality of the data, which can lead to improved performance.

Forcing the programmer to work out the data locality is also a key disadvantage of
MPI, since if this is not possible the system becomes very hard to use. For programs
running on only a single node MPI is unnecessary as a shared-memory model will work
well. Finally, anybody using the program needs an MPI-aware compiler or you must
write explicit serial code as well as the parallel code.

1.1.1 MPI in Fortran

In C, all MPI objects are typed, such as MPI Datatype, MPI Comm etc. In Fortran these
are usually plain integers. Fortran MPI functions also all take an extra INTEGER
parameter which is the same as the C return code. MPI Wtime and MPI Wtick are
exceptions. In these notes we mostly use the C versions because those need some

1

https://warwick.ac.uk/research/rtp/sc/rse/training/intrompi

2 CHAPTER 1. RECAP OF MPI BASICS

parameters to be pointer type (as C is pass-by-value). Some examples are given in
both C and Fortran, as is all example code.

NOTE: MPI is adding a Fortran 2008 interface which is much closer to the C version
and uses Fortran 2008 constructs. This is not yet widely enough supported for general
use, but is worth watching.

1.2 A Basic MPI Program

The simplest useful MPI program is shown schematically in Fig 1.1. The program
calls MPI Init, and then MPI Comm rank to get the unique rank for each processor.
It then does a mixture of computation and MPI Sends and Receives. Finally it calls
MPI Finalize to clean up before exiting.

Figure 1.1: A basic MPI program in schematic form

1.2.1 MPI Send

The MPI Send command looks like

1 int MPI Send (const void ∗buf , int count , MPI Datatype datatype , int dest ,
int tag , MPI Comm comm)

• buf a buffer containing the data

1.2. A BASIC MPI PROGRAM 3

• count number of elements to send

• datatype type of the elements to send

• dest which rank to send to

• tag number uniquely identifying this message (must be unique between any mes-
sages currently in flight)

• comm an MPI communicator (i.e. a list of processors) to send to

1.2.2 MPI Builtin Types

MPI has various built in types representing data, as well as the ability to create custom
types representing chunks of data, discussed in Chapter 3. The built-in types strictly
have different names in C and Fortran. Sometimes the “wrong” versions will work, but
this is not strictly necessary so it is a good idea to use the right variant.

• MPI INT Integer in C

• MPI INTEGER Integer in Fortran

• MPI FLOAT Single precision floating point in C

• MPI REAL Single precision floating point in Fortran

• MPI DOUBLE Double precision floating point in C

• MPI DOUBLE PRECISION Double precision floating point in Fortran

• MPI BYTE A single byte (mostly used to build other types, for IO etc)

• Many others

1.2.3 MPI Receive

The MPI Recv command looks like

1 int MPI Recv (const void ∗buf , int count , MPI Datatype datatype , int
source , int tag , MPI Comm comm, MPI Status ∗ s t a t u s)

• buf a buffer to hold the received data

• count number of elements to receive

• datatype type of the elements to receive

• source which rank data comes from

4 CHAPTER 1. RECAP OF MPI BASICS

• tag number uniquely identifying this message (must be unique between any mes-
sages currently in flight)

• comm an MPI communicator (i.e. a list of processors) to receive from

• status an MPI status object containing information about the message

Note you might not care about either or both source and tag, i.e. you just want to
receive the next message from the queue, whatever it is. This can be done by using the
special constants MPI ANY SOURCE and MPI ANY TAG.

In Fortran the MPI Status is an array of integers, INTEGER, DIMENSION(MPI STATUS SIZE)

1.2.4 Send Variants

There are actually 4 variants of send, all of which are blocking operations. Blocking
here means roughly that they do not return until it is safe to reuse the sending buffer.

• MPI Send Returns as soon as it is safe to reuse the send buffer. This says nothing
about whether the message was actually received

• MPI Ssend Does not return until the message has been received

• MPI Bsend Copy data to be sent into another buffer and return immediately

• MPI Rsend “Ready mode” send, only valid if a matching receive has already been
posted. This has quite limited use.

1.3 The Ring Pass

The simplest possible MPI program is one that simply passes a value to its “neighbour”,
here defined as the processor with rank one higher than the given processor. The highest
ranked processor wraps back around and sends to processor rank 0 (usually called the
root). Figure 1.2 shows this schematically.

Figure 1.2: The basic MPI ring pass

1.3. THE RING PASS 5

A basic Fortran program to do this is:

1 PROGRAM wave
2 USE mpi
3 IMPLICIT NONE
4 INTEGER, PARAMETER : : tag = 100
5 INTEGER : : rank , r e cv rank
6 INTEGER : : nproc
7 INTEGER : : l e f t , r i g h t
8 INTEGER : : i e r r
9

10

11 CALL MPI Init (i e r r)
12 CALL MPI Comm size (MPI COMM WORLD, nproc , i e r r)
13 CALL MPI Comm rank(MPI COMM WORLD, rank , i e r r)
14

15 ! Set up p e r i o d i c domain
16 l e f t = rank − 1
17 IF (l e f t < 0) l e f t = nproc − 1
18 r i g h t = rank + 1
19 IF (r i g h t > nproc − 1) r i g h t = 0
20

21 IF (rank == 0) THEN
22 CALL MPI Ssend (rank , 1 , MPI INTEGER, r ight , tag , MPI COMM WORLD, i e r r

)
23 CALL MPI Recv (recv rank , 1 , MPI INTEGER, l e f t , tag , MPI COMM WORLD, &
24 MPI STATUS IGNORE, i e r r)
25 ELSE
26 CALL MPI Recv (recv rank , 1 , MPI INTEGER, l e f t , tag , MPI COMM WORLD, &
27 MPI STATUS IGNORE, i e r r)
28 CALL MPI Ssend (rank , 1 , MPI INTEGER, r ight , tag , MPI COMM WORLD, i e r r

)
29 END IF
30

31 PRINT ∗ , ”Rank ” , rank , ” got message from rank ” , l e f t , ” o f ” ,
r ecv rank

32

33 CALL MPI Final ize (i e r r)
34

35 ENDPROGRAM wave

and in C

1 #include <s t d i o . h>
2 #include <mpi . h>
3

4 #define TAG 100
5

6 int main (int argc , char ∗∗ argv)
7 {
8

9 int rank , recv rank , nproc , l e f t , r i g h t ;
10

11 MPI Init(&argc , &argv) ;

6 CHAPTER 1. RECAP OF MPI BASICS

12 MPI Comm size (MPI COMM WORLD, &nproc) ;
13 MPI Comm rank(MPI COMM WORLD, &rank) ;
14

15 // Set up p e r i o d i c domain
16 l e f t = rank − 1 ;
17 i f (l e f t < 0) l e f t = nproc − 1 ;
18 r i g h t = rank + 1 ;
19 i f (r i g h t > nproc − 1) r i g h t = 0 ;
20

21 i f (rank == 0) {
22 MPI Ssend(&rank , 1 , MPI INT , r ight , TAG, MPI COMM WORLD) ;
23 MPI Recv(&recv rank , 1 , MPI INT , l e f t , TAG, MPI COMM WORLD,
24 MPI STATUS IGNORE) ;
25 } else {
26 MPI Recv(&recv rank , 1 , MPI INT , l e f t , TAG, MPI COMM WORLD,
27 MPI STATUS IGNORE) ;
28 MPI Ssend(&rank , 1 , MPI INT , r ight , TAG, MPI COMM WORLD) ;
29 }
30

31 p r i n t f (”Rank %3d got message from rank %3d of %3d\n” , rank , l e f t ,
r ecv rank) ;

32

33 MPI Final ize () ;
34 }

Lines 11-13 initialize MPI, setup a communicator containing all the processors, and get
the unique rank of each processor. Next, lines 15-19 setup a periodic domain. Each
processor has a left-hand adjacent processor, either its rank minus one, or on the left-
hand-edge, the furthest right processor. Each also has a right-hand neighbour, which
is rank plus one, except at the right-hand-edge, where its zero.

Every processor except rank 0 waits for data from their left, and then proceed to
send their own (lines 26-28). Rank 0 starts by sending its data to rank one, and then
waits to receive from the right-hand-processor. Finally the code calls MPI Finalize

before stopping.

The result of this code is

1 Rank 1 got message from rank 0 o f 0
2 Rank 2 got message from rank 1 o f 1
3 Rank 3 got message from rank 2 o f 2
4 . . .
5 Rank 15 got message from rank 14 o f 14
6 Rank 0 got message from rank 15 o f 15

There is something in the code you may not have seen before, namely the
MPI STATUS IGNORE which is a constant you can use where otherwise there would be an
MPI Status object. Note that this can’t be used in place of an array of status objects,
instead there is an MPI STATUSES IGNORE

Repeating this loop very many times, in this case 100,000 (100,000 messages per
processor) using a shared-memory, 16 core machine, we find a total time of 1.3 s. The
total time needed just for the communications is about 1 µ s, so most of this time is

1.3. THE RING PASS 7

due to the latency in the process, not the communications bandwidth. In theory, we’d
like a latency as close as possible to the 100 ns required to fetch the value from our
memory.

So why does it take so much longer? Because most of the processors are sitting idle
for most of the time! Processor 1 is waiting for processor 0. Processor 2 is waiting for
processor 1, which is waiting for processor 0. Processor 3 is waiting... and so on. We
can’t just have all the processors send at once, or they would deadlock, waiting forever
for a message that will never arise, because the sender is also locked waiting in the same
way.1

1.3.1 Red Black Ordering

Since the crucial thing here is having paired senders and receivers both ready at once,
there is a fairly obvious better solution, often known as red-black ordering. We colour
each even numbered processor red and each odd one black. Then rather than passing
sequentially 0 to 1 then 1 to 2, we have all the red processors send, while all the black
ones receive, and when that is finished, we swap, and have the black ones send and the
red ones receive. The last processor again wraps around back to the 0th. This is shown
schematically in Figure 1.3.

Figure 1.3: A basic red-black ordering

The code is barely changed, only the if statement on line 21, instead of

1 i f (rank == 0)

becomes

1 i f (rank%2 == 0)

or

1We’ll see in the next section how MPI lets us in fact do this, and sorts out the deadlock for us.
But for now, suppose we don’t know about that

8 CHAPTER 1. RECAP OF MPI BASICS

1 IF (MOD(rank , 2) == 0) THEN

Now we try this on our same 16 core machine, and find it to be nearly five times
faster, requiring only 0.22 s. The latency is now reduced to about 138 ns, much closer
to our 100 ns target.

