The Standard Library

28/09/2023
Warwick RSE

Concept

What is the Standard Library?

* |Inthe 1990s Alexander Stepanov developed something called the Standard
Template Library (STL)

* Implemented generic solutions to many common tasks in programming, mainly
around data structures and manipulation of data structures

* Was seen as so valuable that it became a core part of the C++ language in the 90s

(being renamed Standard Library) and every new release of the C++ language since
2011 has included some expansion of the standard library

* Asthe name “library” implies the standard library is itselt written in C++ and the
implementation doesn’t have to be closely tied to a compiler

 |tusuallyisthough!

What is the Standard Library?

e For most common data structures there is an implementation in the standara
library

* The implementations are not “optimal” for every possible problem, but are
"optimal enough” for most purposes

* We're going to talk about the two most common containers here

e Vector - A growable array

 Map - An associative array (mapping a key to a value)

Vector

What is a vector?

* Like an array, but you can add and remove elements

e Elements can be of almost any type but

* All of the elements must be of the same type

* Possible but very difficult to store different types in a vector

* DOINGTHIS IS ABAD IDEAIN ANY COMPILED LANGUAGE,
INCLUDING C++

std::vector

#1include <vector>
#1nclude <iostream>

const 1int n elements=10;

int main() {
std: :vector<int> v;
for (int 1 =0;1<n elements;++1){

v.push back (1) ;
;

for (int 1 =0;1<v.size();++1){
std: :cout << "Element " << 1 << " has value << " << v[1] <<"\n";

;
;

std::vector

#include
#include <i1ostream>

const 1int n elements=10;

int main() {
std: :vector<int> v;
for (int 1 =0;1<n elements;++1){
v.push back(1);
!
for (int 1 =0;1<v.size() ;++1)/{
std: :cout << "Element " << 71 << " has value << " << v[1] <<"\n";

;
;

e Have to include <vector> header to use vectors

std::vector

#1nclude <vector>
#1nclude <jostream>

const 1int n elements=10;

int main() {
std: :vector<int> v;
for (int 1 =0;1<n elements;++1){
v.push back(1);
!
for (int 1 =0;1<v.size() ;++1)/{
std: :cout << "Element " << 71 << " has value << " << v[1] <<"\n";

;
;

e Create an instance of a vector

» std:: is a namespace all standard library items are in the std namespace

* <int>is not another header file, but a template parameter - says to make a vector holding ints here

std::vector

#1nclude <vector>
#1nclude <jostream>

const 1int n elements=10;

int main() {
std::vector<int> v;
for (int 1 =0;1<n elements;++1){
v.push back (1) ;
;

for (int 1 =0;1<v.size() ;++1)/{
std: :cout << "Element " << 1 << " has value << " << v[1i1] <<"\n";

;
;

* You can add elements to the end of a vector using the push_back method

* You call it like v.push_back because you need to know which vector to add to

std::vector

#1nclude <vector>
#1nclude <jostream>

const 1int n elements=10;

int main() {
std: :vector<int> v;
for (int 1 =0;1<n elements;++1){
v.push back(1);
!
for (1int 1 =0;1<v.size();++1){
std: :cout << "Element " << 71 << " has value << " << v[1] <<"\n";

;
;

e You can find out how many elements there are in a vector using the size method

std::vector

#1nclude <vector>
#1nclude <jostream>

const 1int n elements=10;

int main() {
std: :vector<int> v;
for (int 1 =0;1<n elements;++1){
v.push back(1);
!
for (int 1 =0;1<v.size() ;++1)/{
std: :cout << "Element " << 71 << " has value << " << n[1] <<"\n";

;
;

e You can access an element ot a vector with [] just like you can with a normal array

What is it good tor?

* Already seen one useful feature of std::vector

* You can add elements to it indefinitely, you don't have to specity the size in
advance

* |t also guarantees that it stores the underlying data contiguously - that is
one item after the other in memory

e This data layout is the same as a normal array

 |f you have a function in a library that needs an array you can get access to
the underlying memory with myvector.data()

What else is it good for?

