Introduction

28/09/2023
Warwick RSE

What is this course for?

o C++isavery powerful but quite complex language
» C++ has substantial advantages as an academic development language

» Because of the complexity it can be easy to fall into “doing things because they
are what you do” without understanding them

* This course attempts to give you a more grounded understanding of C++ to help
you understand what you are doing and why you are doing it

* From this base you can learn more advanced features of the language and

develop more complex code while retaining performance and safety

Why Program in C++

f m(2")

Computation Time o
103 I TN TR (NN TN TN TR (N SR SR SR S SN SR S
| |—e— C
—— C++
1 | —+— Java
1024 | 7 JavaScript
i PHP
1 | —— Python2
—-u—- Python3
1| PyPy
1 | | —*— Ruby
10" - 4
] 7
i -
//
m] //
n
“— - L |
) /
//
i A
//
107" —+ < /}// _______
— - ; .’__r ----------
10‘2—_
10_3 T T | T T T [T T I [T I T I

"l

Illl

I llll I

llll

llll

Faster code than Matlab, Python, R etc.

As fast as C (at least on any problem that isn’t already
very fast)

Easier to write than C and fewer opportunities for
Serious errors

* Writing C like code in C++ is not better!

Lots of libraries and good to write your own libraries in

Lots of experienced developers in academia

L anguage Standards

C++ is a language that is defined by ISO standards
* Mostly a kind of “tick-tock” development of major change followed by update based on experience

C++98/03 - Original C++ standard. Introduced much of the “shape” of the language. 03 firmed up the
structure and approach

C++11/14 - Added new features that were aimed at improving developer productivity. 14 expanded the
capabilities of the new features

C++17 - Mostly aimed at adding features to make C++ code more readable and remove boilerplate code

C++20 - Variety of changes, mostly concentrating on features for people writing libraries in C++

C++23 - Upcoming standard, bit of a mixture of things again

L anguage Standards

C++ is a language that is define by ISO standards
* Mostly a kind of “tick-tock” development of major change followed by update based on experience

C++98/03 - Original C++ standard. Introduced much of the “shape” of the language. 03 firmed up the
structure and approach

C++11/14 - Added new features that were aimed at improving developer productivity. 14 expanded the
capabilities of the new features

C++17 - Mostly aimed at adding features to make C++ code more readable and remove boilerplate
code

C++20 - Variety of changes, mostly concentrating on features for people writing libraries in C++

C++23 - Upcoming standard, bit of a mixture of things again

INntro to C++

28/09/2023
Warwick RSE

Introduction

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main(){
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std: :cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1i1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << “\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#include <i1ostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
if (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1if (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; wvaluel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; wvaluel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <<
mymax (valuel, mytestval) << "\n";

;

return 0;

;

#1nclude <jostream>

int mymax(int 11, int 12){
1f (11>12) return 11;
return 12;

;

int main() {
std::cout << "Maximum of 1 and 10 1s " << mymax(1l,10) << "\n";
std::cout << "Maximum of 1 and -1 1s " << mymax(l,-1) << "\n\n";

int mytestval = 5;
for (int valuel = 1; valuel < 10; valuel++){
std::cout << "Maximum of " << valuel << " and " << mytestval << " 15 " <K<
mymax (valuel, mytestval) << "\n";

;

return 0:

;

Maximum
Maximum

Maximum
Maximum
Maximum
Maximum

Maximum
Maximum
Maximum
Maximum
Maximum

g++ O1-Simple.cpp -o O1-Simple

./01-Simple

1 and 10 1s 10

1

OLoOoO~NOCTOUT D WN -

and

and
and
and
and
and
and
and
and
and

-1 1s 1

1S
1S
1S
1S
1S
1S
1S
1S
1S

U1l U1 U1 U1 U1 U1 U1 U1 Ul
O OO0 ~J OY Ul U1 U1 U1 Ui

Multiple Files

0Z2a-main.cpp

#1nclude <i1ostream>
#1include "O2b-functions.h”

int main() {
std::cout << "Result of my function(double) 1s " << my_ function(l.234) << "\n";
std::cout << "Result of my function(string) is " << my function("Hello world™)<<"\n";
function with no return("Il do not return anything");

