
Warwick RSE

“The Angry Penguin“, used under creative commons licence
from Swantje Hess and Jannis Pohlmann.

28/09/2023

The Standard Library

Concept

What is the Standard Library?
• In the 1990s Alexander Stepanov developed something called the Standard

Template Library (STL)

• Implemented generic solutions to many common tasks in programming, mainly
around data structures and manipulation of data structures

• Was seen as so valuable that it became a core part of the C++ language in the 90s
(being renamed Standard Library) and every new release of the C++ language since
2011 has included some expansion of the standard library

• As the name “library” implies the standard library is itself written in C++ and the
implementation doesn’t have to be closely tied to a compiler

• It usually is though!

What is the Standard Library?
• For most common data structures there is an implementation in the standard

library

• The implementations are not “optimal” for every possible problem, but are
“optimal enough” for most purposes

• We’re going to talk about the two most common containers here

• Vector - A growable array

• Map - An associative array (mapping a key to a value)

Vector

What is a vector?

• Like an array, but you can add and remove elements

• Elements can be of almost any type but

• All of the elements must be of the same type

• Possible but very difficult to store different types in a vector

• DOING THIS IS A BAD IDEA IN ANY COMPILED LANGUAGE,
INCLUDING C++

std::vector
#include <vector>

#include <iostream>

const int n_elements=10;

int main(){

 std::vector<int> v;

 for (int i =0;i<n_elements;++i){

 v.push_back(i);

 }

 for (int i =0;i<v.size();++i){

 std::cout << "Element " << i << " has value << " << v[i] <<"\n";

 }

}

std::vector
#include <vector>

#include <iostream>

const int n_elements=10;

int main(){

 std::vector<int> v;

 for (int i =0;i<n_elements;++i){

 v.push_back(i);

 }

 for (int i =0;i<v.size();++i){

 std::cout << "Element " << i << " has value << " << v[i] <<"\n";

 }

}

• Have to include <vector> header to use vectors

std::vector
#include <vector>

#include <iostream>

const int n_elements=10;

int main(){

 std::vector<int> v;

 for (int i =0;i<n_elements;++i){

 v.push_back(i);

 }

 for (int i =0;i<v.size();++i){

 std::cout << "Element " << i << " has value << " << v[i] <<"\n";

 }

}

• Create an instance of a vector

• std:: is a namespace all standard library items are in the std namespace

• <int> is not another header file, but a template parameter - says to make a vector holding ints here

std::vector
#include <vector>

#include <iostream>

const int n_elements=10;

int main(){

 std::vector<int> v;

 for (int i =0;i<n_elements;++i){

 v.push_back(i);

 }

 for (int i =0;i<v.size();++i){

 std::cout << "Element " << i << " has value << " << v[i] <<"\n";

 }

}

• You can add elements to the end of a vector using the push_back method

• You call it like v.push_back because you need to know which vector to add to

std::vector
#include <vector>

#include <iostream>

const int n_elements=10;

int main(){

 std::vector<int> v;

 for (int i =0;i<n_elements;++i){

 v.push_back(i);

 }

 for (int i =0;i<v.size();++i){

 std::cout << "Element " << i << " has value << " << v[i] <<"\n";

 }

}

• You can find out how many elements there are in a vector using the size method

std::vector
#include <vector>

#include <iostream>

const int n_elements=10;

int main(){

 std::vector<int> v;

 for (int i =0;i<n_elements;++i){

 v.push_back(i);

 }

 for (int i =0;i<v.size();++i){

 std::cout << "Element " << i << " has value << " << v[i] <<"\n";

 }

}

• You can access an element of a vector with [] just like you can with a normal array

What is it good for?
• Already seen one useful feature of std::vector

• You can add elements to it indefinitely, you don’t have to specify the size in
advance

• It also guarantees that it stores the underlying data contiguously - that is
one item after the other in memory

• This data layout is the same as a normal array

• If you have a function in a library that needs an array you can get access to
the underlying memory with myvector.data()

