
Warwick RSE

“The Angry Penguin“, used under creative commons licence
from Swantje Hess and Jannis Pohlmann.

28/09/2023

Introduction

What is this course for?
• C++ is a very powerful but quite complex language

• C++ has substantial advantages as an academic development language

• Because of the complexity it can be easy to fall into “doing things because they
are what you do” without understanding them

• This course attempts to give you a more grounded understanding of C++ to help
you understand what you are doing and why you are doing it

• From this base you can learn more advanced features of the language and
develop more complex code while retaining performance and safety

Why Program in C++

• Faster code than Matlab, Python, R etc.

• As fast as C (at least on any problem that isn’t already
very fast)

• Easier to write than C and fewer opportunities for
serious errors

• Writing C like code in C++ is not better!

• Lots of libraries and good to write your own libraries in

• Lots of experienced developers in academia

Language Standards
• C++ is a language that is defined by ISO standards

• Mostly a kind of “tick-tock” development of major change followed by update based on experience

• C++98/03 - Original C++ standard. Introduced much of the “shape” of the language. 03 firmed up the
structure and approach

• C++11/14 - Added new features that were aimed at improving developer productivity. 14 expanded the
capabilities of the new features

• C++17 - Mostly aimed at adding features to make C++ code more readable and remove boilerplate code

• C++20 - Variety of changes, mostly concentrating on features for people writing libraries in C++

• C++23 - Upcoming standard, bit of a mixture of things again

Language Standards
• C++ is a language that is define by ISO standards

• Mostly a kind of “tick-tock” development of major change followed by update based on experience

• C++98/03 - Original C++ standard. Introduced much of the “shape” of the language. 03 firmed up the
structure and approach

• C++11/14 - Added new features that were aimed at improving developer productivity. 14 expanded the
capabilities of the new features

• C++17 - Mostly aimed at adding features to make C++ code more readable and remove boilerplate
code

• C++20 - Variety of changes, mostly concentrating on features for people writing libraries in C++

• C++23 - Upcoming standard, bit of a mixture of things again

Warwick RSE

“The Angry Penguin“, used under creative commons licence
from Swantje Hess and Jannis Pohlmann.

28/09/2023

Intro to C++

Introduction

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
#include <iostream>

int mymax(int i1, int i2){

 if (i1>i2) return i1;

 return i2;

}

int main(){

 std::cout << "Maximum of 1 and 10 is " << mymax(1,10) << "\n";

 std::cout << "Maximum of 1 and -1 is " << mymax(1,-1) << "\n\n";

 int mytestval = 5;

 for (int value1 = 1; value1 < 10; value1++){

 std::cout << "Maximum of " << value1 << " and " << mytestval << " is " <<
mymax(value1, mytestval) << "\n";

 }

 return 0;

}

C++
g++ 01-Simple.cpp -o 01-Simple

./01-Simple

Maximum of 1 and 10 is 10

Maximum of 1 and -1 is 1

Maximum of 1 and 5 is 5

Maximum of 2 and 5 is 5

Maximum of 3 and 5 is 5

Maximum of 4 and 5 is 5

Maximum of 5 and 5 is 5

Maximum of 6 and 5 is 6

Maximum of 7 and 5 is 7

Maximum of 8 and 5 is 8

Maximum of 9 and 5 is 9

Multiple Files

02a-main.cpp

#include <iostream>

#include "02b-functions.h"

int main(){

 std::cout << "Result of my_function(double) is " << my_function(1.234) << "\n";

 std::cout << "Result of my_function(string) is " << my_function("Hello world”)<<"\n";

 function_with_no_return("I do not return anything");

}

02a-main.cpp

#include <iostream>

#include "02b-functions.h"

int main(){

 std::cout << "Result of my_function(double) is " << my_function(1.234) << "\n";

 std::cout << "Result of my_function(string) is " << my_function("Hello world”)<<"\n";

 function_with_no_return("I do not return anything");

}

02a-main.cpp

#include <iostream>

#include "02b-functions.h"

int main(){

 std::cout << "Result of my_function(double) is " << my_function(1.234) << "\n";

 std::cout << "Result of my_function(string) is " << my_function("Hello world”)<<"\n";

 function_with_no_return("I do not return anything");

