
Warwick RSE

“The Angry Penguin“, used under creative commons licence
from Swantje Hess and Jannis Pohlmann.

28/09/2023

Classes and the Pathway
to OO Design

Classes

Classes

• The idea of a class is that it bundles together information that is logically
connected together as well as (sometimes at least) functions that act on that
data

• We have already seen classes in use - std::vector and std::string are classes

• Here we’ll look into writing them and understanding the bits of them

Example Class

#include <iostream>
class demo{
public:
int int_data;
float float_data;
};

int main(){
 demo mydemo;
 mydemo.int_data = 14;
 mydemo.float_data = 1234.56;

 std::cout << "Int data is " << mydemo.int_data << "\n";
 std::cout << "Float data is " << mydemo.float_data << "\n";
}

Example Class

#include <iostream>
class demo{
public:
int int_data;
float float_data;
};

int main(){
 demo mydemo;
 mydemo.int_data = 14;
 mydemo.float_data = 1234.56;

 std::cout << "Int data is " << mydemo.int_data << "\n";
 std::cout << "Float data is " << mydemo.float_data << "\n";
}

• To create your own classes you first
have to have a definition of the
data (and functions) that are
bundled together

• This is a class without functions,
often called a plain old data or
POD class

• Technically POD is now replaced
with Trivial and Standard_Layout
from C++20, but you’ll probably
hear POD used more still

Example Class

#include <iostream>
class demo{
public:
int int_data;
float float_data;
};

int main(){
 demo mydemo;
 mydemo.int_data = 14;
 mydemo.float_data = 1234.56;

 std::cout << "Int data is " << mydemo.int_data << "\n";
 std::cout << "Float data is " << mydemo.float_data << "\n";
}

• This public: line states that
every variable after that line
can be accessed from
outside the class

• The default in classes is
private: and we’ll encounter
that in a bit

• There is also protected: that
we won’t really cover

Example Class

#include <iostream>
class demo{
public:
int int_data;
float float_data;
};

int main(){
 demo mydemo;
 mydemo.int_data = 14;
 mydemo.float_data = 1234.56;

 std::cout << "Int data is " << mydemo.int_data << "\n";
 std::cout << "Float data is " << mydemo.float_data << "\n";
}

• Once you have a definition of
a class you need to create
instances of the class

• The definition defines what
can be stored in a class

• An instance actually stores
data

• You can have as many
instances as you want

Example Class

#include <iostream>
class demo{
public:
int int_data;
float float_data;
};

int main(){
 demo mydemo;
 mydemo.int_data = 14;
 mydemo.float_data = 1234.56;

 std::cout << "Int data is " << mydemo.int_data << "\n";
 std::cout << "Float data is " << mydemo.float_data << "\n";
}

• You access member variables
by using a . between the name
of the instance and the name
of the member variable
specified in the definition

• While every instance will have
whatever name you want, the
members will always have the
names specified in the
definition

Methods

Methods
• A function attached to a class is generally called a method after the term used

in an early programming language allowing this, Simula

• We’ve already seen methods called on classes with things like vector.size()

• And vector.push_back(value) etc.

• The idea is to add functions that apply to the data stored in a class to the class
itself

• This is where private variables come in - Methods can access private variables

Methods
#include <iostream>
class demo{
private:
int data;
public:
 void set_data(int newdata){data = newdata;}
 int get_data(){return data;}
};

int main(){
 demo mydemo;
 //Can't set mydemo.data since it is private
 mydemo.set_data(123);

 //Can't read mydemo.data either
 std::cout << "Data is " << mydemo.get_data() << "\n";
}

• Here we use a private
variable data and create
set_data and get_data
methods to set and
retrieve its value

• This would, for example,
allow you to validate that
data was being set to an
allowed value

• Note that in the method
you can just access the
member variable by name

Methods
• Methods work the same as any other function but are always aware of which instance of the

class they were called on

• This is done by a hidden parameter to every method called this which is a pointer to the
instance that the method was called on

• You can use this manually to access member variables and methods, but generally you don’t
need to - just use the name directly, although function parameters and local variables in a
method shadow the member variables and methods if they have the same name, so be
careful!