What else is it good for?
• As well as defining the containers, the standard library also defines algorithms

(in the header algorithm) that you can apply to containers. For example

• std::sort - Sorts the content of the container, guaranteed O(Nln(N)) average
complexity (c.f. quicksort, mergesort), can have custom comparison

• std::find - Find a value in the container (doesn’t assume sorted, there is also
std::binary_search if it is sorted)

• std::min_element and std::max_element - Find minimum or maximum value

• std::for_each - Apply a function to each element of the container

What’s the problem?
• Mostly not much - vectors work well, are highly optimised and can fall back

to working like arrays for working with older library code

• The problem is how it implements that growing behaviour

• Since there is a requirement that the underlying memory be contiguous it
does sometimes have to reallocate that memory to store more items

• No longer in the same place in memory

• When it does so, various things break, most notably iterators

What is an iterator?
• An iterator is an object that provides access to the elements in an STL container

• The idea is that you ask a container to give you an iterator to the beginning of
the items

• Then you either

• Move the iterator to another item by calling ++,+=,--, -= or similar on it

• Get the current item by dereferencing the iterator with *

• If you are a C (or old style C++) programmer this syntax looks like pointer
dereferencing

What is an iterator?

#include <vector>

#include <iostream>

int main(){

 std::vector<int> v;

 for (int i=0; i<10;++i){

 v.push_back(i*2);

 }

 for(auto it = v.begin(); it!=v.end();++it){

 std::cout << *it << "\n";

 }

}

What is an iterator?

#include <vector>

#include <iostream>

int main(){

 std::vector<int> v;

 for (int i=0; i<10;++i){

 v.push_back(i*2);

 }

 for(auto it = v.begin(); it!=v.end();++it){

 std::cout << *it << "\n";

 }

}

• Use the begin method of
your container to get the
iterator to the first item

• The actual type of an
iterator is moderately
complex and depends on
the container and the data
in the container

• Just use auto in general

What is an iterator?

#include <vector>

#include <iostream>

int main(){

 std::vector<int> v;

 for (int i=0; i<10;++i){

 v.push_back(i*2);

 }

 for(auto it = v.begin(); it!=v.end();++it){

 std::cout << *it << "\n";

 }

}

• To check if you have reached the last
element compare your iterator to
that returned by the end method of
your container

• The termination condition here is !
=v.end() which feels a bit odd since
you are used to testing for < or <=

• Here you want it to stop as soon as it
reaches the special end marker item

• NB! end() doesn’t return the last
item, it returns a special marker after
the last item

What is an iterator?

#include <vector>

#include <iostream>

int main(){

 std::vector<int> v;

 for (int i=0; i<10;++i){

 v.push_back(i*2);

 }

 for(auto it = v.begin(); it!=v.end();++it){

 std::cout << *it << "\n";

 }

}

• Increment the iterator just
like a loop variable in a
normal loop

• Can increment in pretty
much any way you can
increment a normal number

What is an iterator?

#include <vector>

#include <iostream>

int main(){

 std::vector<int> v;

 for (int i=0; i<10;++i){

 v.push_back(i*2);

 }

 for(auto it = v.begin(); it!=v.end();++it){

 std::cout << *it << "\n";

 }

}

• To access the item that the
iterator is referring to use the
* (dereference) operator

• The iterator is not just a
pointer to the item but if you
are happy with pointers it is
a good guide

• Changing the value that you
get from the iterator changes
the value in the container

Iterator invalidation
• When you add an item to a vector the items may have to be moved in memory if the

vector grows

• This invalidates the iterator

• It no longer works

• Iterators are also invalidated by removing items

• You have to be careful iterating through a vector using an iterator to either add or
remove items

• You can use the erase or insert method of a vector to add or remove items and it
gives you a new iterator but you can’t use the original one

Memory Contiguity
• Very common thing to want to do is to remove items from a vector based on a

condition

• You can just loop through, test each element and call the erase method

• Performance can be bad though

• Vector is required to store the items contiguously in memory so when you erase an
item the items above it have to be copied down