As well as defining the containers, the standard library also defines algorithms
(in the header algorithm) that you can apply to containers. For example

std::sort - Sorts the content of the container, guaranteed O(NIn(N)) average
complexity (c.f. quicksort, mergesort), can have custom comparison

std::find - Find a value in the container (doesn’t assume sorted, there is also
std::binary_search if it is sorted)

std::min_element and std::max element - Find minimum or maximum value

std::for_each - Apply a function to each element of the container

What's the problem?

e Mostly not much - vectors work well, are highly optimised and can fall back
to working like arrays for working with older library code

* The problem is how it implements that growing behaviour

e Since there is a requirement that the underlying memory be contiguous it
does sometimes have to reallocate that memory to store more items

* No longer in the same place in memory

 When it does so, various things break, most notably iterators

What is an iterator?

* An iterator is an object that provides access to the elements in an STL container

* The idea is that you ask a container to give you an iterator to the beginning of
the items

* Then you either
* Move the iterator to another item by calling ++,+=,--, == or similar on it
* Getthe current item by dereferencing the iterator with *

* |t you are a C (or old style C++) programmer this syntax looks like pointer

dereferencing

What is an iterator?

#1include <vector>
#1nclude <iostream>

int main(){

std: :vector<int> v;

for (int 1=0; 1<10;++1){
v.push back(1*2);

]

for(auto 1t = v.begin(); 1t!=v.end() ;++1t){
std::cout << *7t << "\n";

;

What is an iterator?

, e Use the begin method of
#1nclude <vector> .
#include <iostream> your container to get the
int main() 1 iterator to the first item

std: :vector<int> v;
For (int i=0: i<10:++i){ e The actual type of an

} V.push_back(1%2); iterator is moderately
complex and depends on
for(auto 1t = v.begin(); it!=v.end() ;++1t){ :
ctd::cout << *if << "\n": the container and the data
} in the container

e Just use auto in general

What is an iterator?

e To check if you have reached the last
sinclude <vector> element compare your iterator to
#include <iostream> that returned by the end method of

. . your container
int main() {

std::vector<int> v: * The termination condition here is !
for (int i=0; i<10;++1){ =v.end() which feels a bit odd since
v.push_back(1%*2); you are used to testing for < or <=

;

IS CT IR A A IO F s N IO EORd °© Mere you want it to stop as soon as it
std::cout << *it << "A\n"; reaches the special end marker item

;

* NB! end() doesn’t return the last
item, it returns a special marker after
the last item

What is an iterator?

#1nclude <vector>
#1nclude <jostream>

. . * Increment the iterator just
int main() {

ike a loop variable in a
std: :vector<int> v;
for (int i=0: i<10:++i){ normal loop
v.push back(1*2);
} e Can incrementin pretty
for(auto 1t = v.begin(); i1t!=v.end() ;*+1t) {
std::cout << *7t << "\n";

} iIncrement a normal number

much any way you can

What is an iterator?

* To access the item that the
#include <vector> iterator is referring to use the

#include <iostream>
* (dereference) operator
int main(){

std::vector<int> v; * The iterator is not just a

for (int i=0; i<10;++1){
v.push back(1*2);

) are happy with pointers it is

pointer to the item but it you

for(auto 1t = v.begin(); 1t!=v.end();++1t){ agood guide
std::cout << *3t << "\n";

} * Changing the value that you

get from the iterator changes
the value in the container

lterator invalidation

 When you add an item to a vector the items may have to be moved in memory if the
vector grows

* This invalidates the iterator
* It no longer works
* |terators are also invalidated by removing items

* You have to be careful iterating through a vector using an iterator to either add or
remove items

e You can use the erase or insert method of a vector to add or remove items and it

gives you a new iterator but you can't use the original one

Memory Contiguity

Very common thing to want to do is to remove items from a vector based on a
condition