;

0Z2a-main.cpp

#1nclude <1o0stream>
#1include "O2b-functions.h”

int main() {
std::cout << "Result of my function(double) 1s " << my_ function(l.234) << "\n";
std::cout << "Result of my function(string) is " << my function("Hello world™)<<"\n";
function with no return("Il do not return anything");

;

0Z2a-main.cpp

#1nclude <i1ostream>
#include "02b-functions.h"

int main() {
std::cout << "Result of my function(double) 1s " << my_ function(l.234) << "\n";
std::cout << "Result of my function(string) is " << my function("Hello world™)<<"\n";
function with no return("Il do not return anything");

;

0Z2a-main.cpp

#1nclude <1ostream>
#1include "02b-functions.h”

int main() {
std::cout << "Result of my function(double) 1s " << my_ function(l.234) << "\n";
std::cout << "Result of my function(string) is " << my function("Hello world™)<<"\n";
function with no return("Il do not return anything");

;

0Z2a-main.cpp

#1nclude
#1nclude

int main() {
std::cout <X << my_function(
std::cout <X << my function(
function with no return()]

;

02b-functions.h

#1fndef FUNCTIONS HEADER H
#define FUNCTIONS HEADER H
#1nclude

double my function(double d);
std::string my function(std::string s);
void function with no return(std::string s);

#end1 f

02b-functions.h

#1fndef FUNCTIONS HEADER H
#define FUNCTIONS HEADER H
#1nclude

double my function(double d);
std::string my function(std::string s);
void function with no return(std::string s);

#end1 f

02b-functions.h

#1fndef FUNCTIONS HEADER H
#define FUNCTIONS HEADER H
#1nclude

double my function(double d);
std::string my function(std::string s);
void function with no return(std::string s);

#end1 f

02b-functions.h

#1fndef FUNCTIONS HEADER H
#define FUNCTIONS HEADER H
#1nclude

double my function(double d);
std::string my function(std::string s);
void function with no return(std::string s);

#end1f

02b-functions.h

#1fndef FUNCTIONS HEADER H
#define FUNCTIONS HEADER H
#1nclude

double my function(double d);
std::string my function(std::string s);
void function with no return(std::string s);

#end1 f

02b-functions.h

#1fndef FUNCTIONS HEADER H
#define FUNCTIONS HEADER H
#1nclude

double my function(double d) ;
std::string my function(std::string s);
void function with no return(std::string s);

#end1 f

02b-functions.h

#1fndef FUNCTIONS HEADER H
#define FUNCTIONS HEADER H
#1nclude

double my function(double d);
std::string my function(std::string s);
void function with no return(std::string s);

#end1 f

02b-functions.h

#1fndef FUNCTIONS HEADER H
#define FUNCTIONS HEADER H
#1nclude

double my function(double d);
std::string my function(std::string s);
void function with no return(std::string s);

#end1 f

02b-functions.h

#1fndef FUNCTIONS HEADER H
#define FUNCTIONS HEADER H
#1nclude

double my function(double d);
std::string my_function(std::string s);
void function with no return(std::string s);

#end1 f

02b-functions.h

#1fndef FUNCTIONS HEADER H
#define FUNCTIONS HEADER H
#1nclude

double my function(double d) ;
std::string my function(std::string s);
void function with no return(std::string s);

#end1 f

02b-functions.h

#1fndef FUNCTIONS HEADER H
#define FUNCTIONS HEADER H
#1nclude

double my function(double d);
std::string my function(std::string s);
void function with no return(std::string s);

#end1 f

02b-tunctions.cpp

#1nclude
#1nclude

double my function(double d){return d *)
std::string my function(std::string s){return s;}
void function with no return(std::string s){std::cout << s <X

02b-tunctions.cpp

#1include "O2b-functions.h”
#1nclude

double my function(double d){return d *)
std::string my function(std::string s){return s;}
void function with no return(std::string s){std::cout << s <X