1.3.2 Combined SendRecv

We mentioned in a footnote that MPI lets us just send everything at once and expect
it to sort everything out behind the scenes. In particular, there is the combined send-
receive command, MPI Sendrecv. You may or may not have encountered this before.
As long as both the send part and the receive part can complete, we can call this on
all processors at once and not risk a deadlock. The command is long because it must
contain all the information for the send, and for the receive, giving

1 int MPI Sendrecv (const void ∗ sendbuf , int sendcount , MPI Datatype
sendtype , int dest , int sendtag , void ∗ recvbuf , int recvcount ,
MPI Datatype recvtype , int source , int recvtag , MPI Comm comm,
MPI Status ∗ s t a t u s)

and the code on lines 21 to 29 becomes the single line

1 MPI Sendrecv(&rank , 1 , MPI INT , r ight , TAG, &recv rank , 1 , MPI INT , l e f t ,
TAG, MPI COMM WORLD, MPI STATUS IGNORE)

and

1 CALL MPI Sendrecv (rank , 1 , MPI INTEGER, r ight , TAG, recv rank , 1 ,
MPI INTEGER, l e f t , TAG, MPI COMM WORLD, MPI STATUS IGNORE, i e r r)

Is this any better? On our test machine, this takes only 0.09 s, and the latency has
dropped to the target 100 ns. This is basically as fast as we can expect this to work,
which is great. We’re now sharing data between adjacent processors as fast as we really
can.

Parallel Decomposition

The core idea of parallel programming is working out a way to use multiple
processors at once to get work done. So called embarassingly parallel, or
trivially parallel, workloads are ones where there are completely independent
sets of work and so you can simply start up several separate processes and let
them run independently. This is the optimal solution, although few people
would consider this to be really parallel programming. Instead, our target
is to have each processor working mostly with data it owns, and only rarely
having to communicate with its neighbours.
There are several common ways of achieving this goal, mainly based around
splitting into some sort of orthogonal set. If this can be done, and interactions
are in some sense local in these directions, then MPI can work well and scale
to the largest supercomputers. More on this below.

1.4. REDUCE OPERATIONS 9

Domain Decomposition
Domain decomposition is perhaps the simplest non-trivial decomposition.
We have a grid of cells in say 2-D, with nx cells in the x-direction, and ny

in the y-direction. We split this grid into rectangles and assign one to each
processor. The first Case Study in the next Chapter will show an example of
this. Now assuming that particles interact only with those nearby in space,
for example, via simple collisions, each processor only needs the chunk of
space it owns, and some small amount of its neighbours, usually only 1 or 2
grid cells worth at the edges. This is all we need to communicate, using send
and receive or sendrecv.
Sadly this is not always possible because not all processes are local in space...
Arithmetic Decomposition
If spatial decomposition isn’t possible or useful, sometimes there are other
“directions” we can use. Most commonly, we have some sort of orthogonal
basis functions for our solution set, and we can decompose and give each
processor a subset of these basis functions. Because they are orthogonal, so
linearly independent, the processors can solve independently for their com-
ponents at any given time.
In general, sadly, there will still be coupling of basis functions somewhere
in your equations, requiring communication. Hopefully, this is only between
functions that are in some sense “nearby” in which case we have limited
comms and MPI can still work well, even if it is rather complicated to un-
derstand what is going on intuitively.
Arbitrary Decomposition
In some cases, the coupling between things really is almost arbitrary or fun-
damentally long-range, in which case the choice of decomposition barely mat-
ters. Only answer is to split things up somehow and try and deal with the
comms later. In this case MPI is probably not the best solution, and you
might be better investigating PGAS systems and be warned that performance
will probably not be good.

1.4 Reduce Operations

Reduce operations are those which collect data from all processes, operate on it, and
then put it somewhere else. In general, they either place the result onto a root processor
(MPI Reduce), or back onto all processors (MPI Allreduce).

If these functions are given an array of values, they will operate on it elementwise,
to give an array of the same size as final result. They will not reduce over the elements.

The commands are

1 int MPI Reduce (const void ∗ sendbuf , void ∗ recvbuf , int count ,
MPI Datatype datatype , MPI Op op , int root , MPI Comm comm)

10 CHAPTER 1. RECAP OF MPI BASICS

and

1 int MPI Allreduce (const void ∗ sendbuf , void ∗ recvbuf , int count ,
MPI Datatype datatype , MPI Op op , MPI Comm comm)

and a simple example program looks like

1 #include <s t d i o . h>
2 #include <mpi . h>
3

4 int main (int argc , char ∗∗ argv)
5 {
6

7 int rank , nproc , recv ;
8

9 MPI Init(&argc , &argv) ;
10 MPI Comm size (MPI COMM WORLD, &nproc) ;
11 MPI Comm rank(MPI COMM WORLD, &rank) ;
12

13 MPI Allreduce(&rank , &recv , 1 , MPI INT , MPI MAX, MPI COMM WORLD) ;
14

15 p r i n t f (”On rank %3d MPI Allreduce gives maximum rank as %3d\n” , rank ,
recv) ;

16

17 MPI Final ize () ;
18

19 }

The built-in operations you can use in reduce include max/min, summation and
logical ops. The full list is

1 MPI MAX : Maximum element
2 MPI MIN : Minimum element
3 MPI SUM : Sum a l l e lements
4 MPI PROD : Mult ip ly a l l e lements
5 MPI LAND : Log i ca l AND a l l e lements
6 MPI LOR : Log i ca l OR a l l e lements
7 MPI BAND : Bitwi se AND a l l e lements
8 MPI BOR : Bitwi se OR a l l e lements
9

10 MPI MAXLOC : Value and rank o f maximum element
11 MPI MINLOC : Value and rank o f minimum element

Note that MAXLOC and MINLOC have some caveats about how they indicate which
processor the result was found on, so read up carefully before using them. Basically,
they return both the max/min value, and the rank on which it occurred (for each
element if an array is passed). You give the operation a packed pair of values, one the
value in question the other the rank of the processor. In C these are in a struct, in
Fortran they should be an array.

1.5. NON-BLOCKING SEND AND RECV 11

1.5 Non-blocking Send and Recv

Both send and receive have so-called non-blocking variants, MPI Isend and MPI Irecv

which return immediately rather than waiting for the operation to in some sense “com-
plete”.

1 int MPI Isend (const void ∗buf , int count , MPI Datatype datatype , int dest
, int tag , MPI Comm comm, MPI Request ∗ r eque s t)

2

3 int MPI Irecv (void ∗buf , int count , MPI Datatype datatype , int source ,
int tag , MPI Comm comm, MPI Request ∗ r eque s t)

Note that the syntax is very similar to the normal Send and Recv commands, but
includes an extra MPI Request object. We will cover non-blocking commands in detail
in Chapter 4, but they are put here for completeness.

1.5.1 MPI Wait

This command is used to ensure the non-blocking operations have completed. You give
it the request object from the send/recv command and it will block until the request
has completed. This lets you put sends and receives at the most suitable places within
your calculation, and then put the wait at the end. This can improve efficiency in some
cases.

1.5.2 Sendrecv

The MPI Sendrecv command from 1.3.2 actually consists of a non-blocking send, a non-
blocking recv, and a wait all wrapped up together. This is why it lets you do the simple
thing of having every processor call sendrecv at once without causing a deadlock.

1.6 Other Operations

There are also some other very useful MPI operations you should know about.

1.6.1 Barrier

Barriers block until all processors in a communicator have reached the barrier, at which
point all processors may continue.

1 int MPI Barrier (MPI Comm comm)

1.6.2 Broadcast

Broadcasts send information from one rank (the root) to all other ranks.

1 int MPI Bcast (void ∗ bu f f e r , int count , MPI Datatype datatype , int root ,
MPI Comm comm)

12 CHAPTER 1. RECAP OF MPI BASICS

1.6.3 Scatter

Scatters send different data from root to each other processor.

1 int MPI Scatter (const void ∗ sendbuf , int sendcount , MPI Datatype sendtype
, void ∗ recvbuf , int recvcount , MPI Datatype recvtype , int root ,
MPI Comm comm)

Here sendbuf is sendcount × nproc long, with the first sendcount elements going to
the lowest ranked other processor, the next sendcount elements to the second in line,
etc. Recvbuf should then be recvcount long, and unless you’re using custom types to
reshape your data, recvcount should equal sendcount.

1.6.4 Gather

Gather collects data from all ranks onto the root rank

1 int MPI Gather (const void ∗ sendbuf , int sendcount , MPI Datatype sendtype ,
void ∗ recvbuf , int recvcount , MPI Datatype recvtype , int root ,

MPI Comm comm)

Here recvbuf is recvcount× nproc long and receives sendcount elements from each
other processors. sendbuf is sendcount long and again unless using custom types, send-
count equals recvcount

1.6.5 All Gather

All gather is similar to gather, but the data is given to all ranks.

1 int MPI Allgather (const void ∗ sendbuf , int sendcount , MPI Datatype
sendtype , void ∗ recvbuf , int recvcount , MPI Datatype recvtype ,
MPI Comm comm)

The buffer sizes are all the same as for Gather.

1.6.6 All To All

All to all is a generalised scatter and gather combined, where every rank sends some
data to every other rank, and receives some data from every other rank.

1 int MPI Al l toa l l (const void ∗ sendbuf , int sendcount , MPI Datatype
sendtype , void ∗ recvbuf , int recvcount , MPI Datatype recvtype ,
MPI Comm comm)

Sendbuf is sendcount×nproc long, recvbuf is recvcount×nproc long and as usual,
unless using custom types, sendcount equals recvcount.

1.6. OTHER OPERATIONS 13

1.6.7 V variants

Finally, Scatter, Gather, Allgather and Alltoall all have “v” variants, which allow send-
ing or receiving different amounts of data on different processors. You have to have
some mechanism so that each knows the correct amount of memory to allocate for
receiving.

In general, these indicate that your MPI might be becoming overly complex, al-
though they are sometimes a necessary evil. Use them with caution, and make sure to
program robustly and document carefully!

Chapter 2

Case Studies

2.1 Problem Specification - A physical problem

For a good example of MPI, we want some sort of problem that can be split up over
processors, preferably using a spatial decomposition. This means we need something
with spatial extents. We’d also prefer 2-D for simplicity of viewing. A nice example
is a rectangular sheet of metal of fixed density and varying temperature. We hold the
top and right edges hot, and the bottom and left edges cool, and want to solve for the
temperature across the sheet. The following figure shows our arrangement:

Figure 2.1: The layout for the case study problem. The red and blue edge cells are
held fixed. The darker blue cell is the one being solved, the yellow is the cells which we
average to update this cell.

Now we solve the heat equation (https://en.wikipedia.org/wiki/Heat_equation)
for a steady state answer. This means we are iteratively solving for a single answer, not
obtaining a solution over time. We start by splitting space into a set of discrete grid
points, and then, in simple form, just average the values in the 4 cardinally adjacent

14

https://en.wikipedia.org/wiki/Heat_equation

2.1. PROBLEM SPECIFICATION - A PHYSICAL PROBLEM 15

cells (above, below, left and right). We do this for all cells, then start again with the
resulting values. We’re “done” once the solution no longer changes in time (or changes
by no more than some threshold).

The “driven” edges, which we keep hot or cold, are implemented as a “halo” of
guard or ghost cells, which are never changed.

2.1.1 The Code

The Fortran code for this uses strict F95, with each processor holding an allocatable,
multi-dimensional array with explicitly set upper and lower bounds. Copy and assign-
ments are done using array subsections.

The C code is C99 and uses a custom array similar to Fortran (and using Fortran
ordering, first index varies fastest). The implementation is in support/array.c.

