
Warwick RSE

“The Angry Penguin“, used under creative commons licence
from Swantje Hess and Jannis Pohlmann.

28/09/2023

Templates

Concept

What are templates?
• Sometimes you have code that is used in similar ways but with a few differences

• For example doing the same thing to different types of data

• You want to avoid writing the same code multiple times

• This is classically done in many languages with the use of tricks with a preprocessor

• Runs before your code is compiled and alters the text that is compiled

• The idea of the template system is to allow you to do things like that in a formal, consistent
way

• Is still a preprocessor, but one that is very powerful and actually intended for this type of
work

Simple Example

Simple motivation
• In C++ it can be annoying to have to remember to put “\n” at the end of

every cout statement

• Why not write a function that works like print statements do in other
languages and automatically puts a newline in?

• Well, most obvious reason is that the compiler has to know what type
something is to be able to print it

• Remember that to the computer an int and a float are both just 4 bytes of
binary data it needs that type information to know that they should be
printed differently

Simple motivation
int main(){

 print("Hello world!");

 print(14);

 print(1.234);

}

• Imagine that we want to have code like this that will just work

• Each of those things printed and then a newline after them

• We have already seen one way to do that

• Function overloads

Simple motivation

• This will work

• Three functions, one for each of the “major” types

• Each prints their contents and then a newline

void print(int i){

 std::cout << i << "\n";

}

void print(double d){

 std::cout << d << "\n";

}

void print(std::string s){

 std::cout << s << "\n";

}

Result!

Hello world!

14

1.234

Simple motivation

• Now try this version with our driver code

• The line print(14); is now (usually) ambiguous since it is neither a long int nor a double

• Compiler doesn’t know which to pick as being “better” so it won’t compile

• Have to have both int and long int etc. etc. - rapidly runs out of control

void print(long int i){

 std::cout << i << "\n";

}

void print(double d){

 std::cout << d << "\n";

}

void print(std::string s){

 std::cout << s << "\n";

}

What we actually want
• The body of all of these functions will be exactly the same

• For a given type either we call

• std::cout << value << “\n”;

• or we don’t know how print it and compilation should fail

• So, why can’t the compiler generate the code itself?

• That is where templates come in

Template
template <typename T>

void print(T value){

 std::cout << value << "\n";

}

• Believe it or not, that’s it

• That makes a print function that can print any type that could be printed with
<<

• Let us look at the things bit by bit

Template
template <typename T>

void print(T value){

 std::cout << value << "\n";

}

• The word “template” says that you are creating a template

• Always goes before the “thing” that you are templating

• Only affects the next “thing”

Template
template <typename T>

void print(T value){

 std::cout << value << "\n";

}

• Triangular braces (< >) indicate parameters to a template just like round
brackets indicate parameters to a function

• They are used both when defining a template and when specifying a specific
entity (specifying T manually) to a template

• We’ll come to that later, but mostly you don’t need to do that for functions

Template
template <typename T>

void print(T value){

 std::cout << value << "\n";

}

• typename says that the parameter to this template is a type

• I.e. I am using this template to generate code that is different for different types

• There is an older synonym keyword class

• You will still see class used here commonly, but typename is considered more
correct

Template
template <typename T>

void print(T value){

 std::cout << value << "\n";

}

• T is a name for the type that we are templating on

• This is just like the name of a parameter to a normal function - it is a name
to let you use the parameter and is arbitrary but must be unique in a
template

• typename T is actually very common in real code for simple templates

Template
template <typename T>

void print(T value){

 std::cout << value << "\n";

}

• T here is used as a type specifier, like int, float, std::string etc would be

• The T is obviously the name of the type from the template parameter and should be
changed if you use a different parameter name

• T can be used anywhere within your function, so if you want to create a variable with
the same type as your parameter you just type

• T tempvar;

What happens?
• Now when the compiler encounters a call to the function print it will look at

the type of the argument that the function is called with

• If it is the first time that it has encountered a call with that parameter type it
will generate a function with a type matching the type that the function is
called with

• If it has already generated a function for a type then it will reuse it

• The function with the correct type will be used

• No worries about int vs. long int - it will generate a function for each of them!

Further templates

• What about if I wanted to have a version of print that took two parameters?

• If both parameters are of the same type then nothing different at all

• Two parameters both type T

• All of the normal rules for overloaded functions apply, so you can call that
function print as well since it is distinguished from the others by having two
parameters

template <typename T>

void print(T value1, T value2){

 std::cout << value1 << " " << value2 << "\n";

}

Further templates

• What about two differently typed parameters?

• No problem. Two template parameters

• Each template parameter is considered independently

• You can have as many templates parameters as you want

• There is a limit somewhere which is compiler dependent but you probably
won’t run into it

template <typename T1, typename T2>

void print(T1 value1, T2 value2){

 std::cout << value1 << " : " << value2 << "\n";

}

Template Selection

• So how are templates selected?

• That is actually a hard question!

• In the details at least

• Essentially the template engine selects the “lest general” template that will
work

• What do I mean by least general?

Another main
int main(){

 print("Hello", "World");

 print("Test value is",42);

}

• Consider the above main function of two print calls with two parameters

• One has two strings, one a string and an integer

• Of our earlier two parameter print functions

• The one taking two parameters of different types will work fine

• The one taking two parameters of the same type will fail on the second line

• What will happen if we have both template functions in the same code?