You can just loop through, test each element and call the erase methoa
Performance can be bad though

Vector is required to store the items contiguously in memory so when you erase an
item the items above it have to be copied down

 Removing a range is handled automatically with a single copy down

 Removing individual items based on a condition isn’t it you use the erase method

Memory Contiguity

* Fortunately this is common enough that C++ gives you a way to do it “properly”
* The classical way of doing it was called the “erase-remove” idiom

* Move all of the elements that are not to be removed up to the front of the
vector using std::remove_if (confusing name, but that is what it does)

* Remove the empty elements (left at the back of the vector) using the erase
method of the vector

* Still have to do this if you want to remove items from a subsection of a vector

* In C++20 they introduced a simpler way - std::erase_if

std::erase if

#include <vector>
#include <ijostream>

bool condition(int &1){

//Condition 1s true 1f number 1s divisible by 3
return (i%3)==0;

;

int main() {

std: :vector<int> v;

for (1int 1=0; 1<10;++171){
v.push back(i*2);

]

std::erase 1f(v,condition);

for(auto 1t = v.begin(); 1t!=v.end();++1t){
std::cout << *71t << "\n";

;

std::erase if

#i1nclude

| e That's it!
#1nclude

bool condition(int &i){ You write a function that takes an

I{é%ﬁ??%};n i true 1T number 1s divisible by 3 item from your container and returns

! a bool

int main() { 've had my function take an int

std::vector<int> v; reference - this is permitted but not
for (int 1=0; 1<10;++17){ .

v.push back(i*2); required.
;

e Can be useful if your stored type is
big

std::erase 1f(v,condition);

for(auto 1t = v.begin(); 1t!=v.end();++1t){

std:icout << *it << "An e The return value should be true if

you want the item removed and
false if not

;

std::erase if

#i1nclude
#include

bool condition(int &1){ :
//Condition is true if number is divisible by 3 * You m|9ht have to tell your

et (1%3)==0; compiler that you want to

‘0t main()d use C++20 to get this to

. compile
std: :vector<int> v;

for (int 1=0; 1<10;++1){
.push back(i1*2); .. :
o A * This is particularly true on

std::erase if(v,condition); Macs

for(auto 1t = v.begin(); 1t!=v.end();++1t){
std::cout << *it << "\n";

 usually adding --std=c++20
h

Anonymous Functions

 |f you have a lot of conditions that you use only once in something like
std::erase_if (or std::copy_if or std::sort or any of the other algorithms
that take functions as a parameter) then it can seem wasteful to have
functions hanging around to only be used once

e There is a solution to that in C++ - anonymous functions, also called
lambdas

 Lambdas are very powerful and we can’t describe them much here, but
we'll show the syntax

Anonymous Functions

#include <vector>
#1nclude <iostream>

int main() {

std: :vector<int> v;

for (int 1=0;

;

v.push back(i*2);

1<10;++1) {

std::erase if(v,[1Cint &1){return (1%3==0);}) ;

for(auto 1t = v.begin();

;

std::cout << *71t <K<

it!=v.end() ;++11)
||\n||;

The [I(X } pattern indicates
that you are defining a lambda

We're not going to discuss []

() defines a parameter list just
like a function

Then the body of the function
isin the {}

The return type is implicitly
auto

Brief return to auto

* That automatic return type isn't specific to lambdas
* Any function can have auto as its return type
* The compiler infers the return type from the return statements in the tunction

« MUST ALL RETURN THE SAME TYPE

* This doesn't let you return different types from ditterent paths through the
function

* Can make your code confusing - it it is hard to work out the return type maybe don't

use auto. Is OK it it is easy but the return type is complex (i.e. returning an iterator)

