Classes and the Pathway

to OO Design

28/09/2023
Warwick RSE

Classes

Classes

e The idea of a class is that it bundles together information that is logically

connected together as well as (sometimes at least) functions that act on that
data

* We have already seen classes in use - std::vector and std::string are classes

e Here we'll look into writing them and understanding the bits of them

Example Class

#include

class demo{
public:

int int data;
float float data;
'

int main(){
demo mydemo;
mydemo.int data =
mydemo.float data =

std::cout << << mydemo.int data << "\n
std::cout <X << mydemo.float data <<

#include

class demo{
public:

int int data;
float float data;
!

int main(){
demo mydemo;
mydemo.int data

Example Class

e To create your own classes you first
have to have a definition of the
data (and functions) that are
bundled together

 This is a class without functions,

often called a plain old data or
- 14 POD class

mydemo.float data =

std: :cout <K<
std: :cout <K

<< mydemo.int_data << "\n"; e Technically POD is now replaced
AR \vith Trivial and Standard_Layout
from C++20, but you'll probably
hear POD used more still

Example Class

#include <jostream>
class demo{

public:

int int data;

float float data;

int main(){

This public: line states that
every variable after that line
can be accessed from
outside the class

e The defaultin classes is

demo mydemo;

mydemo.int data
mydemo.float data 1234.56;
"Int data 1s "
"Float data 1s "

std: :cout <K<
std: :cout <K

<< mydemo.int data << "\n";
<< mydemo.float_data << "

private: and we'll encounter
that in a bit

* There is also protected: that
we won't really cover

Example Class

* Once you have a definition of

a dass yOU need to create
#include

class demof{ instances of the class
public:

int int data;
{}oat float_data; e The definition defines what

| | can be stored in a class
int main() {

demo mydemo,
mydemo.int data =

nydemo . float data = 1 ; e An instance actually stores

std::cout << << mydemo.int data << "\n"; data
std::cout <X << mydemo.float data << "\n";

* You can have as many
Instances as you want

Example Class

e You access member variables

include <i0streams by using a . between the name
bt of the instance and the name
int int data; .

float float data: of the member variable

X specified in the definition

int main(){
demo mydemo; : : :
mydemo.int_data = 14 * While every instance will have
mydemo.float data = 1234.56;
whatever name you want, the

std::cout << "Int data 1s " << mydemo.int _data << "\n"; k) 1 2l h H
std::cout << "Float data is " << mydemo.float_data << "\n"; mempers will always have the

names specified in the
definition

Methods

Methods

* Afunction attached to a class is generally called a method after the term used
in an early programming language allowing this, Simula

* We've already seen methods called on classes with things like vector.size()
* And vector.push_back(value) etc.

* The idea is to add functions that apply to the data stored in a class to the class
itself

* This is where private variables come in - Methods can access private variables

Methods

* Here we use a private

#include <iostream> variable data and create
class demo/{

Srivate: set_data and get_data

int data: methods to set and
public:

void set data(int newdata){data = newdata;} retrieve its value
int get data(){return data;}

b * This would, for example,

int main(){ allow you to validate that

demo mydemo; | . | data was being set to an
//Can't set mydemo.data since 1t 1s private

mydemo.set data(l23); allowed value

//Can't read mydemo.data either . :

you can just access the
member variable by name

Methods

Methods work the same as any other function but are always aware of which instance of the
class they were called on

This is done by a hidden parameter to every method called this which is a pointer to the
instance that the method was called on

You can use this manually to access member variables and methods, but generally you don't
need to - just use the name directly, although function parameters and local variables in a
method shadow the member variables and methods if they have the same name, so be
careful!

It you use this, remember that it is a pointer, so you have to access the member variables and

methods using ->, just like we saw with the iterators (although here tor a different reason)

Struct

* |f you've come from C then you might be familiar with a concept in C called a struct
which does much the same thing, but doesn’t have methods

* In C++ POD classes are almost-guaranteed to be the same layout in memory asa C
struct

* |n fact a class with everything public and no methods is exactly like a C struct

* The keyword struct is still in C++ and simply means a class where the default access
of all members is public

* Use it like class if this is the behaviour that you want, commonly used for POD classes

Detault Values

Detault Values

* You can assign default values to members of

#include classes from C++11 onwards

class demo/{
public:

int int data {14}: * The best way to do itis to put the initial value in { }

?oat float _data{ ; after the name of the value and betfore the :

int main() {

e Technically this is called uniform initialisation.
demo mydemo;

std::cout << * There are other methods of initialising variables
<< mydemo.int_data << "An such as assigning with = or constructing with ()
std::cout << .
<< mydemo.float data << "\n": rather than {} but this is the one we would

recommend since it is the least ambiguous for the
compiler

Call function with

class

Detault Values

#include <iostream>

class demof You can pass an instance of a class to a
private:

Int data. function just like any other type in C++
public:

void set data(int newdata)

{data = newdata;} F1 | : : f
int get data(){return data;} erel am passmg IT @S a rererence

I

int get and double(demo &d) { ° Genera”y want to do that
return d.get data() *2;

;

int main()q Classes are generally larger than single
demo mydemo; :
//Can't set mydemo.data since it 1is private data items
mydemo.set data(l23);

//Can't read mydemo.data either Copying classes can be surprisingly
std: :cout << "Data doubled 1s "