• Removing a range is handled automatically with a single copy down

• Removing individual items based on a condition isn’t if you use the erase method

Memory Contiguity
• Fortunately this is common enough that C++ gives you a way to do it “properly”

• The classical way of doing it was called the “erase-remove” idiom

• Move all of the elements that are not to be removed up to the front of the
vector using std::remove_if (confusing name, but that is what it does)

• Remove the empty elements (left at the back of the vector) using the erase
method of the vector

• Still have to do this if you want to remove items from a subsection of a vector

• In C++20 they introduced a simpler way - std::erase_if

std::erase_if
#include <vector>

#include <iostream>

bool condition(int &i){

 //Condition is true if number is divisible by 3

 return (i%3)==0;

}

int main(){

 std::vector<int> v;

 for (int i=0; i<10;++i){

 v.push_back(i*2);

 }

 std::erase_if(v,condition);

 for(auto it = v.begin(); it!=v.end();++it){

 std::cout << *it << "\n";

 }

}

std::erase_if
• That’s it!

• You write a function that takes an
item from your container and returns
a bool

• I’ve had my function take an int
reference - this is permitted but not
required.

• Can be useful if your stored type is
big

• The return value should be true if
you want the item removed and
false if not

#include <vector>

#include <iostream>

bool condition(int &i){

 //Condition is true if number is divisible by 3

 return (i%3)==0;

}

int main(){

 std::vector<int> v;

 for (int i=0; i<10;++i){

 v.push_back(i*2);

 }

 std::erase_if(v,condition);

 for(auto it = v.begin(); it!=v.end();++it){

 std::cout << *it << "\n";

 }

}

std::erase_if

• You might have to tell your
compiler that you want to
use C++20 to get this to
compile

• This is particularly true on
Macs

• usually adding --std=c++20

#include <vector>

#include <iostream>

bool condition(int &i){

 //Condition is true if number is divisible by 3

 return (i%3)==0;

}

int main(){

 std::vector<int> v;

 for (int i=0; i<10;++i){

 v.push_back(i*2);

 }

 std::erase_if(v,condition);

 for(auto it = v.begin(); it!=v.end();++it){

 std::cout << *it << "\n";

 }

}

Anonymous Functions

• If you have a lot of conditions that you use only once in something like
std::erase_if (or std::copy_if or std::sort or any of the other algorithms
that take functions as a parameter) then it can seem wasteful to have
functions hanging around to only be used once

• There is a solution to that in C++ - anonymous functions, also called
lambdas

• Lambdas are very powerful and we can’t describe them much here, but
we’ll show the syntax

Anonymous Functions
#include <vector>

#include <iostream>

int main(){

 std::vector<int> v;

 for (int i=0; i<10;++i){

 v.push_back(i*2);

 }

 std::erase_if(v,[](int &i){return (i%3==0);});

 for(auto it = v.begin(); it!=v.end();++it){

 std::cout << *it << "\n";

 }

}

• The [](){ } pattern indicates
that you are defining a lambda

• We’re not going to discuss []

• () defines a parameter list just
like a function

• Then the body of the function
is in the { }

• The return type is implicitly
auto

Brief return to auto
• That automatic return type isn’t specific to lambdas

• Any function can have auto as its return type

• The compiler infers the return type from the return statements in the function

• MUST ALL RETURN THE SAME TYPE

• This doesn’t let you return different types from different paths through the
function

• Can make your code confusing - if it is hard to work out the return type maybe don’t
use auto. Is OK if it is easy but the return type is complex (i.e. returning an iterator)

Classical algorithm example
• std::erase_if solves one of the most common things that you want to do

with a vector, but it isn’t quite the “normal” sort of C++ algorithm function

• As a better example of typical STL algorithms, we’ll show std::sort

• This function sorts the elements in a vector

• By default it sorts them in ascending order (technically non-descending
order, but mostly that doesn’t matter)