Two templates
template <typename T>

void print(T value1, T value2){

 std::cout << "Two matched parameters\n";

 std::cout << value1 << " " << value2 << "\n";

}

template <typename T1, typename T2>

void print(T1 value1, T2 value2){

 std::cout << "Two different parameters\n";

 std::cout << value1 << " : " << value2 << "\n";

}

• If you think back to out earlier approximate rule you get

• string,string will call the first one

• string,int will call the second one

• Is that right?

Yep!
Two matched

Hello World

Two different

Test value is : 42

• In fact, C++ will go through and select the first function that matches the
parameters going up in genericness

Template Selection
• Non-templated functions that are an exact match to the specified parameters

• Non-templated functions where the parameters can be converted to be of
matching type

• Specialised templates (Special implementations of functions for specific
values of template parameters)

• Partially specialised templates (Where you create a special implementation
where some, but not all of the template parameters have specific values)

• Templated functions going from fewest to most template parameters

• Variadic templates (Templates with variable numbers of parameters)

C
ho

se
 L

at
er

Advice for Templates
• Be careful with templated functions - you can destroy your mind

• Actually the same with just overloads

• If two functions have the same name they should do the same job

• Sometimes the code to do the same job might look different but it should
be the same job

• Try to make sure that you know what is going to happen for any call to a
function that you might make

Already seen templates
• Those < > brackets should look pretty familiar from our STL slides

• The STL containers are indeed templated on what they are going to store

• They are templated classes rather than templated functions

• We’re going to come back to them

• But can I use templating to pass an arbitrary vector to a function?

• Yes! Just like you can use a function parameter to call another function, you
can use a template parameter as a parameter to another template

Template to template
template <typename T>

void print(std::vector<T> &vec){

 for (auto &el:vec){

 std::cout << el <<"\n";

 }

}

• This function is templated on a type T

• That T is then used as a template parameter to std::vector

• This means that you have a function that takes a vector storing anything

More advanced template
• What about if we wanted to do some kind of adaptor that gets an element

from a vector, and returns either it or zero?

• You’d probably actually just write a normal function that takes a value and
checks it, but this is sort of like a real thing that people do

• This introduces a couple of new elements

• Non template parameters to template functions

• Template return types

More advanced template

#include <iostream>

#include <string>

#include <vector>

template <typename T>

T check_and_return(std::vector<T> &vec, int index){

 T value = vec[index];

 if (value > 0) return value;

 return 0;

}

int main(){

 std::vector<int> v;

 for(int i=0;i<10;++i) v.push_back((i-5));

 for(int i=0;i<10;++i) std::cout << check_and_return(v,i) << "\n";

}

• Template
parameters
are just
normal
parameters

• Just put
your other
parameters
in as well

More advanced template

#include <iostream>

#include <string>

#include <vector>

template <typename T>

T check_and_return(std::vector<T> &vec, int index){

 T value = vec[index];

 if (value > 0) return value;

 return 0;

}

int main(){

 std::vector<int> v;

 for(int i=0;i<10;++i) v.push_back((i-5));

 for(int i=0;i<10;++i) std::cout << check_and_return(v,i) << "\n";

}

• T really is
just a type
specifier as
used here

• You can use
it when
defining
variables

• You can use
it in return
types

Template inference
• In all of these functions the use of the templates is seamless

• Apart from when we are specifying std::vector

• This is because of inference

• Because we are using the templates to produce parameters to functions the compiler
can infer the template types from the type of the parameters that we are passing to
the function

• std::vector is a templated class, so there are no parameters that it can use to infer the
type that it is templated on so you have to specify them manually

• This is also true for a function that only uses the template parameter for the return type

Templated return
template <typename T>

T ten_over_three(){

 return T(10)/T(3);

}

int main(){

 //Set the code to print to 15dp of precision for floating point numbers

 std::cout << std::setprecision(15);

 std::cout << "10/3 as integer is " << ten_over_three<int>() << "\n";

 std::cout << "10.0/3.0 as float is " << ten_over_three<float>() << "\n";

 std::cout << "10.0/3.0 as double is " << ten_over_three<double>() << "\n";

• Write the function the same as before

• Now the compiler can’t infer the template type so you have to put it in manually

• Can’t try to infer it from return type because I may be using it in a way that doesn’t give clues

• <type> before the function call ()

Consolidation

• Templates

• Allow you to write code in terms of arbitrary types that you either specify
later or the compiler will automatically determine them if possible

• Can be used for parameters to functions, variables within functions and
return types for functions

• Can be passed to other templates (i.e. std::vector<T>)

Further Templates

Further Templates
• Template parameters can be types other than typenames

• Before C++20 mainly integer types

• C++20 and later almost any type

• Templates can have default values, in which case if type inference fails they
are given the default value

• You can write variadic templates that take an unknown number of template
parameters - they are tricky to work with so avoid them until you need them!

Further Templates
• You can specialise a template by providing values for template parameters

and then a custom implementation of the function or class for those values
of the parameters

• The specialised implementation will be used in preference to the auto-
generated one

• If you only provide values for some template parameters, then this is called
partial specialisation and has some more rules associated with it

• You can pass templates as parameters to templates, which are called
template templates - they can be quite tricky to use right

Further Templates
• Technically the templating system in C++ is a complete programming

language itself

• There is a whole branch of C++ programming called template
metaprogramming to write programs using the template system

• This is very powerful for some things, but is also very tricky to do well - use
with caution

• There are a variety of tools that templates provide you with to help if you want
to go this way

• std::enable_if, if constexpr(), std::invoke_result