}

02a-main.cpp

#include <iostream>

#include "02b-functions.h"

int main(){

 std::cout << "Result of my_function(double) is " << my_function(1.234) << "\n";

 std::cout << "Result of my_function(string) is " << my_function("Hello world”)<<"\n";

 function_with_no_return("I do not return anything");

}

02a-main.cpp

#include <iostream>

#include "02b-functions.h"

int main(){

 std::cout << "Result of my_function(double) is " << my_function(1.234) << "\n";

 std::cout << "Result of my_function(string) is " << my_function("Hello world”)<<"\n";

 function_with_no_return("I do not return anything");

}

02b-functions.h

#ifndef FUNCTIONS_HEADER_H

#define FUNCTIONS_HEADER_H

#include <string>

 double my_function(double d);

 std::string my_function(std::string s);

 void function_with_no_return(std::string s);

#endif

02b-functions.h

#ifndef FUNCTIONS_HEADER_H

#define FUNCTIONS_HEADER_H

#include <string>

 double my_function(double d);

 std::string my_function(std::string s);

 void function_with_no_return(std::string s);

#endif

02b-functions.h

#ifndef FUNCTIONS_HEADER_H

#define FUNCTIONS_HEADER_H

#include <string>

 double my_function(double d);

 std::string my_function(std::string s);

 void function_with_no_return(std::string s);

#endif

02b-functions.h

#ifndef FUNCTIONS_HEADER_H

#define FUNCTIONS_HEADER_H

#include <string>

 double my_function(double d);

 std::string my_function(std::string s);

 void function_with_no_return(std::string s);

#endif

02b-functions.h

#ifndef FUNCTIONS_HEADER_H

#define FUNCTIONS_HEADER_H

#include <string>

 double my_function(double d);

 std::string my_function(std::string s);

 void function_with_no_return(std::string s);

#endif

02b-functions.h

#ifndef FUNCTIONS_HEADER_H

#define FUNCTIONS_HEADER_H

#include <string>

 double my_function(double d);

 std::string my_function(std::string s);

 void function_with_no_return(std::string s);

#endif

02b-functions.h

#ifndef FUNCTIONS_HEADER_H

#define FUNCTIONS_HEADER_H

#include <string>

 double my_function(double d);

 std::string my_function(std::string s);

 void function_with_no_return(std::string s);

#endif

02b-functions.h

#ifndef FUNCTIONS_HEADER_H

#define FUNCTIONS_HEADER_H

#include <string>

 double my_function(double d);

 std::string my_function(std::string s);

 void function_with_no_return(std::string s);

#endif

02b-functions.h

#ifndef FUNCTIONS_HEADER_H

#define FUNCTIONS_HEADER_H

#include <string>

 double my_function(double d);

 std::string my_function(std::string s);

 void function_with_no_return(std::string s);

#endif

02b-functions.h

#ifndef FUNCTIONS_HEADER_H

#define FUNCTIONS_HEADER_H

#include <string>

 double my_function(double d);

 std::string my_function(std::string s);

 void function_with_no_return(std::string s);

#endif

02b-functions.h

#ifndef FUNCTIONS_HEADER_H

#define FUNCTIONS_HEADER_H

#include <string>

 double my_function(double d);

 std::string my_function(std::string s);

 void function_with_no_return(std::string s);

#endif

02b-functions.cpp

#include "02b-functions.h"

#include <iostream>

double my_function(double d){return d * 2.0;}

std::string my_function(std::string s){return s;}

void function_with_no_return(std::string s){std::cout << s << "\n";}

02b-functions.cpp

#include "02b-functions.h"

#include <iostream>

double my_function(double d){return d * 2.0;}

std::string my_function(std::string s){return s;}

void function_with_no_return(std::string s){std::cout << s << "\n";}

02b-functions.cpp

#include "02b-functions.h"

#include <iostream>

double my_function(double d){return d * 2.0;}

std::string my_function(std::string s){return s;}

void function_with_no_return(std::string s){std::cout << s << "\n";}

02b-functions.cpp

#include "02b-functions.h"