• If you use this, remember that it is a pointer, so you have to access the member variables and
methods using ->, just like we saw with the iterators (although here for a different reason)

Struct
• If you’ve come from C then you might be familiar with a concept in C called a struct

which does much the same thing, but doesn’t have methods

• In C++ POD classes are almost-guaranteed to be the same layout in memory as a C
struct

• In fact a class with everything public and no methods is exactly like a C struct

• The keyword struct is still in C++ and simply means a class where the default access
of all members is public

• Use it like class if this is the behaviour that you want, commonly used for POD classes

Default Values

Default Values
• You can assign default values to members of

classes from C++11 onwards

• The best way to do it is to put the initial value in { }
after the name of the value and before the ;

• Technically this is called uniform initialisation.

• There are other methods of initialising variables
such as assigning with = or constructing with ()
rather than {} but this is the one we would
recommend since it is the least ambiguous for the
compiler

#include <iostream>
class demo{
public:
int int_data {14};
float float_data{1234.56};
};

int main(){
 demo mydemo;

 std::cout << "Int data is "
 << mydemo.int_data << "\n";
 std::cout << "Float data is "
 << mydemo.float_data << "\n";
}

Call function with
class

Default Values
• You can pass an instance of a class to a

function just like any other type in C++

• Here I am passing it as a reference

• Generally want to do that

• Classes are generally larger than single
data items

• Copying classes can be surprisingly
involved and computationally expensive

#include <iostream>
class demo{
private:
int data;
public:
 void set_data(int newdata)
 {data = newdata;}
 int get_data(){return data;}
};

int get_and_double(demo &d){
 return d.get_data()*2;
}

int main(){
 demo mydemo;
 //Can't set mydemo.data since it is private
 mydemo.set_data(123);

 //Can't read mydemo.data either
 std::cout << "Data doubled is "
 << get_and_double(mydemo) << "\n";
}

Special Methods

Constructors

• There are special methods that you can
create for a class that are used by the
language in places where you don’t
explicitly call a function

• The most common is a constructor method

• This is called when the object is created
and can be used to set up any parameters
of the function

#include <iostream>
class demo{
public:
int int_data {14};
float float_data{1234.56};
demo(int i, float f)
 {int_data=i;float_data=f;}
demo()=default;
};

int main(){
 demo mydemo{6,5.6};

 std::cout << "Int data is "
 << mydemo.int_data << "\n";
 std::cout << "Float data is "
 << mydemo.float_data << "\n";
}

Constructors
• This is a constructor. Note that it doesn’t

have a return type and has the name of the
class as the method name

• You can have any parameters that you want
to a constructor, although some kinds of
parameters have special meanings

• The constructor to be used is chosen by
following the normal rules for overloaded
functions

#include <iostream>
class demo{
public:
int int_data {14};
float float_data{1234.56};
demo(int i, float f)
 {int_data=i;float_data=f;}
demo()=default;
};

int main(){
 demo mydemo{6,5.6};

 std::cout << "Int data is "
 << mydemo.int_data << "\n";
 std::cout << "Float data is "
 << mydemo.float_data << "\n";
}

Constructors
• This is how the constructor is used

• When you declare the instance of the class put
{ } after it and the values of the parameters to the
constructor

• You can also put () rather than { }, but once
again uniform initialisation is more unambiguous

• There are a lot of strange ambiguities in C++
and uniform initialisation was designed to try
and fix them - we’d advise using it

#include <iostream>
class demo{
public:
int int_data {14};
float float_data{1234.56};
demo(int i, float f)
 {int_data=i;float_data=f;}
demo()=default;
};

int main(){
 demo mydemo{6,5.6};

 std::cout << "Int data is "
 << mydemo.int_data << "\n";
 std::cout << "Float data is "
 << mydemo.float_data << "\n";
}