• You can give it a custom function to do other types of comparison or to
sort types that are not trivially comparable to each other

std::sort
#include <vector>

#include <iostream>

int main(){

 std::vector<int> v;

 //Store numbers 1 to 10

 for (int i=1;i<=10;i++) v.push_back(i);

 //Sort the vector

 //For a normal ascending order sort you should return

 //Whether i1 is < i2

 //Here, we do the opposite so the sort is in descending order

 std::sort(v.begin(),v.end(),[](int i1,int i2){return i1>i2;});

 //Print the result (will be descending order)

 for (auto it = v.begin(); it!=v.end();it++){

 std::cout << *it << "\n";

 }

}

std::sort
#include <vector>

#include <iostream>

int main(){

 std::vector<int> v;

 //Store numbers 1 to 10

 for (int i=1;i<=10;i++) v.push_back(i);

 //Sort the vector

 //For a normal ascending order sort you should return

 //Whether i1 is < i2

 //Here, we do the opposite so the sort is in descending order

 std::sort(v.begin(),v.end(),[](int i1,int i2){return i1>i2;});

 //Print the result (will be descending order)

 for (auto it = v.begin(); it!=v.end();it++){

 std::cout << *it << "\n";

 }

}

• In most algorithms
you specify the
start and end
iterators for the
algorithm to apply
over

• This means that
you can run them
on part of a
container

std::sort
#include <vector>

#include <iostream>

int main(){

 std::vector<int> v;

 //Store numbers 1 to 10

 for (int i=1;i<=10;i++) v.push_back(i);

 //Sort the vector

 //For a normal ascending order sort you should return

 //Whether i1 is < i2

 //Here, we do the opposite so the sort is in descending order

 std::sort(v.begin(),v.end(),[](int i1,int i2){return i1>i2;});

 //Print the result (will be descending order)

 for (auto it = v.begin(); it!=v.end();it++){

 std::cout << *it << "\n";

 }

}

• This is another
lambda

• It deliberately does
the comparison
backwards so that it
sorts in descending
order

• With no comparison
function it would
just use the < and >
operators

How does vector grow?

• We know that vector contains an arbitrary number of items

• We know that when it grows it may have to move the items to a new bit of
memory to accommodate the new items

• Because it is contiguous - all of the items follow one another in memory

• But what actually happens when we add an item? Does it grow by one item?

• NO

How does vector grow?
• When vector grows it grows by more items that it immediately needs to add

• Generally as a multiple of the number of elements already in the vector

• Generally either 2x or about 1.6x (the golden ratio, in particular)

• This means that a vector has two related but different concepts

• size - The number of elements stored in the vector

• capacity - The number of elements that could be stored in the vector without
having to reallocate memory

• There are methods of a vector with these names to check these values

How does vector grow?
• To go with the concepts of size and capacity, there are methods to set both the size

and capacity of a vector

• resize(N) - Set the vector to hold N items. The items are immediately created and
initialised and can be accessed by index or iterator. i.e change the size of the vector

• reserve(N) - Set the vector to be able to hold N items. The items are not created
and are not available, but memory is set aside to hold them. i.e. change the
capacity of the vector

• resize’s use is obvious, but reserve is commonly used to give a good first estimate
of how many elements might go into a vector when using push_back or
push_front

Vector Conclusions

• Vector is basically an array but “better”

• You can add items to it

• You can remove items from it

• Thanks to algorithm there are also many useful functions that you can to do
things like sort elements in a vector etc.

• If you want to do something with your data, look at what is already there!