Classical algorithm example

« std::erase_if solves one of the most common things that you want to do
with a vector, but it isn't quite the "“normal” sort of C++ algorithm function

e As a better example of typical STL algorithms, we'll show std::sort
* This function sorts the elements in a vector

e By default it sorts them in ascending order (technically non-descending
order, but mostly that doesn’t matter)

e You can give it a custom function to do other types of comparison or to
sort types that are not trivially comparable to each other

std::sort

#1include <vector>
#1include <iostream>

int main() {
std: :vector<int> v;
//Store numbers 1 to 10
for (int 1=1;1<=10;1++) v.push back(1);

//5Sort the vector
//For a normal ascending order sort you should return
//Whether 11 1s < 12
//Here, we do the opposite so the sort is 1n descending order
std::sort(v.begin(),v.end(),[](int 11,int 12){return 11>12;});
//Print the result (will be descending order)
for (auto 1t = v.begin(); 1t!=v.end();1t++){

std::cout << *7t << "\n";

;

;

std::sort

#1nclude <vector>
#1nclude <iostream> e |n Mmost a\gorithms

int main(){ you specify the

std: :vector<int> v;

//Store numbers 1 to 10 startand end

for (int i=1;i1<=10;1i++) v.push_back(i); iterators tfor the
//Sort the vector a\gorlthmto app‘y

//For a normal ascending order sort you should return
//Whether 11 1s < 12

//Here, we do the opposite so the sort is 1n descending order
std: :sort(v.begin().,v.end(),[] (int 11,int 12){return 11>12;}); -
//Print the result (will be descending order) ’ ThIS means that

for (auto 1t = v.begin(); 1t!=v.end();1t++){ yOu Can run them

std: :cout << *it << "\n'";
} on part of a

} container

over

std::sort

#include <vector> e Thisis another

int main() {

#1include <i1ostream>
lambda

std::vector<int> v; :
//Store numbers 1 to 10 * |t deliberately does

for (int i=1;i<=10;i++) v.push back(i); the comparison

//Sort the vector backwards so that it
//For a normal ascending order sort you should return sorts in descending
//Whether 11 1s < 12

//Here, we do the opposite so the sort is in descending order order
std::sort(v.begin(),v.end(),[JCint 11,1nt 12){return 11>12;}) ;
//Print the result (will be descending order) , .
for (auto it = v.begin(); it!=v.end();it++){ » With no comparison

std::cout << *it << "\n"; function it would

just use the < and >

;

operators

How does vector grow?

* We know that vector contains an arbitrary number of items

e We know that when it grows it may have to move the items to a new bit of
memory to accommodate the new items

e Because it is contiguous - all of the items follow one another in memory

e But what actually happens when we add an item? Does it grow by one item?

* NO

How does vector grow?

* When vector grows it grows by more items that it immediately needs to add
* Generally as a multiple of the number of elements already in the vector

e Generally either 2x or about 1.6x (the golden ratio, in particular)
* This means that a vector has two related but different concepts

e size - The number of elements stored in the vector

e capacity - The number of elements that could be stored in the vector without
having to reallocate memory

e There are methods of a vector with these names to check these values

How does vector grow?

e To go with the concepts of size and capacity, there are methods to set both the size
and capacity of a vector

* resize(N) - Set the vector to hold N items. The items are immediately created and
initialised and can be accessed by index or iterator. i.e change the size of the vector

 reserve(N) - Set the vector to be able to hold N items. The items are not created
and are not available, but memory is set aside to hold them. i.e. change the
capacity of the vector

* resize’s use is obvious, but reserve is commonly used to give a good first estimate
of how many elements might go into a vector when using push_back or
push_front

Vector Conclusions

* Vector is basically an array but “better”
e You can add items to it
e You can remove items from it

e Thanks to algorithm there are also many useful functions that you can to do
things like sort elements in a vector etc.

* |f you want to do something with your data, look at what is already there!