On one processor, the core code is, in Fortran,

1 INTEGER, PARAMETER : : nx = 20 , ny = 20
2 REAL, DIMENSION(0 : nx+1, 0 : ny+1) : : va lues , temp values
3 INTEGER : : ix , iy , i c y c l e
4 va lue s = 5 .5
5 va lue s (0 , :) = 1 .0
6 va lue s (nx +1 , :) = 10 .0
7 va lue s (: , 0) = 1 .0
8 va lue s (: , ny+1) = 10 .0
9 CALL d i s p l a y r e s u l t (va lue s)

10 PRINT ∗ , ’ P lease p r e s s a key to advance ’
11 READ(∗ ,∗)
12 DO i c y c l e = 1 , 500
13 DO i y = 1 , ny
14 DO i x = 1 , nx
15 temp values (ix , i y) = 0 .25 ∗ (va lue s (i x +1, iy) + &
16 va lue s (ix , i y +1) + va lue s (ix −1, i y) + va lue s (ix , iy−1))
17 ENDDO
18 ENDDO
19 va lue s (1 : nx , 1 : ny) = temp values (1 : nx , 1 : ny)
20 IF (MOD(i c y c l e , 5 0) == 0) THEN
21 CALL d i s p l a y r e s u l t (va lue s)
22 PRINT ∗ , ’ P lease p r e s s a key to advance ’
23 READ (∗ ,∗)
24 ENDIF
25 ENDDO

or in C,

1 g r i d t y p e values , temp values ;
2 int ix , iy , i c y c l e ;
3 // A l l o ca t e a 2D array with i n d i c e s that run 0−>nx+1 and 0−>ny+1
4 // This r e p l i c a t e s Fortran ’ s a r rays with v a r i a b l e s t a r t s and ends
5 a l l o c a t e g r i d (&values , 0 , nx+1, 0 , ny+1) ;
6 a l l o c a t e g r i d (&temp values , 0 , nx+1, 0 , ny+1) ;
7 // Assign the value 5 .5 to the whole g r id
8 a s s i g n g r i d (&values , 0 , nx+1, 0 , ny+1, 5 . 5) ;

16 CHAPTER 2. CASE STUDIES

9 // Assign the boundary c o n d i t i o n s . 1 . 0 along the l e f t and bottom
10 // 10 .0 along the r i g h t and top
11 a s s i g n g r i d (&values , 0 , 0 , 0 , ny+1, 1 . 0) ;
12 a s s i g n g r i d (&values , nx+1, nx+1, 0 , ny+1, 1 0 . 0) ;
13 a s s i g n g r i d (&values , 0 , nx+1, 0 , 0 , 1 . 0) ;
14 a s s i g n g r i d (&values , 0 , nx+1, ny+1, ny+1, 1 0 . 0) ;
15 //To a C programmer , t h i s l ook s backwards , but the array i s us ing
16 // Fortran orde r ing d e l i b e r a t e l y
17 for (i c y c l e =0; i c y c l e <500;++ i c y c l e) {
18 for (i y =1; iy<=ny;++iy) {
19 for (i x =1; ix<=nx;++ix) {
20 ∗(a c c e s s g r i d (&temp values , ix , i y)) = 0 .25 ∗ (
21 ∗(a c c e s s g r i d (&values , i x +1, iy)) +
22 ∗(a c c e s s g r i d (&values , i x , i y +1)) +
23 ∗(a c c e s s g r i d (&values , ix −1, i y)) +
24 ∗(a c c e s s g r i d (&values , i x , iy−1))) ;
25 }
26 }
27 copy gr id (&values , &temp values , 1 , nx , 1 , ny) ;
28 i f (i c y c l e %50==0){
29 d i s p l a y r e s u l t (& va lue s) ;
30 getchar () ;
31 }
32 }

The result of this is shown in Figure 2.2. There is a smooth gradient across the box.
The actual result doesn’t matter here: all that matters is that the parallel version of
this code gives the same result.

Figure 2.2: The temperature across the box after a stable state is reached. Left: actual
smooth result. Right: an approximate visualisation produced by the example code.
Points are coloured blue if they are in the bottom third of temperatures, are unchanged
(here green) if in the middle third, and are red if in the hottest third.

2.1. PROBLEM SPECIFICATION - A PHYSICAL PROBLEM 17

2.1.2 Basic Parallelism - Domain Decomposition

Figure 2.3: Domain decomposition on 2 processors. The whole domain is split on the
green line (top) and new ghost cells are added which must be communicated between
processors (bottom)

To parallelise this code, we simply break the domain into chunks, creating new, “virtual”
boundaries between them. These have their own ghost or guard cells, coloured green
in Fig 2.3, which overlap real cells in the adjacent domain (see arrows). Between steps
of the solver, we communicate these ghost cells to the neighbour, and receive new data
back, keeping the whole domain in sync everywhere.

In practise, it is a good idea to put the boundary conditions into their own routine,
including both the virtual bounds and the real ones. In this example nothing needs to
be done on the real boundaries, as they are simply fixed.

The global domain in this example runs over (0 : nx + 1)× (0 : ny + 1) with the part
(1 : nx)× (1 : ny) being the actual simulation domain, and the rest the boundary cells.

Each local domain runs (0 : nxl + 1) × (0 : nyl + 1) with, again, the edges being
boundary cells and the region (1 : nxl)× (1 : ny1) the core simulation domain.

18 CHAPTER 2. CASE STUDIES

For ease of reading, in the code we use nxlocal and nylocal rather than the shorter
forms, as the “l” character can be ambigious.

Usually, the sizes nx and ny are defined by the problem to solve, but nxl and nyl

can only be defined at run-time one you know how many processors are in use, and
decide how to split them.1

In general, splitting the domain is a hard problem. On anything non-trivial you
want to split not by number of cells but by some sort of overall load. For instance,
suppose some cells took longer to calculate than others: ideally those should be evenly
distributed, otherwise some processors will have more work to do, and others will sit
idle.

In this problem, all cells have the same load, so all we really want is to minimise
the perimeter to area ratio, since we need extra ghost cells around the perimeter.2

2.2 MPI Topologies

The topology of an MPI problem is how the subdomains are connected together. To
show this to MPI, we create a new communicator, to replace MPI COMM WORLD. The
MPI systems then tries to keep connected nodes close in the physical hardware, so that
communications are less costly.

There are two MPI routines for creating topologies, MPI Graph create and
MPI Cart create. Here we are only going to discuss the second. The resulting com-
municator replaces MPI COMM WORLD. A processor can be part of more than one commu-
nicator at the same time, and it is important to note that a given processor need not
(and generally does not) have the same rank in different communicators.

First we are going to describe the functions used to work with a Cartesian topology,
then we apply these to our case study. You may wish to re-read this section after
looking over the code in 2.3

The MPI Cart create routine creates a Cartesian (rectangular) grid of processors,
and is:

1 int MPI Cart create (MPI Comm comm old , int ndims , const int dims [] , const
int pe r i od s [] , int reorder , MPI Comm ∗comm cart)

where

• comm old Usually MPI COMM WORLD

• ndims Number of dimensions in new communicator. Usually the same as the
number in the problem.

• dims Number of processors in each direction

1In general it is a bad idea to write code that needs a certain number of processors. Sometimes,
e.g. a power of 2 can be very advantageous (e.g. Fourier transforms) but you should definitely warn
and preferably have some strategy for dealing with an inappropriate number.

2If this is not obvious, compare the number of ghost cells for a 4x4 square domain and a 16x1
domain.

2.2. MPI TOPOLOGIES 19

• periods Whether processor topology should wrap around at the edges (creating
a periodic domain)

• reorder Whether processor ranks should be changed to better map to physical
hardware

• comm cart Resulting Cartesian communicator

The dims array needed by MPI Cart create can be created using the function

1 int MPI Dims create (int nnodes , int ndims , int dims [])

where

• nnodes Generally the number of processors

• ndims Number of dimensions wanted

• dims Output of number of processors in each direction

This function creates a “sensible” but not necessarily optimal breakdown.

Figure 2.4: An example Cartesian topology

To convert between rank and location, and vice versa, there are the helper functions

1 int MPI Cart coords (MPI Comm comm, int rank , int maxdims , int coords [])

where

• comm A Cartesian communicator from MPI Cart create

• rank Rank (in comm not MPI COMM WORLD) of processor you want coordinates of

• maxdims effectively, the length of coords array

• coords output array containing coordinates of rank

and

1 int MPI Cart rank (MPI Comm comm, const int coords [] , int ∗ rank)

20 CHAPTER 2. CASE STUDIES

where

• comm A Cartesian communicator from MPI Cart create

• coords Coordinates of processor you want rank of

• rank output rank for specified coords

NB: coords must be in range or an error will occur; this function does not return
anything like MPI PROC NULL

To get the neighbours of a given processor use the following function on the processor
in question:

1 int MPI Cart sh i f t (MPI Comm comm, int d i r e c t i o n , int disp , int ∗
rank source , int ∗ rank des t)

where

• comm A Cartesian communicator from MPI Cart create

• direction 0-based integer saying which direction to get neighbours in

• disp displacement of neighbour to get. 1 gets nearest neighbours, 2 the second
nearest etc

• rank source rank of processor disp lower in direction-th coordinate

• rank dest rank of processor disp higher in direction-th coordinate

Unless periodic boundaries are used, then processors at the edge of the domain will
have MPI PROC NULL for some neighbours. With periodic bounds, the neighbour is the
processor on the opposite edge. Using the periods argument to MPI Cart create to
wrap the neighbours around, periodic boundary conditions come for free, passing to
and receiving from neighbours regardless of whether they are at the domain edges or
not.
Note: neighbours are those processors in the same row or column. To get diagonal
neighbours, one has to use MPI Cart rank and calculate the coordinates wanted

2.3 Cartesian Communicator for Case Study

Setting up an appropriate communicator for the Case Study problem goes as follows in
Fortran

1 CALL MPI Init (i e r r)
2 CALL MPI Dims create (nproc , 2 , nprocs , i e r r)
3 CALL MPI Cart create (MPI COMM WORLD, 2 , nprocs , per iods , .TRUE. , &
4 cart comm , i e r r)
5 ! Rank in new communicator
6 CALL MPI Comm rank(cart comm , rank , i e r r)
7 ! Get the rank o f the ne ighbour ing p r o c e s s o r s in Cartes ian communicator

2.3. CARTESIAN COMMUNICATOR FOR CASE STUDY 21

8 CALL MPI Cart sh i f t (cart comm , 0 , 1 , x min rank , x max rank , i e r r)
9 CALL MPI Cart sh i f t (cart comm , 1 , 1 , y min rank , y max rank , i e r r)