02b-tunctions.cpp

#include
#include <i1ostream>

double my function(double d){return d *)
std::string my function(std::string s){return s;}
void function with no return(std::string s){std::cout << s <X

02b-tunctions.cpp

#1nclude
#1nclude

double my function(double d){return d *)
std::string my function(std::string s){return s;}
void function with no return(std::string s){std::cout << s <X

02b-tunctions.cpp

#1nclude
#1nclude

double my function(double d){return d *)
std::string my function(std::string s){return s;}
void function with no return(std::string s){std::cout << s <X

02b-tunctions.cpp

#1nclude
#1nclude

double my function(double d){return d * 2.0;}
std::string my function(std::string s){return s;}
void function with no return(std::string s){std::cout << s <X

02b-tunctions.cpp

#1nclude
#1nclude

double my function(double d){return d * , }
std::string my_ function(std::string s){return s;}
void function with no return(std::string s){std::cout << s <X

02b-tunctions.cpp

#1nclude
#1nclude

double my function(double d){return d *)
std::string my function(std::string s){return s;}
voild function with no return(std::string s){std::cout << s <X

02b-tunctions.cpp

#1nclude
#1nclude

double my function(double d){return d *)
std::string my function(std::string s){return s;}
void function with no return(std::string s){std::cout << s <X

Compiling

g++ O2b-functions.cpp 0Z2a-main.cpp g++ (@2a-main.cpp O2b-functions.cpp

g++ -C O2b-functions.cpp g++ -Cc B02a-main.cpp
g++ -Cc 02a-main.cpp g++ -c 02b-functions.cpp
g++ O02b-functions.o 02a-main.o g++ 02b-functions.o 02a-main.o

g++ -C O2b-functions.cpp
g++ O2b-functions.o 02a-main.cpp

Result of my function(double) 1s 2.463
Result of my function(string) 1i1s Hello world
I do not return anything

Other variables

28/09/2023
Warwick RSE

Const variables

Inherited from C, but more commonly used and extended in C++

You can flag variables as constant by putting const before the type of the variable
when you declare it

const variables must be assigned a value on the line where they are declared
After that line they cannot be changed
* |f you try to change a const variable’s value the code will not compile

const parameters to functions cannot be changed inside that function

You cannot pass a const value to a function as a non-const parameter

auto variables

* Quite often in C++ you will see code like
* int value = get_integer();

* Fine for integer, but for more complex functions you have to tind out and match the
variable type to the return type

* The compiler checks that you've used the right type, so it must know what the right
type is - can't it work out the type of my variable for me?

* YES - use auto in place of the type when declaring a variable and assign it a value on
the same line and the compiler will “paste-in” the correct return type

* You are still giving the variable a fixed type, just telling the compiler to work out which

References

28/09/2023
Warwick RSE

Concept

What is a referencce

A reference variable (usually just called a reference) is a variable that doesn’t have a
value of its own - it refers to another variable

One of the distinguishing features of a reference is that it can be used anywhere the
variable that it refers to can be used - no extra code is needed to use a reference

Reterence variables have to be initalized when they are defined

* i.e.reference variables are created and must be immediately told which variable
they refer to - they will refer to the same variable for their entire lifetime

So if they only refer to a single variable for their whole litetime, why are they usetful?

Pass by reference

Pass by reference languages

* You've probably never thought about what the computer is actually doing
when it calls a function

e There are a lot of complexities, but in general it has to prepare a special
structure called a stack frame which contains the parameters to the function

and jump to a special point in the program code that uses the data in the
stack frame to execute the function

 How does it put the variables into the stack frame?