Palr

std::pair

std::pair is a class that joins together two values that may be of different
types

't isn’t really an STL container in itself, but it is used by various other STL
containers

't does have some uses in your own code, but not very commonly

There is a generalisation of std::pair to an arbitrary (but known at compile
time) number of connected types called a std::tuple

More usetful in places, but not generally needed except for advanced features

std::pair

include <utility>
include <i1ostream>
include <string>

int main() {

std::pair<int,std::string> 1_s pair;
1 s pair.first = 123;
1 s pair.second = "Hello world!";

std::cout << 1_s pair.first << " : " << 71 s pair.second << "\n";

std::pair

include <utility>
include <i1ostream>
include <string>

int main() {

std::pair<gnt,std::string> 1_s pair;
1 s pair.first = 123;
1 s pair.second = "Hello world!";

std::cout << 1_s pair.first << " : " << 71 s pair.second << "\n";

std::pair

include <utility>
include <i1ostream>
include <string>

int main() {

std::pair<gnt,std::string> 1_s pair;
1 s pair.first = 123;
1 s pair.second = "Hello world!";

std::cout << 1_s pair.first << " : " << 71 s pair.second << "\n";

std::pair

include <utility>
include <i1ostream>
include <string>

int main() {

std: :pair<int,std::string> 1 s pair;
1 s pair.first = 123;
1 s pair.second = "Hello world!";

std::cout << 1_s pair.first << " : " << 71 s pair.second << "\n";

std::pair

« Quite often if you are working with pairs yourselt you want to quickly make a
pair from two pieces of data

* You can create the pair and assign the elements as shown above, but there is
an easler way

« auto mypair = std::make_pair(first,second);

* Firstand second can be of any type, the compiler will deduce the correct
types and create a pair of those types

\YETe

std::map

» std::map is an associative array class

e Thatis it maps a key to a value

* You can use a key to store a value

* |f you know the key you can retrieve the value

e Each key can have at most one value associated with it

e There is std::multimap that allows more than one value per key

std::map

e For a given std::map the key and the value are of a specified type
e The value can be of almost any type

e The key must be orderable i.e. there must exist < and > operators tor the
key

* Once again, possible but very difticult to store difterent types as values

 STILL AVERY BAD IDEA

std::map

include <map>
include <ijostream>
include <string>

int main() {
std: :map<std::string,int> age map;

age map["William"]=24;
age map|["David"]=27;
age map["Albert"]=67/;

std::cout << "Age of David 1s " << age map["David"] << "\n";

std::map

include <map> e First element
include <iostream>

include <string> of the
int main() 4 template is
std: :map<std::string,int> age map; the type of

age map["William"]=24; the |<ey
age map|["David"]=27;
age map["Albert"]=67/;

/

Most “simple’
std::cout << "Age of David 1s " << age map["David"] << "\n";

types will
work

std::map

®
include <map> Secona

include <iostream> element of
include <string>

the template
int main(){ is the type of

std: :map<std::string,int> age map;
the value
age map["William"]=24;
age map|["David"]=27;
age map["Albert"]=67/; This can be

std::cout << "Age of David 1s " << age map["David"] << "\n"; any
constructible

type

std::map

e Access an

include <map> element of a
include <iostream>

include <string> nﬂaF)VVH+1[]
just like an

int main() {
std: :map<std::string,int> age map; array or

age mapll]=24: vector
age map|["David"]=27;
age map["Albert"]=67/;

e Type of value

- << " id is " << " d"] << "\n"; : :
std::cout Age of David is age_map["David"] \n"; in[]is now

the type of
the key

std::map

include <map> You can both

include <iostream>
include <string> access and

set the value

int main() {
std: :map<std::string,int> age map;

age map|]=24: You don't
age_map["David"]=27; have to create
age map["Albert"]=67/; ,

a key specially

std::cout << "Age of David 1s " << age map["David"] << "\n";

when you first

use It

std::map

e That actually causes one of the problems with std::map

 |fyou try to read from a map element that hasn't already been set then it is silently
created and set to a default value (technically it is value initialized)

 |f you wantto check whether a key is already in the map then you have to test for
it

e Use the find method to find the key

e Use the count method to count how often the key appears (it will only ever by 1

or 0 in std::map since each key is unique)

std::map

include <map>
Tnclude <iostream>
include <string>

HH FHF

int main() {
std: :map<std::string,int> age map;

age map["William"]=24;
age map|["David"]=27/;
age map["Albert"]=67/;