10 ! Get my coo rd ina t e s in Cartes ian communicator
11 CALL MPI Cart coords (cart comm , rank , 2 , coord inate s , i e r r)
12 ! Divide the g l o b a l s i z e (nx x ny) per p ro c e s s o r
13 ! Note that MPI Dims create works backwards
14 n x l o c a l = nx / nprocs (1)
15 n y l o c a l = ny / nprocs (2)
16 ! Ca l cu la t e what f r a c t i o n o f the g l o b a l array t h i s p ro c e s s o r has
17 x c e l l m i n l o c a l = n x l o c a l ∗ coo rd ina t e s (1) + 1
18 x c e l l m a x l o c a l = n x l o c a l ∗ (coo rd ina t e s (1) + 1)
19 y c e l l m i n l o c a l = n y l o c a l ∗ coo rd ina t e s (2) + 1
20 y c e l l m a x l o c a l = n y l o c a l ∗ (coo rd ina t e s (2) + 1)

and in C

1 MPI Init (argc , argv) ;
2 MPI Dims create (nproc , 2 , nprocs) ;
3 MPI Cart create (MPI COMM WORLD, 2 , nprocs , per iods , 1 ,
4 &cart comm) ;
5 //Rank in new communicator might be d i f f e r e n t
6 MPI Comm rank(cart comm , &rank) ;
7 //Get the rank o f the ne ighbour ing p r o c e s s o r s in Cartes ian communicator
8 MPI Cart sh i f t (cart comm , 0 , 1 , &x min rank , &x max rank) ;
9 MPI Cart sh i f t (cart comm , 1 , 1 , &y min rank , &y max rank) ;

10 //Get my coo rd ina t e s in Cartes ian communicator
11 MPI Cart coords (cart comm , rank , 2 , c oo rd ina t e s) ;
12 // Divide the g l o b a l s i z e (nx x ny) per p ro c e s s o r
13 n x l o c a l = nx / nprocs [0] ;
14 n y l o c a l = ny / nprocs [1] ;
15 // Ca lcu la te what f r a c t i o n o f the g l o b a l array t h i s p ro c e s s o r has
16 x c e l l m i n l o c a l = n x l o c a l ∗ coo rd ina t e s [0] + 1 ;
17 x c e l l m a x l o c a l = n x l o c a l ∗ (coo rd ina t e s [0] + 1) ;
18 y c e l l m i n l o c a l = n y l o c a l ∗ coo rd ina t e s [1] + 1 ;
19 y c e l l m a x l o c a l = n y l o c a l ∗ (coo rd ina t e s [1] + 1) ;

Now we have a suitable communicator, the core of the serial code just needs rewriting
to use the local sizes, nxlocal and nylocal, and then add boundary conditions.

The boundary conditions have to map between ghost cells and domain cells as shown
in Fig 2.3. Considering processors 1 and 2 in the Figure, we need to map (nxl, 1 : nyl)
on rank 1 to (0, 1 : nyl) on rank 2, and also (1, 1 : nyl) on rank 2 to (nxl + 1, 1 : nyl) on
rank 1.

More generally, we need to:
Send right: (nxl, 1 : nyl) → (0, 1 : nyl)
Send left: (1, 1 : nyl) → (nxl + 1, 1 : nyl)
Send up: (1 : nxl, nyl) → (1 : nxl, 0)
Send down: (1 : nxl, 1) → (1 : nxl, nyl + 1)

The code to do this in Fortran is:

1 ! Send l e f t most s t r i p o f c e l l s l e f t and r e c e i v e in to r i g h t guard c e l l s
2 CALL MPI Sendrecv (array (1 , 1 : n y l o c a l) , ny l o ca l , MPI REAL, x min rank , &
3 tag , array (n x l o c a l +1 ,1: n y l o c a l) , ny l o ca l , MPI REAL, x max rank , &

22 CHAPTER 2. CASE STUDIES

4 tag , cart comm , MPI STATUS IGNORE, i e r r)
5 ! Send r i g h t most s t r i p o f c e l l s r i g h t and r e c e i v e in to l e f t guard c e l l s
6 CALL MPI Sendrecv (array (nx l o ca l , 1 : n y l o c a l) , ny l o ca l , MPI REAL, &
7 x max rank , tag , array (0 , 1 : n y l o c a l) , ny l o ca l , MPI REAL, x min rank ,

&
8 tag , cart comm , MPI STATUS IGNORE, i e r r)
9 !Now e q u i v a l e n t l y in y

10 CALL MPI Sendrecv (array (1 : nx l o ca l , 1) , nx l o ca l , MPI REAL, y min rank , &
11 tag , array (1 : nx l o ca l , n y l o c a l +1) , nx l o ca l , MPI REAL, y max rank , &
12 tag , cart comm , MPI STATUS IGNORE, i e r r)
13 CALL MPI Sendrecv (array (1 : nx l o ca l , n y l o c a l) , nx l o ca l , MPI REAL, &
14 y max rank , tag , array (1 : nx l o ca l , 0) , nx l o ca l , MPI REAL, y min rank ,

&
15 tag , cart comm , MPI STATUS IGNORE, i e r r)

where we use array subsections to show MPI what data to send and receive. Note
that we are not using periodic boundaries, so at the edges of the domain the sendrecv

commands are null operations.

In C the code for a single dimension exchange is:

1 // Unl ike in Fortran , can ’ t use array s u b s e c t i o n s . Have to copy to
temporar i e s

2 s r c = (f loat ∗) mal loc (s izeof (f loat) ∗(n y l o c a l)) ;
3 dest = (f loat ∗) mal loc (s izeof (f loat) ∗(n y l o c a l)) ;
4 //Send l e f t most s t r i p o f c e l l s l e f t and r e c e i v e in to r i g h t guard c e l l s
5 for (index = 1 ; index<=n y l o c a l ; ++index) {
6 s r c [index −1] = ∗(a c c e s s g r i d (data , 1 , index)) ;
7 //Copy e x i s t i n g numbers in to des t because MPI Sendrecv i s a no−op i f
8 // one o f the other ranks i s MPI PROC NULL
9 dest [index −1] = ∗(a c c e s s g r i d (data , n x l o c a l + 1 , index)) ;

10 }
11 MPI Sendrecv (src , ny l o ca l , MPI FLOAT, x min rank ,
12 TAG, dest , ny l o ca l , MPI FLOAT, x max rank ,
13 TAG, cart comm , MPI STATUS IGNORE) ;
14 for (index = 1 ; index<=n y l o c a l ; ++index) {
15 ∗(a c c e s s g r i d (data , n x l o c a l + 1 , index)) = dest [index −1] ;
16 }

where we have to copy data into temporary arrays because there are no array subsec-
tions. There is one code block like this for each of the 4 send/recvs we need to do
(although if we’re careful, we can reuse the src and dest memory).

In Fortran this works well, although for large problems the array subsections can
lead to stack-space issues with some compilers. In C, the code is pretty long and ugly
but works fine.

The final result is shown in Fig 2.5. On 16 processors the result is identical to the
serial result, as we hoped.

2.4. PROBLEM SPECIFICATION - A TERRIBLE PRIME FINDER 23

Figure 2.5: The result of the Case Study code

2.4 Problem Specification - A terrible prime finder

A lot of problems can be domain decomposed, although not always in space. Any basis
set can be used, and ideally there are minimal connections between them. In space,
we used Cartesian coordinates, but one could decompose the same way using Fourier
decomposition (good for some wave problems, called spectral) etc.

Some problems though, just aren’t amenable to this sort of treatment. A classic
example is a large amount of semi-independent working, which must be generally driven
by some co-ordination between processors. If the co-ordination is minimal, we can
“domain decompose” across the work, but if not, this won’t gain us as much as we’d
hope. This is especially the case if we can’t write down how to split up the work, but
we can find splits as things run.

In this case, we might turn to a different model, the Worker-Controller (sometimes
called Master-Slave). Here, one processor is special; it is the Controller, and it is in
charge of splitting up and re-combining the work. The rest are Workers - they get given
some work to do and they do it, returning some results. We usually call the work a
“work package”.

One immediate, major example of this work-package model is that if the packages
take highly varying times to complete, there’s a lot less time wasted3 as any workers
who become free can immediately take the next package.

Even better, in this model sometimes the controller can itself service work packages.
This can be tricky to get right, as if the controller is busy working there will be delays
in responding to requests, which can cost more than you gain. On the other hand, if
there is some cheaper work the controller can do, and especially if this work can be

3Ideally, none, but that’s rarely possible. If you get unlucky and one worker gets “too many” hard
packages, there’ll be some waste.

24 CHAPTER 2. CASE STUDIES

paused and resumed, and even more so if it can reduce the number or load of work
packages somehow, there can be massive savings.

For example, with the case we describe in the next section, we can improve our basic
algorithm by using the controller process to thin the pool of work packages we need to
execute, using a different process to the full execution the workers complete. This work
is continuous and can easily be interrupted and resumed, so using some non-blocking
comms (see later) we can make this very elegant and efficient.

2.4.1 The Terrible Primer Finder Algorithm

Suppose we want to find all prime numbers in an interval [a, b] (between a and b,
inclusive of both ends). A prime number, by definition, is a number which is divisible
by only itself and 1, i.e. it has no other factors. So, 5 is prime, but 6 is not - 6 is a
product of 2 and 3, and is called a composite number.

The simplest way to identify primes is “trial division” - try and divide by every
possible factor, and as soon as we find one that divides exactly, our number cannot
be prime. Maths tells us two useful things - if a number, N, divides by some other
number, m, then N must divide by everything which m divides by (say m = p*q, then
N = p*q*r, where r = N/m). If this sounds trivial, it sort of is, but it does need proving
in proper maths. This also means that there is exactly one way to write any number
as a “product of primes”.

Taking the first few primes, 2, 3, 5, 7, 11, 13, 17 (1 is usually not counted as prime)
- we see there is exactly one way to write 15 as a product: its 3× 5. No other numbers
in that list work. Similarly, 21 = 3× 7 and can’t be written any other way.

Those two things together mean that we only have to check whether a number
divides by potential factors in the list of primes, and we can stop at the first one that
works. Consider 12, for example. It is 2× 2× 3. Once we’ve checked 2, we don’t need
to check 4, or 6, or any other even number as these absolutely cannot be factors, since
they divide by 2. Also, since we already know there is a factor, 2, then 12 cannot be
prime. On the other hand, for 13, we have to check 2, 3, 5, 7 and 11, and only when
ALL of them fail can we say 13 is prime.

This is an example of an “early break” condition, and means that the work required
to check a number varies greatly depending what the number is. For 12 we do 1
division, but for 13 we have to do 5. For 15, we have to do 2 (factors 2 and 3). Since
the distribution of primes isn’t simple (or even known exactly), we can’t work out how
to combine work packets to give each worker the same amount of work.

While the workers work on their trial divisions, the master process waits to dispatch
the next candidates to check. We can see quite easily that the master could remove
candidates that divide by 2 by skipping every 2nd number. It could also skip every
3rd, 5th etc. This is called a “sieve” (specifically https://en.wikipedia.org/wiki/

Sieve_of_Eratosthenes), and is work the master can do slowly while the workers
work.

Important Note: this combined algorithm is not terribly sensible - we might be better
just running a parallel sieve alone, without any trial division. But we want to illustrate

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

2.4. PROBLEM SPECIFICATION - A TERRIBLE PRIME FINDER 25

the power of the Worker-Controller model and this is a good simple example. The real
problem with it is that unless we use very large numbers, the communications overhead
is very large and we’d be better using a simple split and accepting the inefficiency. But
case studies are rarely perfect.

2.4.2 The Code

An example of this model is included in the code packet with this course, in C, Fortran
and Python. You will probably notice the overheads if you try writing a simple sieve
algorithm for comparison. If you want to explore this further, look into sending larger
work packages - for instance having the worker check 100 numbers, not 1. This reduces
the ratio of comms to work, and helps the efficiency.