* Actually quite complex, but two basic approaches

Pass by value

C and C++ are pass by value languages
Variables are put into the stack frame by copying them

The variables in the function are not the variables that were passed as parameters
to the function when it is called

* They have the same values, but they refer to completely different parts of
memory

Changing the parameters in a function doesn’t change the variables that were

used as parameters to the function calls

Pass by reference

There aren't really any modern strict pass by reference languages, but Fortran is almost a
pass by reference language. We're going to describe a strict pass by reference language
for clarity

Variables are put into the stack frame as references to the parameters

The variables in the function are the variables that were passed as parameters to the
function when it is called

* They refer to the same underlying memory

Changing the parameters in a function does change the variables that were used as

parameters to the function calls

Pass by reference

e A gquestion then is why would you want to pass a variable by reterence
* Basically two reasons
* | want to modity the value of a parameter that | pass to a function

* | wantto pass such a large object that copying it would take too much time

or memory

Reference Parameters

Effectively it you have a reference parameter to a function in C++ then you make that
parameter passed by reference

You can control for each parameter whether you pass it by value or reterence
Mostly this makes no other changes to the code - call the function just like you always used to

There are some restrictions about what you can pass to a function parameter expecting a
reference

* Mostly you can't pass literals, that is things like “Hello world!"” or 14

* You can pass more things to a const reference since that is a guarantee that you won't

change the variable

Reference Parameters

void demo function(int &1) {
1+=5;//Increment 1 by 5

;

int main() {
int 1=7/;
demo function(1);
std::cout << << 1 << "A\n'";
//demo_function(l/) won't work because you can't take a reference to a literal

;

Reference Parameters

Reference specitier

/

void demo function(int Bi){
1+=5;//Increment 1 by 5

;

int main() {
int 1=7/;
demo function(1);
std::cout << << 1 << "A\n'";
//demo_function(l/) won't work because you can't take a reference to a literal

;

Reference Parameters

e Specifying that a function parameter is a reference in C++ is very easy

* Prepend the name of the variable with an & when it is declared

e & isused in other placesin C++, but when itis placed betore the name of
a variable in a declaration it only makes that variable a reterence

Reference Variables

You can create a reference variables just as easily as a reference function parameter, and in
the same way

You always have to then initialise the reference variable with the variable that it is to be the
reference to

The easiest way of doing that is just by assignment

e inti;
int &i ref=i;

N.B! The & only goes with a specific variable name

int i, &i_ref=i; is exactly the same as the above example!

Reference Variables

* Why would you want a reference variable?

» Especially it you cant change what the variable reters to?

* Mostly to store a reference to a variable inside some kind of “container” (we’'ll come to C++ built in
containers properly in the next session)

* For example, you can select an element from an array, store it in a reference variable and then
modity its value later

* This is particularly useful if you have quite complex logic to refer to an item
 i.e. First select an array from a set of possible arrays, then select an item from that array

e Can also avoid branches in code which can improve performance if you have to use “it" to select an

Item

Reference Variables

int main() {

int values[10]={1,2,3,4,5,6,7,8,9,10};
int &value = values[random 1ndex(10)];//Select a random element from O to 9
value=95; //Set a random element of the array to 95

for(int 1=0;1<10;++1) std::cout << values[1] << " "
std::cout << "\n";

Reference Variables

 More commonly reference variables are used as part of a class

o We'll cover this later in detail, but you can write a constructor that allows you
to initialise the reference variable when the class is constructed

e Useful way of having a class that keeps a reference to another class or a
shared resource

e Also commonly, you might have a member function of a class that returns a
reference to a member variable of a class

e Lets you change internal state of a class while still controlling access

Pointers

« References are similar to the concept of pointers

« Pointers are also variables that refer to other variables
« The difference between pointers and references are
e Pointers can be repointed to new variables

« Pointers can be nullified - assigned to point to a special location that means “not pointing
to anything”

* In most languages pointers are generally not usable interchangeably with variables - they
have to be referenced and dereferenced. C/C++ pointers are like this

* Fortran pointers are an exception - they behave more like references in many ways

Pointers

One big thing that you can do with pointers that you cant do with references
is manual memory management

That is request memory directly at a point in your code and then release it for
reuse when you are done with it

Common in C code (although one of the major sources of error in C codes!)

NOT CONSIDERED GOOD FORM IN NORMAL C++ CODE

Mostly you can write good C++ code without doing this which reduces the
possibilities for error