0ool 1s William = (age map.count("William")!=0);
ool 1s David = (age map.find("David") !=age map.end());
pool is Alice = (age map.count("Alice")!=0);

std::cout << "Is \"William\" in the map : " << i1s William << "\n";
std::cout << "Is \"David\" 1n the map : " << is David << "\n";
std::cout << "Is \"Alice\" 1n the map : " << 1s Alice << "\n";

std::map

* This is actually a lot of how maps are used

e The real power of a map is being able to store and retrieve data based on
the key

 Map is a fast container for random access (O(Ln N))

e Sometimes you want to iterate through your map and access the elements

e This is similar, but different, to what you do for vector

inclu
Tnclu
TncltL

terating over std::map

de <map>
de <jostream>
de <string>

int main() {
std: :map<std::string,int> age map;

age
dgc_
age_

Na
Nda
Na

0
0
0

"William"]=24:
"David"]=27:

"Albert"]=67/;

for (auto 1t age map.begin(); 1t!=age map.end(); ++1t){
std::cout << "Key 1s << (*1t).first << "\n";
std::cout << "Value 1s :" << (*1t).second << "\n";

terating over std::map

include <map> * You can't iterate by

include <iostream> .
include <string> number like you

int main() 1 can with a

std: :map<std::string,int> age map; std::vector

age map["William"]=24;
age map["David"]=27; e Have to use an

age map["Albert"]=67; terator

for (auto 1t age map.begin(); 1t!=age map.end(); ++1t) { I Loop from begin()
std::cout << "Key 1s << (*1t).first << "\n";
std::cout << "Value is :" << (*it).second << "\n": to end() an

iIncrement the
Iterator

terating over std::map

include <map>
include <ijostream>
include <string>

int main() {
std: :map<std::string,int> age map;

e As before you
age map["William"]=24;

age map["David"]=27; dereference the

age_map["Albert"]=67; iterator with * to

get the value
for (auto 1t age map.begin(); 1t!=age map.end(); ++1t){
std::cout << "Key 1s << (F1L) .first << "\n";
std::cout << "Value 1s :" << (*1t).second << "\n";

;

terating over std::map

include <map>
include <ijostream>

int main() {
std: :map<std::string,int> age map;

age map["William"]=24;
age map["David"]=27;
age map["Albert"]=67;

for (auto 1t age map.begin(); it!=age map.end(); ++it) {

std::cout << "Key 1s << (*1t)Lfirst << "\n";
std::cout << "Value 1s :" << (*1t).second << "\n";

;

include <string> Unlike with

std::vector the
value that you get
from the iterator
isn’t just the value

't is a std::pair of
the key and the
value

terating over std::map

include <map>
include <iostream>
include <string>

int main() {
std::map<std::string,int> age map; e Getthe key

age map["William"]=24; with .Tirst
age map["David"]=27;
age map["Albert"]=67;

e Getthe value with

for (auto 1t age map.begin(); 1t!=age map.end(); ++1t){ .second
std::cout << "Key 1s << (*1t)Lfirst << "\n";
std::cout << "Value 1s :" << (*1t).second << "\n";

(*it). vs It->

You will have noticed that slightly inelegant syntax there
e (*it).first and (*it).second

You get that syntax because you want to dereference the iterator to get the pair and
then access a member of the pair

This type of syntax is so common in C++ (and C where it originated) that there is a
special syntax for it ->

So (*it).first is exactly equivalent to it->first

This is true for all uses of the dereference operator in C and C++

Other loops

* There is one other type of loop that makes it simpler to access elements of a
map