Chapter 3

MPI Types

3.1 Basic Custom Types

MPI provides data types for things like integers and floats, that tell MPI how much
data to send with a given element. We went over the built-in types briefly in 1.2.2 -
recall that C and Fortran use slightly different namings.

The built-in types are essential for communications, but there is a far more powerful
option - writing our own custom types. Just as we would use TYPES (in Fortran) or
structs (in C), we can use a group of elements as though they were one - passing to a
function for instance. In MPI, we can create custom types to streamline our comms
operations.

For instance, an obvious need is for a way to describe not a single basic type element,
but many of them, i.e. an array. We’d also like a type so we can send a structure
smoothly, or communicate some sub-section of an array. While all of these can be done
with the basic commands, we’d prefer something more elegant!

3.1.1 MPI Contiguous

Recall the ring-pass example, but suppose rather than a single element we want to send
nitems at once. We can obviously do this using the count parameter, like

1 MPI Sendrecv (values , nitems , MPI INT , r ight , TAG, va lue s r e cv , nitems ,
MPI INTEGER, l e f t , TAG, MPI COMM WORLD, MPI STATUS IGNORE)

and

1 MPI Sendrecv (values , nitems , MPI INTEGER, r ight , TAG, va lue s r e cv , nitems
, MPI INTEGER, l e f t , TAG, MPI COMM WORLD, MPI STATUS IGNORE)

where both values and values recv are now arrays so in C we no longer require the
explicit address-of.

The alternative to this is using MPI Type contiguous to create a type consisting of
nitems copies of the basic type. To create the type:

26

3.1. BASIC CUSTOM TYPES 27

1 int MPI Type contiguous (int count , MPI Datatype oldtype , MPI Datatype ∗
newtype)

• count number of elements of oldtype in newtype

• oldtype datatype to base this new type off. Usually, but not necessarily, a prim-
itive MPI type

• newtype output containing the newly created type.

Note that the contiguous part means that the elements must be stored in order and
without gaps such as in a C or Fortran array.

3.1.2 Committing Types

Now the type is created, can it be used immediately? Not yet! If you try it it may
work, but it can’t be relied on and can change, especially if you create any more types.
Instead it must be committed first, so that it is registered with the MPI type system.
The commit function is

1 int MPI Type commit (MPI Datatype ∗datatype)

where datatype is a type created with type create.
Once committed, custom types can be used just as normal types1

The opposite of the commit is the free,

1 int MPI Type free (MPI Datatype ∗datatype)

where datatype is a type created with a creation routine that has been committed.
After the free operation, the type can no longer be used in MPI operations, just as if
it had never been committed.

3.1.3 Using a Type

The ring-pass example using this is then, in Fortran,

1 CALL MPI Type contiguous (nitems , MPI INTEGER, cont ig type , i e r r)
2 CALL MPI Type commit (cont ig type , i e r r)
3 CALL MPI Sendrecv (values , 1 , cont ig type , r i ght , tag , va lue s r e cv , &
4 1 , cont ig type , l e f t , tag , MPI COMM WORLD, MPI STATUS IGNORE, i e r r)

and in C

1 MPI Type contiguous (NITEMS, MPI INT , &cont i g type) ;
2 MPI Type commit(& cont i g type) ;
3 MPI Sendrecv (values , 1 , cont ig type , r i ght , TAG, va lue s r e cv , 1 ,

cont ig type , l e f t , TAG, MPI COMM WORLD, MPI STATUS IGNORE) ;

1There is a caveat about reduction operations, such as Reduce and Allreduce - custom types need
custom operators to know how to do the reduction - but you can avoid needing to do this by falling
back to the less elegant long-form option

28 CHAPTER 3. MPI TYPES

We create and commit the type, and then send as before, only now the count

parameters are back to 1 because we are sending only one block of our custom type.
There aren’t many actual reasons for doing this with a contiguous type. In theory it

might be faster, although we have never observed it to be. It can be used to send more
than 4GB2 of data: note that the counts are integers so this is their maximum size.
Type lengths are also integers, so we could use them to send up to 19 EB (Exabytes)
of data. However, the contiguous type has some uses and is the simplest type to start
with.

3.1.4 Indexed or block-based type

Imagine trying to send the red cells in Figure 3.1. For this we can use the special
type MPI Type indexed which encodes a series of blocks of data and their relative
displacements.

Figure 3.1: A Subset of Cellular Data

1 int MPI Type indexed (int count , const int ∗ a r r a y o f b l o c k l e n g t h s , const
int ∗ a r ray o f d i sp l a c ement s , MPI Datatype oldtype , MPI Datatype ∗
newtype)

• count number of blocks

• array of blocklengths array of length of blocks in multiples of oldtype

• array of displacement array of starts of blocks in multiples of oldtype

• oldtype Type to base custom type on. Usually (not necessarily) a primitive type

• newtype value to return newly created indexed type

For the data in Figure 3.1 we then have

1 l eng th s [0] = 2 ; l eng th s [1] = 3 ;
2 di sp lacements [0] = 0 ; d i sp lacements [1] = 4 ;
3 MPI Type indexed (2 , l engths , d i sp lacements , MPI INT , &index type) ;
4 MPI Type commit(& index type) ;

22GB using some implementations

3.1. BASIC CUSTOM TYPES 29

or

1 l eng th s = (/2 , 3/)
2 di sp lacements = (/0 , 4/)
3 CALL MPI Type indexed (2 , l engths , d i sp lacements , MPI INTEGER,

index type , &
4 i e r r)
5 CALL MPI Type commit (index type , i e r r)

General indexed type

There also exists a more general version of the indexed type which allows you to specify
the offsets in bytes rather than in units of oldtype, allowing you to deal better with
mixed data. This is called MPI Type create hindexed. Do not confuse this with the
function MPI Type hindexed which is deprecated and must not be used in new code.

3.1.5 Mixing Types

Mixing MPI types in send and receive operations provides a lot of power, allowing the
remapping of data in the process. For instance we can map from one set of cells in the
array above, to another set, as in Fig 3.2. Initially the source array is set to values 1-8,
while the destination is all 0. After the comms step, the destination is as shown.

Figure 3.2: Mixed Send-Recv types to remap data

The code to do this is, in Fortran,

1 l eng th s = (/2 , 3/)
2 di sp lacements = (/0 , 4/)
3 CALL MPI Type indexed (2 , l engths , d i sp lacements , MPI INTEGER,

index type , &
4 i e r r)
5 CALL MPI Type commit (index type , i e r r)
6

7 l eng th s = (/3 , 2/)
8 di sp lacements = (/1 , 5/)
9 CALL MPI Type indexed (2 , l engths , d i sp lacements , MPI INTEGER, &

10 i ndex type recv , i e r r)
11 CALL MPI Type commit (index type recv , i e r r)

30 CHAPTER 3. MPI TYPES

and in C

1 l eng th s [0] = 2 ; l eng th s [1] = 3 ;
2 di sp lacements [0] = 0 ; d i sp lacements [1] = 4 ;
3 MPI Type indexed (2 , l engths , d i sp lacements , MPI INT , &index type) ;
4 MPI Type commit(& index type) ;
5

6 l eng th s [0] = 3 ; l eng th s [1] = 2 ;
7 di sp lacements [0] = 1 ; d i sp lacements [1] = 5 ;
8 MPI Type indexed (2 , l engths , d i sp lacements , MPI INT , &index type r e cv) ;
9 MPI Type commit(& index type r e cv) ;

3.2 Types Describing Structures

Types are also a handy way to simplify or streamline the sending of structures (and
some Fortran TYPEs). Lets call each field of our structure a block (for clarity between
languages). Then to describe a structure in memory we need to specify:

• The offset of each block of the struct from the start of the struct as a number of
bytes. Do note that this isn’t something you can write down - compilers might
pad (see padding) data types - so locations might not be what you thought.

• The datatype of each block, which tells us its length in memory

• The number of sub-elements in a block, for instance rather than a simple int it
might be an array of 3.

When we’re trying to build an MPI type, we want to specify the type as an MPI
datatype, and the number of sub elements relative to this.

The function we use is

1 int MPI Type create struct (int count , const int a r r a y o f b l o c k l e n g t h s [] ,
const MPI Aint a r r a y o f d i s p l a c e m e n t s [] , MPI Datatype a r r a y o f t y p e s ,
MPI Datatype ∗newtype)

• count Number of blocks

• array of blocklengths array of lengths of blocks. The lengths are in multiples
of the datatype given in array of types

• array of displacements array of offsets to the start of each block, in bytes

• array of types Types of each block

• newtype Value to return newly created type

In C, the signature introduces a new variable type, MPI Aint which is an integer
guaranteed to be long enough to hold a memory address (pointer) on this system. In
practice, this is almost always the same size as a size t.

In Fortran, this is instead an INTEGER KIND, MPI ADDRESS KIND, which we use
like INTEGER(MPI ADDRESS KIND) :: address

3.2. TYPES DESCRIBING STRUCTURES 31

3.2.1 Describing a simple structure

As an example, consider the structure in figure 3.3 below. This is a single integer, a
pair of integers, and a single float.

Figure 3.3: Illustration of array ordering in MPI Code

The types for this are obvious and easy - we have an MPI INT, a pair of type MPI INT

and an MPI FLOAT. The blocklengths are also easy - they are 1, 2, 1.
The offsets aren’t something we can see by looking at what we’ve defined, as we

noted above. Instead we use a function to find out for us, like this:

1 typedef struct {
2 int a ;
3 int b [2] ;
4 f loat c ;} mystruct ;
5

6 disp lacement [0] = o f f s e t o f (mystruct , a) ;
7 disp lacement [1] = o f f s e t o f (mystruct , b) ;
8 disp lacement [2] = o f f s e t o f (mystruct , c) ;

The complete code to create this type in C then becomes

1 typedef struct {
2 int a ;
3 int b [2] ;
4 f loat c ;} mystruct ;

32 CHAPTER 3. MPI TYPES

5 MPI Datatype types [3] ;
6 MPI Aint di sp lacement [3] ;
7 int l eng th s [3] ;
8 disp lacement [0] = o f f s e t o f (mystruct , a) ;
9 disp lacement [1] = o f f s e t o f (mystruct , b) ;

10 disp lacement [2] = o f f s e t o f (mystruct , c) ;
11 types [0] = MPI INT ;
12 types [1] = MPI INT ;
13 types [2] = MPI FLOAT;
14 l eng th s [0] = 1 ;
15 l eng th s [1] = 2 ;
16 l eng th s [2] = 1 ;
17

18 MPI Type create struct (3 , l engths , d i sp lacements , types , &s t r u c t t y p e) ;

Unusually, the Fortran is more tricky than the C, since we’re not as exposed to
pointers and the underlying memory. There are horrible ways to find the offsets etc
using C/Fortran interoperability, but this is not necessary or recommended.

For Fortran, the fields in a type are free to be re-ordered behind the scenes. To
get their order guaranteed, mark your structure either as BIND(C) (meaning it can
inter-operate with C code), or as SEQUENCE.