Pair

std::pair
• std::pair is a class that joins together two values that may be of different

types

• It isn’t really an STL container in itself, but it is used by various other STL
containers

• It does have some uses in your own code, but not very commonly

• There is a generalisation of std::pair to an arbitrary (but known at compile
time) number of connected types called a std::tuple

• More useful in places, but not generally needed except for advanced features

std::pair

#include <utility>

#include <iostream>

#include <string>

int main(){

 std::pair<int,std::string> i_s_pair;

 i_s_pair.first = 123;

 i_s_pair.second = "Hello world!";

 std::cout << i_s_pair.first << " : " << i_s_pair.second << "\n";

}

std::pair

#include <utility>

#include <iostream>

#include <string>

int main(){

 std::pair<int,std::string> i_s_pair;

 i_s_pair.first = 123;

 i_s_pair.second = "Hello world!";

 std::cout << i_s_pair.first << " : " << i_s_pair.second << "\n";

}

std::pair

#include <utility>

#include <iostream>

#include <string>

int main(){

 std::pair<int,std::string> i_s_pair;

 i_s_pair.first = 123;

 i_s_pair.second = "Hello world!";

 std::cout << i_s_pair.first << " : " << i_s_pair.second << "\n";

}

std::pair

#include <utility>

#include <iostream>

#include <string>

int main(){

 std::pair<int,std::string> i_s_pair;

 i_s_pair.first = 123;

 i_s_pair.second = "Hello world!";

 std::cout << i_s_pair.first << " : " << i_s_pair.second << "\n";

}

std::pair

• Quite often if you are working with pairs yourself you want to quickly make a
pair from two pieces of data

• You can create the pair and assign the elements as shown above, but there is
an easier way

• auto mypair = std::make_pair(first,second);

• First and second can be of any type, the compiler will deduce the correct
types and create a pair of those types

Map

std::map
• std::map is an associative array class

• That is it maps a key to a value

• You can use a key to store a value

• If you know the key you can retrieve the value

• Each key can have at most one value associated with it

• There is std::multimap that allows more than one value per key

std::map

• For a given std::map the key and the value are of a specified type

• The value can be of almost any type

• The key must be orderable i.e. there must exist < and > operators for the
key

• Once again, possible but very difficult to store different types as values

• STILL A VERY BAD IDEA

std::map

#include <map>

#include <iostream>

#include <string>

int main(){

 std::map<std::string,int> age_map;

 age_map["William"]=24;

 age_map["David"]=27;

 age_map["Albert"]=67;

 std::cout << "Age of David is " << age_map["David"] << "\n";

}

std::map

#include <map>

#include <iostream>

#include <string>

int main(){

 std::map<std::string,int> age_map;

 age_map["William"]=24;

 age_map["David"]=27;

 age_map["Albert"]=67;

 std::cout << "Age of David is " << age_map["David"] << "\n";

}

• First element
of the
template is
the type of
the key

• Most “simple”
types will
work

std::map

#include <map>

#include <iostream>

#include <string>

int main(){

 std::map<std::string,int> age_map;

 age_map["William"]=24;

 age_map["David"]=27;

 age_map["Albert"]=67;

 std::cout << "Age of David is " << age_map["David"] << "\n";

}

• Second
element of
the template
is the type of
the value

• This can be
any
constructible
type

std::map

#include <map>

#include <iostream>

#include <string>

int main(){

 std::map<std::string,int> age_map;

 age_map["William"]=24;

 age_map["David"]=27;

 age_map["Albert"]=67;

 std::cout << "Age of David is " << age_map["David"] << "\n";

}

• Access an
element of a
map with []
just like an
array or
vector

• Type of value
in [] is now
the type of
the key

std::map

#include <map>

#include <iostream>

#include <string>

int main(){

 std::map<std::string,int> age_map;

 age_map["William"]=24;

 age_map["David"]=27;

 age_map["Albert"]=67;

 std::cout << "Age of David is " << age_map["David"] << "\n";

}

• You can both
access and
set the value

• You don’t
have to create
a key specially
when you first
use it

std::map
• That actually causes one of the problems with std::map

• If you try to read from a map element that hasn’t already been set then it is silently
created and set to a default value (technically it is value initialized)

• If you want to check whether a key is already in the map then you have to test for
it