#include <iostream>

double my_function(double d){return d * 2.0;}

std::string my_function(std::string s){return s;}

void function_with_no_return(std::string s){std::cout << s << "\n";}

02b-functions.cpp

#include "02b-functions.h"

#include <iostream>

double my_function(double d){return d * 2.0;}

std::string my_function(std::string s){return s;}

void function_with_no_return(std::string s){std::cout << s << "\n";}

02b-functions.cpp

#include "02b-functions.h"

#include <iostream>

double my_function(double d){return d * 2.0;}

std::string my_function(std::string s){return s;}

void function_with_no_return(std::string s){std::cout << s << "\n";}

02b-functions.cpp

#include "02b-functions.h"

#include <iostream>

double my_function(double d){return d * 2.0;}

std::string my_function(std::string s){return s;}

void function_with_no_return(std::string s){std::cout << s << "\n";}

02b-functions.cpp

#include "02b-functions.h"

#include <iostream>

double my_function(double d){return d * 2.0;}

std::string my_function(std::string s){return s;}

void function_with_no_return(std::string s){std::cout << s << "\n";}

02b-functions.cpp

#include "02b-functions.h"

#include <iostream>

double my_function(double d){return d * 2.0;}

std::string my_function(std::string s){return s;}

void function_with_no_return(std::string s){std::cout << s << "\n";}

Compiling
g++ 02b-functions.cpp 02a-main.cpp g++ 02a-main.cpp 02b-functions.cpp

g++ -c 02b-functions.cpp

g++ -c 02a-main.cpp

g++ 02b-functions.o 02a-main.o

g++ -c 02a-main.cpp

g++ -c 02b-functions.cpp

g++ 02b-functions.o 02a-main.o

./a.out

Result of my_function(double) is 2.468

Result of my_function(string) is Hello world

I do not return anything

g++ 02b-functions.h

g++ -c 02b-functions.cpp

g++ 02b-functions.o 02a-main.cpp

Warwick RSE

“The Angry Penguin“, used under creative commons licence
from Swantje Hess and Jannis Pohlmann.

28/09/2023

Other variables

Const variables
• Inherited from C, but more commonly used and extended in C++

• You can flag variables as constant by putting const before the type of the variable
when you declare it

• const variables must be assigned a value on the line where they are declared

• After that line they cannot be changed

• If you try to change a const variable’s value the code will not compile

• const parameters to functions cannot be changed inside that function

• You cannot pass a const value to a function as a non-const parameter

auto variables
• Quite often in C++ you will see code like

• int value = get_integer();

• Fine for integer, but for more complex functions you have to find out and match the
variable type to the return type

• The compiler checks that you’ve used the right type, so it must know what the right
type is - can’t it work out the type of my variable for me?

• YES - use auto in place of the type when declaring a variable and assign it a value on
the same line and the compiler will “paste-in” the correct return type

• You are still giving the variable a fixed type, just telling the compiler to work out which

Warwick RSE

“The Angry Penguin“, used under creative commons licence
from Swantje Hess and Jannis Pohlmann.

28/09/2023

References

Concept

What is a referencce
• A reference variable (usually just called a reference) is a variable that doesn’t have a

value of its own - it refers to another variable

• One of the distinguishing features of a reference is that it can be used anywhere the
variable that it refers to can be used - no extra code is needed to use a reference

• Reference variables have to be initalized when they are defined

• i.e. reference variables are created and must be immediately told which variable
they refer to - they will refer to the same variable for their entire lifetime

• So if they only refer to a single variable for their whole lifetime, why are they useful?

Pass by reference

Pass by reference languages

• You’ve probably never thought about what the computer is actually doing
when it calls a function

• There are a lot of complexities, but in general it has to prepare a special
structure called a stack frame which contains the parameters to the function
and jump to a special point in the program code that uses the data in the
stack frame to execute the function

• How does it put the variables into the stack frame?