Now the function to get the locations is

1 int MPI Get address (const void ∗ l o ca t i on , MPI Aint ∗ address)

• location The item you want the address of

• address The returned address as distance from the bottom of the MPI memory
space

The address is returned as a slightly mysterious distance from the “bottom of MPI
memory space” - i.e. it is a location relative to all of the memory in the program. We
want only the offset from the start of our type - so we want to subtract this offset.
But we can’t do this using just an arithmetic operation, because MPI Aint is special.
Instead we use the following to add

1 MPI Aint MPI Aint add (MPI Aint base , MPI Aint d i sp)

and to difference

1 MPI Aint MPI Aint d i f f (MPI Aint addr1 , MPI Aint addr2)

Specifically, the latter returns addr1-addr2.
Note that even in the Fortran there is no final error parameter.
The full Fortran code to describe our type is then

1 TYPE mytype
2 SEQUENCE
3 INTEGER : : a
4 INTEGER, DIMENSION(2) : : b
5 REAL(KIND(1 .D0)) : : c

3.3. BACK TO THE CASE STUDY 33

6 END TYPE mytype
7 INTEGER(MPI ADDRESS KIND) : : base
8 INTEGER(MPI ADDRESS KIND) : : &
9 DIMENSION(3) : : d i sp lacements

10 TYPE(mytype) : : data
11

12 CALL MPI Get address (data , base , i e r r)
13 CALL MPI Get address (data%a , &
14 di sp lacements (1) , i e r r)
15 CALL MPI Get address (data%b , &
16 di sp lacements (2) , i e r r)
17 CALL MPI Get address (data%c , &
18 di sp lacements (3) , i e r r)
19

20 di sp lacements (1) = MPI Aint d i f f (&
21 di sp lacements (1) , base)
22 di sp lacements (2) = MPI Aint d i f f (&
23 di sp lacements (2) , base)
24 di sp lacements (3) = MPI Aint d i f f (&
25 di sp lacements (3) , base)

3.2.2 Using Structure Types

While creating them is a bit fiddly due to finding all the lengths and offsets, using
structure types is just the same as any other. For instance we can send arrays of
structure types etc.

3.2.3 Non-local Structure Data

Do remember that structures may “contain” data that is not actually local to them -
for instance a structure containing a pointer to some data elsewhere. In Fortran, this
may be the case for structures containing ALLOCATABLEs as well as POINTERs. In
these cases you need to be careful to describe and send the actual data too.

3.3 Back to the Case Study

3.3.1 Array Subsections as a Type

The most generally useful MPI Type routine is one that allows creation of a type rep-
resenting a subsection of an array. This can replace the clumsy array temporaries we
used in the domain decomposition case study before, making the C code much more
readable and getting rid of some copying operations in the Fortran. The function is

1 int MPI Type create subarray (int ndims , const int a r r a y o f s i z e s [] , const
int a r r a y o f s u b s i z e s [] , const int a r r a y o f s t a r t s [] , int order ,

MPI Datatype oldtype , MPI Datatype ∗newtype)

34 CHAPTER 3. MPI TYPES

• ndims Dimensions of array

• array of sizes Sizes of outer array

• array of subsizes Size of subarray of outer array

• array of starts Offset in each dimension of subarray

• order Whether the array is C or Fortran ordered

• oldtype Type of the underlying data in the array

• newtype Value to return newly created type

3.3.2 Array Ordering

By default, arrays in C are in Column Major order so the last index varies the fastest.
In Fortran arrays are Row Major so the first index varies fastest. Both languages can
mimic the ordering of the other. Fig 3.4 shows what this means for our MPI calls.

Figure 3.4: Illustration of array ordering in MPI Code

3.3. BACK TO THE CASE STUDY 35

Figure 3.5: Paralellising the case study needs us to copy data from the Yellow cells to
the Green cells.

Fig 3.5 shows what we need to do for the Case Study code. One paired send-receive
operation needs to send the yellow cells to the processor on the left and to receive the
green cells from the processor on the right. We create a type describing the green cells
as (using C, since this benefits the most from the types)

1 int s i z e s [2] , s u b s i z e s [2] , s t a r t s [2] ;
2

3 //Whole array i s n x l o c a l x n y l o c a l
4 s i z e s [0] = n x l o c a l + 2 ;
5 s i z e s [1] = n y l o c a l + 2 ;
6 //Want a s t r i p 1 x n y l o c a l
7 s u b s i z e s [0] = 1 ;
8 s u b s i z e s [1] = n y l o c a l ;
9

10 // Star t 1 c e l l up , n x l o c a l + 1 in
11 s t a r t s [0] = n x l o c a l + 1 ;
12 s t a r t s [1] = 1 ;
13

14 MPI Type create subarray (2 , s i z e s , subs i z e s ,
15 s t a r t s , MPI ORDER FORTRAN, MPI FLOAT,
16 &newtype) ;
17

18 MPI Type commit(&newtype) ;

and for the yellow cells

1 int s i z e s [2] , s u b s i z e s [2] , s t a r t s [2] ;
2

3 //Whole array i s n x l o c a l x n y l o c a l
4 s i z e s [0] = n x l o c a l + 2 ;
5 s i z e s [1] = n y l o c a l + 2 ;
6 //Want a s t r i p 1 x n y l o c a l
7 s u b s i z e s [0] = 1 ;

36 CHAPTER 3. MPI TYPES

8 s u b s i z e s [1] = n y l o c a l ;
9

10 // Star t 1 c e l l up , 1 c e l l in
11 s t a r t s [0] = 1 ;
12 s t a r t s [1] = 1 ;
13

14 MPI Type create subarray (2 , s i z e s , subs i z e s ,
15 s t a r t s , MPI ORDER FORTRAN, MPI FLOAT,
16 &newtype) ;
17

18 MPI Type commit(&newtype) ;

In practice we’d usually write a single routine to create and commit the type, like
create single type(sizes, subsizes, starts, &newtype);

We can now use these types instead of the temporary array sections in the case-
study code. In Fortran this doesn’t make much difference, but in C the code gets much
simpler.

The C code for the send-receives is now just

1 MPI Sendrecv (data−>data , 1 , t y p e l s , x min rank ,
2 TAG, data−>data , 1 , t ype r r , x max rank ,
3 TAG, cart comm , MPI STATUS IGNORE) ;
4

5 MPI Sendrecv (data−>data , 1 , t ype r s ,
6 x max rank , TAG, data−>data , 1 , t y p e l r , x min rank ,
7 TAG, cart comm , MPI STATUS IGNORE) ;
8

9 MPI Sendrecv (data−>data , 1 , type d s , y min rank ,
10 TAG, data−>data , 1 , type u r , y max rank ,
11 TAG, cart comm , MPI STATUS IGNORE) ;
12

13 MPI Sendrecv (data−>data , 1 , type u s , y max rank ,
14 TAG, data−>data , 1 , type d r , y min rank ,
15 TAG, cart comm , MPI STATUS IGNORE) ;

The Fortran doesn’t look much simpler, but we no longer need to slice the arrays, so
we’re a bit less likely to make a silly typing error that could cause bugs:

1 ! Send l e f t most s t r i p o f c e l l s l e f t and r e c e i v e in to r i g h t guard
c e l l s

2 CALL MPI Sendrecv (array , 1 , t y p e l s , x min rank , &
3 tag , array , 1 , t ype r r , x max rank , &
4 tag , cart comm , MPI STATUS IGNORE, i e r r)
5

6 ! Send r i g h t most s t r i p o f c e l l s r i g h t and r e c e i v e in to l e f t guard
c e l l s

7 CALL MPI Sendrecv (array , 1 , t ype r s , x max rank , &
8 tag , array , 1 , t y p e l r , x min rank , &
9 tag , cart comm , MPI STATUS IGNORE, i e r r)

10

11 !Now e q u i v a l e n t l y in y
12 CALL MPI Sendrecv (array , 1 , type d s , y min rank , &
13 tag , array , 1 , type u r , y max rank , &

3.3. BACK TO THE CASE STUDY 37

14 tag , cart comm , MPI STATUS IGNORE, i e r r)
15

16 CALL MPI Sendrecv (array , 1 , type u s , y max rank , &
17 tag , array , 1 , type d r , y min rank , &
18 tag , cart comm , MPI STATUS IGNORE, i e r r)

And that’s it - that’s all the basics of Types and how to use them!

Chapter 4

Non-blocking MPI Communications

4.1 Concepts of Non Blocking Communications

Way back in Chapter 1 we saw that we could replace a Send and Recv call with a single
Sendrecv, so that we didn’t suffer from deadlocks in a single set of sends and receives.
But what if we want to do many send-recv processes at once? For instance, instead of
the simple ring pass, suppose we wanted to pass something to the processor one over,
something else to the one two over, etc, and we want them all to go at once.

The solution to this is non-blocking communications - comms where we can send
or receive data and then immediately go on to other things while the communication
occurs in the background. Once the communication is all done, we can then do whatever
we needed to with that data.

4.1.1 Why do we use this?

Why might we want to do this? Most of the time we can re-arrange our communications
so that the usual blocking operations will work, but sometimes this can be difficult or
inefficient. For instance, if we don’t need synchronisation, but we need to send data to
another processor to be used at some future time (the recipient will wait until it receives
the data to act on it), we might find it easier and safer from deadlocks or livelocks to
use non-blocking receives. Suppose we are running distributed calculations and want
to return all our answers to the master process - the master can’t know when a message
will come in, so it is difficult to ensure it is waiting when another process is trying to
send (sometimes giving a livelock, or if you’re unlucky can turn into a deadlock too)
or it has to check for messages periodically, and be allowed to carry on if one is not
received.

4.1.2 Latency and Latency Hiding

More commonly, you would have the master sat waiting for the child processes to send
data, and while that works and is safe, it wastes a lot of the master’s time. We saw
earlier that with blocking commns there can be substantial delays where one processor

38

4.1. CONCEPTS OF NON BLOCKING COMMUNICATIONS 39

has to wait until another is ready to receive, and we’d prefer that to be done “in the
background”. This is called latency hiding.

Recall that latency is roughly the time taken for comms to begin, whereas bandwidth
is the rate of data transfer once it’s going. The figure below (4.1) illustrates this
graphically.

Figure 4.1: Latency versus Bandwidth

Non-blocking comms lets us “hide” the latency, because the sending processor isn’t
waiting for the recipient to be ready - it has passed off its data and is off working again.
The recipient reaches a point where it is ready to receive, and the data is already
prepared for sending.

For a simple analogy, think of ordering food from a takeaway. You could walk into
restaurant and place an order, and then wait until it is ready. This is like “normal”
communications - you are “blocked” and can’t do anything else until the food is ready
and you can collect it and leave. Alternately, you could telephone-in the order before
hand, and go pick it up when it is ready. This is latency-hiding - it takes just as long
to cook your food, but you don’t have to sit waiting for that period - you can be doing
other things. Note that if you are early, or your order unexpectedly takes longer to
prepare there will be some remaining latency period - hiding cannot always remove it
all.