<< get_and_double (mydemo) << "\n"; involved and computationally expensive

Special Methods

Constructors

#1nclude

;bg’{‘?cqem{ e There are special methods that you can

int int_data {14}; create for a class that are used by the
float float data{ }

demo(int i. float f) language in places where you don't

{1nt_data=1;float_data=t;; explicitly call a function
demo()=default; P Y
'
| | e The most common is a constructor method
int main() {
demo mydemo

ctd: - cout << e Thisis called when the object is created

" mydimoﬁnt_data << "\n"; and can be used to set up any parameters
S . . Ccou <<

<< mydemo.float data << "\n"; of the function

Constructors

#include . , ,
class demo{ e This is a constructor. Note that it doesn't

public: have a return type and has the name of the
int int data {14};

float float data{ } - class as the method name
demo(int 1, float f)
{1int data=1;float data=ft;}
demo ()=default; * You can have any parameters that you want

H to a constructor, although some kinds of

int main() { parameters have special meanings
demo mydemo{6, !

std:rcout << » The constructor to be used is chosen by
<< mydemo.1int data << "\n";

std::cout << following the normal rules for overloaded
<< mydemo.float data << ;

functions

Constructors

#1nclude
class demo{

public:

int int data {14};
float float data{ }
demo(int 1, float f)

{1int data=1;float data=ft;}

demo ()=

'

1nt mai
demo

std: :
<<
std: :
<<

default;

n() {
mydemo{6, }

cout <<

mydemo.int data <<
cout <<
mydemo.float data <<

\n

9

This is how the constructor is used

When you declare the instance of the class put

{ } after it and the values of the parameters to the
constructor

You can also put () rather than { }, but once
again uniform initialisation is more unambiguous

There are a lot of strange ambiguities in C++
and uniform initialisation was designed to try
and fix them - we'd advise using it

Constructors

?gglug:mo{ o This is the default constructor and is used when you
bublic: don't pass any parameters when creating and
int int_data {14}; instance
float float data{ '
demo(int 1, float f) .
{int data=i:float data=f:} When you create a non-detfault constructor (like our
demo()=detault; one taking an int and a float) then you delete the
X automatic default constructor so you have to put it
int main(){ back manually if you still want the detfault behaviour
demo mydemo{6, };
ctd: - cout << |f you just want the default behaviour then you can
<< mydemo.int_data << "\n"; out =default here, but if you want parameterless

std: :cout <<

construction to do something then you can
<< mydemo.float data <<

implement it like a normal function or constructor

Destructors

* The opposite of a constructor is a destructor

e Destructors are called when an object is destroyed and should release any
resources that the object owns that need to be manually released

e Destructors never take parameters and are defined as
« ~classname(){//Put destruction code here}

e In modern C++ there aren’t any simple reasons for wanting destructors so

we're not really giving any proper examples

Philosophy

Construction is your opportunity to gather resources etc. that your class needs
Destruction is then your opportunity to release resources

Destructors are called separately for everything, so every member variable of your
class will have it's destructor called automatically if they have one

Note that most C++ built in "things” have their own destructors

So if your class uses a std::vector to store objects or a std::ifstream to read from a
file then you don't need to do anything to clean them up

They will be automatically be cleaned up when your class is destroyead

Other constructors

There are two special constructors that you should know about

copy constructors are used when you initialise one instance of a class from another
instance of a class

move constructors are used when you initialise an instance of a class from a temporary
instance ot a class, such as a literal or the return from a function

Detault versions of move and copy constructors are created for you, but writing certain
other things can cause them to be deleted just like the default constuctor

* When this happens you’'ll have to write them manually

Be careful about assuming that copy or move constructors will definitely be called - it is
permissible in C++ for things that look like moves or copies to be optimised away!

Other special methods

* There are one more common class of special methods - operators

* Operators are methods that are called when the class has an operator called
on It

* For example, you can implement operator+ to allow you to add things to your
class by using the + operator, just like you would do for numbers

* You can also implement more esoteric operators like operator() which allows
you to call your class instance like a function (these are often called functors)

* You can also implement operator[] which allows you to access elements like
an array - this is how std::vector works when you access it using []

Other special methods

* You can do a lot with operators

* For example, you can implement operator+ for any type that you want, so that
you can add integers or floats to your class

e Generally be careful though! If you provide any mathematical operators then
a developer will expect you to provide all of them tor all sensible types.

* Similarly, you don’t have to require that operator|] takes a single integer like
array subscription does

* Be aware that it you break conventions of the language like [] taking a single
integer you might confuse people!

Templated Classes

Template Classes

* You can template classes much as you can template functions

* You now have to specity the types of the template parameter in < > because
automatic inference is not possible

* The template applies to the whole class and you can use the type
parameters anywhere

* In member variables, in method descriptions, etc.

 |tis also possible to individually template methods separately to the entire

class but if you are reaching that point you are into tairly advanced things

Template Classes

template <typename T> as

#1nclude <iostream>
#1nclude <vector>

template <typename T> before
class datastore{
public:
item: You can now use T when

std::vector<T> subitems; defining any members Of

!
your class
int main() {
datastore<int> d;
d.item = 14; Create an instance of your
d.subitems.push back(1l7); :
d.subitems.push back(18): struct as before, but now with

< > to explicitly specity the

std::cout << "Sub items are " << "\n"; template parameter
for (auto &element:d.subitems){

std::cout << element << "\n"; .
} * Looks exactly like std::vector

std::cout << "Item ID 1s " << d.i1tem << "\n'";:

;