• Use the find method to find the key

• Use the count method to count how often the key appears (it will only ever by 1
or 0 in std::map since each key is unique)

std::map
#include <map>

#include <iostream>

#include <string>

int main(){

 std::map<std::string,int> age_map;

 age_map["William"]=24;

 age_map["David"]=27;

 age_map["Albert"]=67;

 bool is_William = (age_map.count("William")!=0);

 bool is_David = (age_map.find("David")!=age_map.end());

 bool is_Alice = (age_map.count("Alice")!=0);

 std::cout << "Is \"William\" in the map : " << is_William << "\n";

 std::cout << "Is \"David\" in the map : " << is_David << "\n";

 std::cout << "Is \"Alice\" in the map : " << is_Alice << "\n";

}

std::map

• This is actually a lot of how maps are used

• The real power of a map is being able to store and retrieve data based on
the key

• Map is a fast container for random access (O(Ln N))

• Sometimes you want to iterate through your map and access the elements

• This is similar, but different, to what you do for vector

Iterating over std::map
#include <map>

#include <iostream>

#include <string>

int main(){

 std::map<std::string,int> age_map;

 age_map["William"]=24;

 age_map["David"]=27;

 age_map["Albert"]=67;

 for (auto it = age_map.begin(); it!=age_map.end(); ++it){

 std::cout << "Key is :" << (*it).first << "\n";

 std::cout << "Value is :" << (*it).second << "\n";

 }

}

Iterating over std::map
#include <map>

#include <iostream>

#include <string>

int main(){

 std::map<std::string,int> age_map;

 age_map["William"]=24;

 age_map["David"]=27;

 age_map["Albert"]=67;

 for (auto it = age_map.begin(); it!=age_map.end(); ++it){

 std::cout << "Key is :" << (*it).first << "\n";

 std::cout << "Value is :" << (*it).second << "\n";

 }

}

• You can’t iterate by
number like you
can with a
std::vector

• Have to use an
iterator

• Loop from begin()
to end() an
increment the
iterator

Iterating over std::map
#include <map>

#include <iostream>

#include <string>

int main(){

 std::map<std::string,int> age_map;

 age_map["William"]=24;

 age_map["David"]=27;

 age_map["Albert"]=67;

 for (auto it = age_map.begin(); it!=age_map.end(); ++it){

 std::cout << "Key is :" << (*it).first << "\n";

 std::cout << "Value is :" << (*it).second << "\n";

 }

}

• As before you
dereference the
iterator with * to
get the value

Iterating over std::map
#include <map>

#include <iostream>

#include <string>

int main(){

 std::map<std::string,int> age_map;

 age_map["William"]=24;

 age_map["David"]=27;

 age_map["Albert"]=67;

 for (auto it = age_map.begin(); it!=age_map.end(); ++it){

 std::cout << "Key is :" << (*it).first << "\n";

 std::cout << "Value is :" << (*it).second << "\n";

 }

}

• Unlike with
std::vector the
value that you get
from the iterator
isn’t just the value

• It is a std::pair of
the key and the
value

Iterating over std::map
#include <map>

#include <iostream>

#include <string>

int main(){

 std::map<std::string,int> age_map;

 age_map["William"]=24;

 age_map["David"]=27;

 age_map["Albert"]=67;

 for (auto it = age_map.begin(); it!=age_map.end(); ++it){

 std::cout << "Key is :" << (*it).first << "\n";

 std::cout << "Value is :" << (*it).second << "\n";

 }

}

• Get the key
with .first

• Get the value with
.second

(*it). vs it->
• You will have noticed that slightly inelegant syntax there

• (*it).first and (*it).second

• You get that syntax because you want to dereference the iterator to get the pair and
then access a member of the pair

• This type of syntax is so common in C++ (and C where it originated) that there is a
special syntax for it ->

• So (*it).first is exactly equivalent to it->first

• This is true for all uses of the dereference operator in C and C++

Other loops

• There is one other type of loop that makes it simpler to access elements of a
map

• That is the range based for loop

• These are loops that iterate through the elements of a container directly,
giving you access element by element