We’ll come back to latency hiding at the end of the chapter

4.1.3 Why don’t we use non-blocking everywhere?

So why don’t we use non-blocking comms everywhere and not think about it? Well,
there’s a few reasons. Firstly, it is usually harder to write - you have to make sure the
data is ready and valid when you need it. There is also a bit more code you have to
write. Next, there are some more restrictions on how you can use data - for instance

40 CHAPTER 4. NON-BLOCKING MPI COMMUNICATIONS

you can’t change data which is in the process of being sent. Finally, there are all sorts
of new and exciting bugs you can produce.

However, if non-blocking communication is a natural way to describe your commu-
nication patterns, they can greatly simplify and speed up your code. This is a common
theme in programming - using a powerful tool where warranted simplifies - using it where
not warranted complicates.

4.2 Non-Blocking Commands

The basic send and receive commands are very similar to the blocking variants we have
already seen. They are:

1 int MPI Isend (const void ∗buf , int count , MPI Datatype datatype , int dest
, int tag , MPI Comm comm, MPI Request ∗ r eque s t)

• buf a buffer containing the data

• count number of elements to send

• datatype type of the elements to send

• dest which rank to send to

• tag number uniquely identifying this message (must be unique between any mes-
sages currently in flight)

• comm an MPI communicator to send to

• request a request object that is used to uniquely identify this send operation
later

1 int MPI Irecv (const void ∗buf , int count , MPI Datatype datatype , int
source , int tag , MPI Comm comm, MPI Request ∗ r eque s t)

• buf a buffer to hold the received data

• count number of elements to receive

• datatype type of the elements to receive

• dest which rank data comes from

• tag number uniquely identifying this message (must be unique between any mes-
sages currently in flight)

• comm an MPI communicator to receive from

4.2. NON-BLOCKING COMMANDS 41

• request a request object that is used to uniquely identify this receive operation
later

We see that the send operation has gained a parameter, request, and receive has
gained this and also lost the status object. Requests are a sort of handle that identifies
the operation - so we can have multiple sends in operation and tell them apart. You
need to keep hold of the request objects!

4.2.1 Inter-operation of Send and Receives

All of the MPI send and receive operations can inter-operate. That is, we can use
different variants on the send and receive end. For instance, we could do a non-blocking
send, but a blocking receive.

This is actually quite a common use-case - we want the sender to go on with its
work, but on the receiver we need the data receive to be complete before we can go on.

4.2.2 Requests

The request handle if used to identify the message later if you want to check whether
it has completed. The request is a unique handle for very send and receive call. As
usual, there is a special parameter, MPI REQUEST NULL which causes all functions that
operate on requests to do nothing and return immediately. This might sound silly but
it saves branches - all processors can run the same commands, but only those with valid
requests will actually do anything.

Generally, we will use the request handle to find out whether a send or receive has
completed - and we really must keep hold of it until it has and we’ve dealt with that.
There are two basic classes of functions to do this: Wait and Test. The Wait variants
will wait (block, pause etc) until a request or set of requests has completed1. The Test
variants will test the state and return immediately whether completed or not. The
specific functions are:

• MPI Wait - Wait until a given request has finished and return information about
its status

• MPI Waitall - Wait until all requests in a list have finished and return information
about all of them

• MPI Waitany - Wait until one request in a list has finished and return information
about the one that finished

• MPI Waitsome - Wait until at least one request in a list has finished and return
information about all requests that are marked as finished

1See below for what “completed” actually means

42 CHAPTER 4. NON-BLOCKING MPI COMMUNICATIONS

What is a Completed Operation?

This is very important. Completion has different meanings for sends and
receives!
For a receive operation, completion means that the data has arrived on the
receiving rank and is ready for use. For a send operation, completion means
that the data has left the sending rank (so the buffer may be reused) NOT
that it has been received.
As the sender, you have to send an explicit message to verify if a recipient
has received its data.

The MPI Waitany and MPI Waitsome might seem quite similar and a bit redundant,
but they are very useful. Recall that we are usually doing some computation while non-
blocking communication is happening, because this is how we get the latency hiding
effect. This means that more than one message may have finished while we were doing
that. Waitany will pull off the first request in the queue which is completed, and leaves
the others, whereas Waitsome will pull off ALL of the completed ones. One or other of
these might be much more elegant in our wider code.

The signatures of the waits are:

1 int MPI Wait (MPI Request ∗ request , MPI Status ∗ s t a t u s)

• request the request object that we’re waiting for, from an MPI Isend or MPI Irecv

call

• status a status object (same as we use in MPI Recv) to be filled with information
about the request

Note that MPI Wait will block until the given request has completed.

1 int MPI Waitall (int count , MPI Request a r r a y o f r e q u e s t s [] , MPI Status
a r r a y o f s t a t u s e s [])

• count the number of requests we’re waiting for

• array of requests an array of request objects to wait for

• array of statuses an array of status objects to be filled

The array lengths should be count. Note that MPI Waitall will block until all of the
given requests have completed.

1 int MPI Waitany (int count , MPI Request a r r a y o f r e q u e s t s [] , int ∗ index ,
MPI Status ∗ s t a t u s)

• count the number of requests we’re waiting for

4.2. NON-BLOCKING COMMANDS 43

• array of requests an array of request objects to wait for

• index an integer that will be filled with the number of the request that completed

• status a status object which will be filled with the information about the request
that completed

Note that MPI Waitany will block until one of the the given requests completes and
returns information about this one.

1 int MPI Waitsome (int count , MPI Request a r r a y o f r e q u e s t s [] , int ∗
outcount , int a r r a y o f i n d i c e s [] , MPI Status a r r a y o f s t a t u s e s [])

• count the number of requests we’re waiting for

• array of requests an array of request objects to wait for

• outcount the number of requests (in the given list) which have completed

• array of indices an array of length outcount containing the indices of the com-
pleted requests

• array of statuses an array of status objects to be filled (also of length outcount)

Note that MPI Waitsome will block until at least one request has completed, and return
all of them. This means it will return multiple requests if and only if multiple have
completed before it is called.

The testing variants are very similar, but in this case they don’t block, they simply
return immediately with information on completion. For all but MPI Testsome, there
is an additional integer (LOGICAL in Fortran) parameter flag that returns the truth
of the test. For MPI Test and MPI Testall this is true if all of the given requests
are complete. For MPI Testany, it is true if any of the requests have completed. For
MPI Testsome, instead of a flag, there is an array of indices returned for the completed
requests, like MPI Waitsome.

4.2.3 IMPORTANT: Request Expiry

Once you have waited or successfully tested for completion of a request, it becomes
invalid, and is replaced by MPI REQUEST NULL. You can no longer wait or test for this
handle, even if you tried to sneakily keep a copy of it - that will lead to errors or bugs.
So, as soon as you know a request is complete, you have to service it - you can’t use
the request handle to identify it any more.

Note there is one exception to this - persistent handles - that we will come to later.

44 CHAPTER 4. NON-BLOCKING MPI COMMUNICATIONS

4.3 Caveats of Non-Blocking Comms

4.3.1 Changing Data in Send Buffers

For non-blocking sends, one does have to be careful. While MPI Isend returns imme-
diately, it does not take a copy of the data you gave it (and often you wouldn’t want
it to as that could be a lot of memory use). If you change that data before the send
actually occurs or completes, the changed data will be sent. If you happen to make
changes during the sending, you might get a mix of old and new data.

So remember, once you have called MPI Isend on some data, you mustn’t touch
that data until you know the sending is complete.

4.3.2 Memory Allocation of Buffers

Similarly, you must ensure that send and recv buffers remain allocated and valid until
the corresponding send or recv completes, or MPI will access invalid memory, leading
to crashes, bugs, and horror.

This is particularly easy to accidentally do by using a non-blocking send on a
function-local variable. On exit of the function, this variable leaves scope and the
read or write will no longer be a valid memory usage. So you either have to wait within
the function for the completion, or you can use global variables.

So remember, be very careful about ensuring your send or recv buffers are in scope
when the actual send or recv happens.

4.3.3 Fortran Array Temporaries

For Fortran, there is another common way of mis-scoping a variable - array subsections
or slices may create temporary variables. These scoped locally - if you use one in a
function call it is scoped only to the function call itself. But the temporary creation does
not have to happen, and in fact often doesn’t if the slice is contiguous in the underlying
memory. So you may have it work, or appear to work, in some circumstances and on
some compilers.

DO NOT rely on this working - it is risky and can lead to horrible bugs.

4.3.4 MPI Types for Non Blocking

Often the reason for using an array subsection or a temporary variable is that you need
to send part of a persistent array in which the data is changing as the code runs. You
can do this more simply by using a Type to describe the part you wish to send, and
passing the whole array for this type to act on. MPI will sort out moving just the parts
dictated by the type.

Doing this is a lot simpler, but you must still remember not to change the data until
the sends are complete!

4.4. PERSISTENT COMMUNICATION 45

4.3.5 Data Races

If you have multiple non-blocking receives that all write to the same part of memory,
then you cannot know beforehand the order in which they will complete, so (assuming
they are trying to write different values) the final value of the contentious element is
unpredictable. For blocking receives, you know it is always the last one that will have
set the state. For non-blocking, it will be the last one, and you might be able to find
out (with the Test) functions which this was, but overlapping like this is almost never
a sensible thing to do.

Either all of the receives are actually setting the value to be the same, in which case
you are sending unnecessary data and can probably reduce your comms load, or they
are setting different values, and you have a needless reproducibility problem. This isn’t
actually invalid, but it’s unexpected and rarely a good idea.

4.4 Persistent Communication

As we noted in the previous section, with non-blocking communications there are a
lot more restrictions on when data you give to MPI has to be available. There is
another variant which adds even more restrictions, but has some advantages in some
circumstances.

Suppose you have some persistent data arrays that are around for the entire lifetime
of your code (or at least a significant part of it), and want to send some parts of them
a lot. Then you can given the information about what to do in a send/recv early on,
and re-use that setup multiple times.

This is even more restrictive than the normal non-blocking comms, because these
arrays/variables have to be available for specification when you do the setup and any
time you use it. On the other hand, doing this step only once does save some overheads.
Also, if you design things carefully you can have less repeated code - rather than multiple
Send/Recv sections, you have one setup part and some calls to a function MPI Start

at the places the actual comms happens. This can make maintenance easier, as you
have less to change if, for example, the sources or the sizes of data needs to change.