• Actually quite complex, but two basic approaches

Pass by value
• C and C++ are pass by value languages

• Variables are put into the stack frame by copying them

• The variables in the function are not the variables that were passed as parameters
to the function when it is called

• They have the same values, but they refer to completely different parts of
memory

• Changing the parameters in a function doesn’t change the variables that were
used as parameters to the function calls

Pass by reference
• There aren’t really any modern strict pass by reference languages, but Fortran is almost a

pass by reference language. We’re going to describe a strict pass by reference language
for clarity

• Variables are put into the stack frame as references to the parameters

• The variables in the function are the variables that were passed as parameters to the
function when it is called

• They refer to the same underlying memory

• Changing the parameters in a function does change the variables that were used as
parameters to the function calls

Pass by reference

• A question then is why would you want to pass a variable by reference

• Basically two reasons

• I want to modify the value of a parameter that I pass to a function

• I want to pass such a large object that copying it would take too much time
or memory

Reference Parameters
• Effectively if you have a reference parameter to a function in C++ then you make that

parameter passed by reference

• You can control for each parameter whether you pass it by value or reference

• Mostly this makes no other changes to the code - call the function just like you always used to

• There are some restrictions about what you can pass to a function parameter expecting a
reference

• Mostly you can’t pass literals, that is things like “Hello world!” or 14

• You can pass more things to a const reference since that is a guarantee that you won’t
change the variable

Reference Parameters

void demo_function(int &i){

 i+=5;//Increment i by 5

}

int main(){

 int i=7;

 demo_function(i);

 std::cout << "Modified value is " << i << "\n";

 //demo_function(17) won't work because you can't take a reference to a literal

}

Reference Parameters

void demo_function(int &i){

 i+=5;//Increment i by 5

}

int main(){

 int i=7;

 demo_function(i);

 std::cout << "Modified value is " << i << "\n";

 //demo_function(17) won't work because you can't take a reference to a literal

}

Reference specifier

Reference Parameters

• Specifying that a function parameter is a reference in C++ is very easy

• Prepend the name of the variable with an & when it is declared

• & is used in other places in C++, but when it is placed before the name of
a variable in a declaration it only makes that variable a reference

Reference Variables
• You can create a reference variables just as easily as a reference function parameter, and in

the same way

• You always have to then initialise the reference variable with the variable that it is to be the
reference to

• The easiest way of doing that is just by assignment

• int i; 
int &i_ref = i;

• N.B! The & only goes with a specific variable name

• int i, &i_ref=i; is exactly the same as the above example!

Reference Variables
• Why would you want a reference variable?

• Especially if you can’t change what the variable refers to?

• Mostly to store a reference to a variable inside some kind of “container” (we’ll come to C++ built in
containers properly in the next session)

• For example, you can select an element from an array, store it in a reference variable and then
modify its value later

• This is particularly useful if you have quite complex logic to refer to an item

• i.e. First select an array from a set of possible arrays, then select an item from that array

• Can also avoid branches in code which can improve performance if you have to use “if” to select an
item

Reference Variables

int main(){

 int values[10]={1,2,3,4,5,6,7,8,9,10};

 int &value = values[random_index(10)];//Select a random element from 0 to 9

 value=95; //Set a random element of the array to 95

 for(int i=0;i<10;++i) std::cout << values[i] << " ";

 std::cout << "\n";

}

Reference Variables
• More commonly reference variables are used as part of a class

• We’ll cover this later in detail, but you can write a constructor that allows you
to initialise the reference variable when the class is constructed

• Useful way of having a class that keeps a reference to another class or a
shared resource

• Also commonly, you might have a member function of a class that returns a
reference to a member variable of a class

• Lets you change internal state of a class while still controlling access

Pointers
• References are similar to the concept of pointers

• Pointers are also variables that refer to other variables

• The difference between pointers and references are

• Pointers can be repointed to new variables

• Pointers can be nullified - assigned to point to a special location that means “not pointing
to anything”

• In most languages pointers are generally not usable interchangeably with variables - they
have to be referenced and dereferenced. C/C++ pointers are like this

• Fortran pointers are an exception - they behave more like references in many ways

Pointers
• One big thing that you can do with pointers that you can’t do with references

is manual memory management

• That is request memory directly at a point in your code and then release it for
reuse when you are done with it

• Common in C code (although one of the major sources of error in C codes!)

• NOT CONSIDERED GOOD FORM IN NORMAL C++ CODE

• Mostly you can write good C++ code without doing this which reduces the
possibilities for error