• Can be used on any STL container, just a different syntax for the same thing

Range based loop
#include <map>

#include <iostream>

#include <string>

int main(){

 //Create the map

 std::map<std::string,int> age_map;

 //Populate the map

 age_map["William"]=24;

 age_map["David"]=27;

 age_map["Albert"]=67;

 //Loop over the map using iterators

 for (auto element:age_map){

 std::cout << "Key is :" << element.first << "\n";

 std::cout << "Value is :" << element.second << "\n";

 }

}

Range based loop
#include <map>

#include <iostream>

#include <string>

int main(){

 //Create the map

 std::map<std::string,int> age_map;

 //Populate the map

 age_map["William"]=24;

 age_map["David"]=27;

 age_map["Albert"]=67;

 //Loop over the map using iterators

 for (auto element:age_map){

 std::cout << "Key is :" << element.first << "\n";

 std::cout << "Value is :" << element.second << "\n";

 }

}

• Specify the loop
variable first (this use
of auto is by far the
most common way of
using these loops)

Range based loop
#include <map>

#include <iostream>

#include <string>

int main(){

 //Create the map

 std::map<std::string,int> age_map;

 //Populate the map

 age_map["William"]=24;

 age_map["David"]=27;

 age_map["Albert"]=67;

 //Loop over the map using iterators

 for (auto element:age_map){

 std::cout << "Key is :" << element.first << "\n";

 std::cout << "Value is :" << element.second << "\n";

 }

}

• Then put a : and the
name of the container
to loop over

• The loop variable will
be assigned the value of
each element of the
container in turn

• For a map, the elements
are still std::pairs of
keys and values

Range based loop
#include <map>

#include <iostream>

#include <string>

int main(){

 //Create the map

 std::map<std::string,int> age_map;

 //Populate the map

 age_map["William"]=24;

 age_map["David"]=27;

 age_map["Albert"]=67;

 //Loop over the map using iterators

 for (auto element:age_map){

 std::cout << "Key is :" << element.first << "\n";

 std::cout << "Value is :" << element.second << "\n";

 }

}

• Note that as written
here, I do mean that
element is given the
value of each
element of the
container

• Try using it to change
values

• Nothing will happen

Range based loop
#include <map>

#include <iostream>

#include <string>

int main(){

 //Create the map

 std::map<std::string,int> age_map;

 //Populate the map

 age_map["William"]=24;

 age_map["David"]=27;

 age_map["Albert"]=67;

 //Loop over the map using iterators

 for (auto &element:age_map){

 std::cout << "Key is :" << element.first << "\n";

 std::cout << "Value is :" << element.second << "\n";

 }

}

• Solution is as simple
as putting & before
the name of your loop
variable

• Makes it a reference
again

• Can now change the
elements of the
container

Further auto
• This shows an important element of the auto keyword

• auto picks up most but not all elements of the inferred type automatically

• It picks up the type (int vs. float vs. std::string for example), and it picks up
whether something is a pointer or not

• It doesn’t pick up whether something is a reference or a handful of other
properties

• If a function returns a reference then you have to use auto &var to store the result
as a reference variable, otherwise it makes a copy

Structured Bindings
• One of the more useful recent additions to C++ (in C++17) are structured

bindings

• They are rather like the tuple unpacking in Python

• If you have something that returns a std::pair or a std::tuple then you can
unpack it directly to normal variables rather than having to access the pair
using .first and .second

• Put the variables that should hold the answers into auto [var1,var2]

• They can get very complex in more powerful applications but they are useful here

Structured Binding
#include <map>

#include <iostream>

#include <string>

int main(){

 //Create the map

 std::map<std::string,int> age_map;

 //Populate the map

 age_map["William"]=24;

 age_map["David"]=27;

 age_map["Albert"]=67;

 //Loop over the map using structured binding

 for (auto [key,value]:age_map){

 std::cout << "Key is :" << key << "\n";

 std::cout << "Value is :" << value << "\n";

 }

}