* That is the range based for loop

* These are loops that iterate through the elements of a container directly,
giving you access element by element

e Can be used on any STL container, just a different syntax for the same thing

Range based loop

include <map>
include <jostream>
include <string>

= FHF

int main() {
//Create the map
std: :map<std::string,int> age map;

//Populate the map

age map["William"]=24;
age map["David"]=27;
age map["Albert"]=67;

//Loop over the map using iterators

for (auto element:age map) {
std::cout << "Key 1s " << element.first << "\n";
std::cout << "Value 1s :" << element.second << "\n";

Range based loop

include <map>
include <jostream>
include <string>

= FHF

int main() {
//Create the map

std: :map<std::string,int> age map; o Specify the ‘OOp
//Populate the map variable first (this use
age map["William"]=24; :
2ge map["David"]=27: of auto is by far the
age_map["Albert"]=67; most common way of
//Loop over the map using iterators using these ‘OOpS)
for (auto element:age map) {

std::cout << "Key 1s ;" << element.first << "\n";

std::cout << "Value 1s :" << element.second << "\n";

Range based loop

include <map>
include <jostream>

include <strings Then puta:andthe

= FHF

name of the container
int main() {
//Create the map
std: :map<std::string,int> age map;

to loop over

The loop variable will
//Populate the map

age map["William"]=24; be assigned the value of

age map["David"]=27;
age map["Albert"]=67: each element of the

container in turn

//Loop over the map using iterators

for (auto elementiage map) {
std::cout << "Key 1is " << element.first << "\n": For a Map, the elements

std::cout << "Value 1s :" << element.second << "\n"; are stil\std::pairs of

keys and values

Range based loop

include <map>
include <jostream>

include <strings * Note that as written

= FHF

| | here, | do mean that
int main() {

//Create the map element s given the
std: :map<std::string,int> age map; value of each

//Populate the map element of the
age map["William"]=24; ,
age map["David"]=27; container
age map["Albert"]=67;
//Loop over the map using iterators ° Try using IT tO Change
for (auto element:age map) { |
std::cout << "Key 1s ;" << element.first << "\n"; values
std::cout << "Value 1s :" << element.second << "\n";

* Nothing will happen

Range based loop

include <map>
include <jostream>

include <strings e Solutionis as simple

| | as putting & before
int main() {

//Create the map the name of your loop
td:: <std:: | int> ; :
S MapP<s string,int dage map, Var|ab‘e

= FHF

//Populate the map

age map["William"]=24; :
age map["David"]=27: Makes it a reterence

age map["Albert"]=67; again

//Loop over the map using iterators

for (auto &element:age map) {
std::cout << "Key 1s ;" << element.first << "\n";
std::cout << "Value i1s :" << element.second << "\n"; elements Ofthe

Can now change the

container

Further auto

* This shows an important element of the auto keyword
 auto picks up most but not all elements of the inferred type automatically

* |t picks up the type (int vs. float vs. std::string for example), and it picks up
whether something is a pointer or not

|t doesn’t pick up whether something is a reference or a handful of other
properties

e |f afunction returns a reference then you have to use auto &var to store the result
as a reference variable, otherwise it makes a copy

Structured Bindings

* One of the more useful recent additions to C++ (in C++17) are structured
bindings

* They are rather like the tuple unpacking in Python

 |f you have something that returns a std::pair or a std::tuple then you can
unpack it directly to normal variables rather than having to access the pair
using .first and .second

e Putthe variables that should hold the answers into auto [var1,var2]

* They can get very complex in more powerful applications but they are useful here

Structured Binding

include <map>
include <iostream>
include <string>

int main() {
//Create the map
std: :map<std::string,int> age map;

//Populate the map
age map["William"]=24;

age map["David"]=27;
age map["Albert"]=67/;

//Loop over the map using structured binding
for (auto [key,value]:age map) {
std::cout << "Key 1s ;" << key << "A\n";
std::cout << "Value 1s :" << value << "\n";