Constructors
• This is the default constructor and is used when you

don’t pass any parameters when creating and
instance

• When you create a non-default constructor (like our
one taking an int and a float) then you delete the
automatic default constructor so you have to put it
back manually if you still want the default behaviour

• If you just want the default behaviour then you can
put =default here, but if you want parameterless
construction to do something then you can
implement it like a normal function or constructor

#include <iostream>
class demo{
public:
int int_data {14};
float float_data{1234.56};
demo(int i, float f)
 {int_data=i;float_data=f;}
demo()=default;
};

int main(){
 demo mydemo{6,5.6};

 std::cout << "Int data is "
 << mydemo.int_data << "\n";
 std::cout << "Float data is "
 << mydemo.float_data << "\n";
}

Destructors
• The opposite of a constructor is a destructor

• Destructors are called when an object is destroyed and should release any
resources that the object owns that need to be manually released

• Destructors never take parameters and are defined as

• ~classname(){//Put destruction code here}

• In modern C++ there aren’t any simple reasons for wanting destructors so
we’re not really giving any proper examples

Philosophy
• Construction is your opportunity to gather resources etc. that your class needs

• Destruction is then your opportunity to release resources

• Destructors are called separately for everything, so every member variable of your
class will have it’s destructor called automatically if they have one

• Note that most C++ built in “things” have their own destructors

• So if your class uses a std::vector to store objects or a std::ifstream to read from a
file then you don’t need to do anything to clean them up

• They will be automatically be cleaned up when your class is destroyed

Other constructors
• There are two special constructors that you should know about

• copy constructors are used when you initialise one instance of a class from another
instance of a class

• move constructors are used when you initialise an instance of a class from a temporary
instance of a class, such as a literal or the return from a function

• Default versions of move and copy constructors are created for you, but writing certain
other things can cause them to be deleted just like the default constuctor

• When this happens you’ll have to write them manually

• Be careful about assuming that copy or move constructors will definitely be called - it is
permissible in C++ for things that look like moves or copies to be optimised away!

Other special methods
• There are one more common class of special methods - operators

• Operators are methods that are called when the class has an operator called
on it

• For example, you can implement operator+ to allow you to add things to your
class by using the + operator, just like you would do for numbers

• You can also implement more esoteric operators like operator() which allows
you to call your class instance like a function (these are often called functors)

• You can also implement operator[] which allows you to access elements like
an array - this is how std::vector works when you access it using []

Other special methods
• You can do a lot with operators

• For example, you can implement operator+ for any type that you want, so that
you can add integers or floats to your class

• Generally be careful though! If you provide any mathematical operators then
a developer will expect you to provide all of them for all sensible types.

• Similarly, you don’t have to require that operator[] takes a single integer like
array subscription does

• Be aware that if you break conventions of the language like [] taking a single
integer you might confuse people!

Templated Classes

Template Classes
• You can template classes much as you can template functions

• You now have to specify the types of the template parameter in < > because
automatic inference is not possible

• The template applies to the whole class and you can use the type
parameters anywhere

• In member variables, in method descriptions, etc.

• It is also possible to individually template methods separately to the entire
class but if you are reaching that point you are into fairly advanced things

Template Classes
#include <iostream>
#include <vector>

template <typename T>
class datastore{
 public:
 T item;
 std::vector<T> subitems;
};

int main(){
 datastore<int> d;
 d.item = 14;
 d.subitems.push_back(17);
 d.subitems.push_back(18);

 std::cout << "Item ID is " << d.item << "\n";
 std::cout << "Sub items are " << "\n";
 for (auto &element:d.subitems){
 std::cout << element << "\n";
 }
}

• template <typename T> as
before

• You can now use T when
defining any members of
your class

• Create an instance of your
struct as before, but now with
< > to explicitly specify the
template parameter

• Looks exactly like std::vector