4.4.1 Commands for Persistent comms

The commands you’ll use are:

1 int MPI Send init (const void ∗buf , int count , MPI Datatype datatype , int
dest , int tag , MPI Comm comm, MPI Request ∗ r eque s t)

• buf a buffer containing the data

• count number of elements to send

• datatype type of the elements to send

• dest which rank to send to

46 CHAPTER 4. NON-BLOCKING MPI COMMUNICATIONS

• tag number uniquely identifying this message (must be unique between any mes-
sages currently in flight)

• comm an MPI communicator to send to

• request a request object that is used to uniquely identify this send operation
later

1 int MPI Recv init (const void ∗buf , int count , MPI Datatype datatype , int
source , int tag , MPI Comm comm, MPI Request ∗ r eque s t)

• buf a buffer to hold the received data

• count number of elements to receive

• datatype type of the elements to receive

• dest which rank data comes from

• tag number uniquely identifying this message (must be unique between any mes-
sages currently in flight)

• comm an MPI communicator to receive from

• request a request object that is used to uniquely identify this receive operation
later

and you might notice that, apart from the names, these are identical to the non-blocking
Isend and Irecv from earlier. This is because they are essentially the same, but these
don’t do the communication when they’re called, but just set up the infrastructure.
Communication is started using some extra functions, MPI Start and MPI Startall,
which look like:

1 int MPI Start (MPI Request ∗ r eque s t)

• request a request object from a MPI Send init or MPI Recv init call

1 int MPI Starta l l (int count , MPI Request a r r a y o f r e q u e s t s [])

• count the number of requests to start

• array of requests an array of length count of request objects from a MPI Send init

or MPI Recv init call

The Start functions initiate the actual communication, after which you can test the
state using the Wait and Test functions. Importantly, unlike with non-blocking comms,
the request handles for persistent comms do not become invalidated when tested, but
they do become, in some sense, “completed”.

4.5. LATENCY HIDING AGAIN 47

4.4.2 Sequencing

As we just said, the persistent communications handles can be re-used. However, it is
not valid to overlap comms - calling MPI Start on a request that is already active is
not allowed. You must wait until the request completes and has been serviced (i.e. you
have done what you needed to with the received data). You are also not allowed to
change the data between a Start, and a Wait or successful Test, or rather, you may get
odd results if you do. Only once you have a completed Wait or a successful Test, may
you alter the data or call MPI Start again.

In other words,

1. before Start is called, a Request is a description of comms that will be done

2. after Start but before completion it is a “in-flight” request and the states of the
data are unknown

3. after completion, which you identify with Wait or Test, the comms is completed,
and the request is back to being valid but not active

4. you may now alter the data

5. when you are again ready to communicate you return to step 1

4.5 Latency Hiding Again

We mentioned latency hiding earlier, and in this section we show an example of actually
doing it. You may also find this described as “overlapped comms and compute” or
“hidden communication”.

The practical implementation is always roughly the same - you start the comms as
non-blocking as early as possible, then on the receiving end you do all of the compu-
tation you can while waiting for the data. Once you receive the data, you finish the
computation you need it for. Note that this may still leave a waiting period, but can
reduce it if you’re lucky.

4.5.1 Latency Hiding in the Case Study

Recall the stencil we need for the domain decomposed case study, shown below. Notice
that we only use cells immediately next to the cell being solved, so we can calculate all
of the interior cells before we have data available in the ghost cells. In the figure, we
can do the 4 very-central cells - in a real problem the domain would be much larger,
and we would be able to do “most” of our comms before the data is ready.

48 CHAPTER 4. NON-BLOCKING MPI COMMUNICATIONS

Figure 4.2: The layout for the case study problem. The red and blue edge cells are
held fixed. The darker blue cell is the one being solved, the yellow is the cells which we
average to update this cell.

This is a good example of how latency hiding works - we can do plenty of compute
before the comms are done and then finish off.

We have examples in the code pack of the case study using the non blocking comms,
the persistent comms, and also the persistent comms doing latency hiding.

4.6 Final Notes on Non Blocking Comms

4.6.1 Collectives

We’ve mostly focused on the Send and Recv commands in this chapter, but there exist
analogues of the collectives too -

• MPI Ireduce

• MPI Igather

• MPI Iscatter

• MPI Ialltoall

• MPI Ibarrier ??

If you think Barrier is an odd choice, it is, but it’s there for completeness and
consistency - so that you can always use a Wait or Test regardless of which collective
you’re working with.2

2Because Barrier doesn’t do anything, we could always swap an Ibarrier plus Wait or Test for a
regular Barrier without loss of generality, but it can be neater not to - often we’d prefer all processors
do the same thing and this can aid that

4.6. FINAL NOTES ON NON BLOCKING COMMS 49

The collectives are used the same broad way as the Send and Recvs - you make the
call to the function to get a request object, let comms happen in the background, and
then test for completion with Wait or Test.

4.6.2 Buffers

There are also buffered versions of the MPI non-blocking send routines. You create a
memory buffer large enough to hold all the messages you will ever have “in-flight” at
one time (there can be more than one). You use the MPI Buffer attach function to
make it available, and then you send data with MPI Bsend. The data is copied into the
buffer before this routine returns, and the send is then non-blocking. You are able to
immediately re-use the original location of the sent data.

However, if you underestimate the size of buffer you need, e.g. by accidentally
sending more messages than you meant to, your code will generally crash. These
functions are handy when required, but are generally considered to be tricksy and hard
to use.

Chapter 5

Summary

The vast majority of MPI programs “in the wild” never use anything beyond the simple
commands covered in any beginner course, such as ours https://warwick.ac.uk/

research/rtp/sc/rse/training/intrompi.

However, that doesn’t mean the commands here are useless - far from it! Where
you need them, the commands we cover here can vastly simplify your codes as well as
improve performance. Combined Sendrecv is incredibly useful, and Types, for example,
while a bit tricky at first, will soon become so useful you’ll wonder how you ever managed
without them.

On the other hand, non blocking comms deserves a brief note of caution. While these
commands are sometimes essential, they are tricksy. Like any other sort of asynchronous
programming programming, you can no longer rely on things being done when you think
they will be - instead you have to check if they are done when you need them. This
way of thinking can be hard to adapt to, and can make code much more complicated.

In general, our recommendation would be to be aware of non-blocking comms and
use them in any cases where they simplify your communications, but to be wary of any
use for optimisation. As with all optimisation questions, you should wait until you have
a performance problem - if it aint broke, don’t fix it.

5.1 Where to Go Now?

The content in this course takes you a substantial way through all of MPI, but it
doesn’t cover everything! There are two major topics we haven’t even touched on,
as well as other bits “round the edges”. We cover some of this in a further course,
https://warwick.ac.uk/research/rtp/sc/rse/training/advancedmpi.

The first of these, MPI-IO, enables you to write your own output files in parallel.
Without this, you either have to use a parallel-IO library (such as PnetCDF or HDF5),
or perform some sort of serialisation operator. MPI-IO is not hard once you are com-
fortable with types, but, file formats are hard, and good file formats are very hard!
Writing your own is just not recommended without very good reasons, which is why
we didn’t cover this.

50

https://warwick.ac.uk/research/rtp/sc/rse/training/intrompi
https://warwick.ac.uk/research/rtp/sc/rse/training/intrompi
https://warwick.ac.uk/research/rtp/sc/rse/training/advancedmpi

5.1. WHERE TO GO NOW? 51

The second big part is called One-Sided communications. Everything we have seen
so far is collaborative in some sense - there is a sender and a receiver working together to
finish the process. But sometimes we want instead to either “push” data off to another
processor, or “pull” data in from another processor, without the other end having to
take active part. Clearly this can’t be entirely one-sided - for instance the other end
has to at least accommodate us doing it - and it is a very different way of working.
Occasionally this can improve performance, and it might be worth knowing about, but
it is very low level and rarely something you’ll actually need.

As usual, the best thing we can recommend is to write programs! The more you
write, the more natural MPI thinking will become. Good luck!

Chapter 6

Glossary

Glossary

asynchronous programming Programming where the order of operations is no longer
strictly defined. For example, if we send ten emails and deal with the responses
as and when they come, whenever that may be and in whatever order, we are
working asynchronously. If we sent one at a time, sending the next only after the
previous response has been received and dealt with, we are working sequentially.
See also blocking operations, 50, 52

bandwidth The rate at which data can be transferred in a communication process.
See also latency, 7

blocking operations Blocking operations are ones that “hold” until something is true
or completed, in contrast to “non-blocking” which usually describes an operation
which has to be checked for truth or completion. The latter allows for other
things to intervene, which is a sort of asynchronous programming process. Note
that blocking operations do not always block until an operation is fully completed
- just until some guarantee can be met. 4

buffer A fancy name for “memory used to store something”. Often buffers are a
temporary location used to store something transient. 4

Column Major A 2-D array is usually described as row x column. Column major
ordering is when the elements are laid out in memory so that the elements of a
column are next to each other, so the first index varies fastest. See also Row
Major, 34

communicator A grouping of processors. Programs can have multiple communica-
tors, but simple programs use only MPI COMM WORLD which contains all processors
in the job. Communicators can be split and combined. 3, 4, 40, 46, 53

52

Glossary 53

deadlock A state in which nobody can move, because there are dependency loops -
for instance A is waiting for B to act, and B is waiting for A, so neither can move.
If you’ve ever see 2 people each trying to wave the other on at a junction, that’s
a sort of deadlock - they’re both stuck waiting for the other to go first. Contrast
livelock, 38

latency The time required for processes to begin. Usually this is a fixed delay. For
instance, in a phone call there is a time required to connect a call before you can
start talking. See also bandwidth, 7

latency hiding a way of reducing the apparent time taken for communication by
allowing it to overlap with other workloads, usually computation. 39

livelock A livelock looks a bit like a deadlock, but importantly both parties can move,
they just cannot resolve their ordering. The usual example is when two people
meet in a corridor, and both try to step aside - they are moving continually, but
never reach a state where either can move ahead. Contrast deadlock, 38

non-blocking . See blocking operations, 11

padding Computer memory is divided into words, or chunks, and many things work
better and faster in chunks that match this. Since these are often longer than a
basic numeric type can be, compilers might insert dead space between data items
in memory to keep the alignment correct. This is called padding.. 30

pass(ed) by value Different languages pass parameters into functions differently. When
passed by value, the current value (at call time) of the variable is copied to a
dummy variable inside the function. For example a function
FUNCTION inc(x)
x = x+1
END FUNCTION
y=1
inc(y)
PRINT y
would give 1 as y is not changed by the call to inc. See also ,

rank A number, unique to each processor in a set (a communicator) that can be used
to identify it. Usually processors are numbered sequentially, and the 0th is called
the root and used for anything that only one processor needs to do. 2, 4

root One of the processors in a communicator which does any unique work. 4, 53

Row Major A 2-D array is usually described as row x column. Row major ordering is
when the elements are laid out in memory so that the elements of a row are next
to each other, so the second (last) index varies fastest. See also Column Major,
34

54 Glossary

scope Scope of a variable is the region of the program in which it exists and can
be used. Most languages have “function scope” so variables you create inside a
function can’t be used outside it. C-like languages add “block scope” so a variable
defined, for example, inside an if-block is lost when the block ends.

	Preface
	About these Notes
	Disclaimer
	Example Programs

	Recap of MPI Basics
	Parallelism and MPI
	A Basic MPI Program
	The Ring Pass
	Reduce Operations
	Non-blocking Send and Recv
	Other Operations

	Case Studies
	Problem Specification - A physical problem
	MPI Topologies
	Cartesian Communicator for Case Study
	Problem Specification - A terrible prime finder

	MPI Types
	Basic Custom Types
	Types Describing Structures
	Back to the Case Study

	Non-blocking MPI Communications
	Concepts of Non Blocking Communications
	Non-Blocking Commands
	Caveats of Non-Blocking Comms
	Persistent Communication
	Latency Hiding Again
	Final Notes on Non Blocking Comms

	Summary
	Where to Go Now?

	Glossary
	Glossary

