
Research software engineering
September 2023

C++
Introduction for other
language programmers

Contents

Introduction 3
Entry Points 4
First code 5
Printing 5
Includes 7
Functions 7
Conditionals 8
Variables 9
Scope 10
For loops 11
While loops 13
Compiling 14
Multiple files 16
Structs and classes 22

Warwick RSE3

Introduction
C++ grew out of an attempt to combine C, which had become a very popular language for sys
tems programming because it produced code almost as fast as hand written assembly code, with
Simula, a language designed for performing simulations. In particular Simula worked using ob-
ject oriented design - an approach to programming that seeks to deliberately separate a piece of
software into discrete objects that interact with each other. Bjarne Stroustrup, the inventor of C++,
found that object oriented design was a helpful way of designing and writing software, but that
Simula itself was too slow, so he designed a language derived from C that kept the object orient-
ed design approach but retained the performance of C. This original language was called “C with
classes” (class being a common term in object oriented design for the definition of an object), but
a few years after it was invented it was renamed to “C++”, the new name being a pun since in both
C and C++ the code “variable++” means “add one to the variable”, so C++ is one bigger than C.

With this in mind the behaviour and design of C++ makes more sense. C++ was intended to be
“C but with more”, and although the languages have drifted away from each other they are still
nearly entirely interoperable with generally only a few changes needed to C code to make it valid
C++ code. Despite this C and C++ have very different approaches to how to write a “good” pro-
gram and in this course we will be trying to teach you to write good C++ programs. If you are a
C programmer, there will be things that we do that are new to you, but there will also be things
that we don’t do that you would expect. Doing things the C way will probably work. It probably
isn’t good C++.

In this course we’re going to assume that you know an imperative compiled language. For some
languages (C or Java) most of the basic syntax will be very familiar and you can probably skip
some of this document, for others (Fortran, Rust, Julia) a lot of the syntax will be quite different
to what you are familiar with, but there should be no new concepts. If any of the concepts in this
document are new to you then you might be best learning the concepts in the language that you
are most familiar with and then coming back here. If you are starting from knowing an interpreted
language like Python, Matlab or R then many concepts here will be familiar to you as well, but you
might find C++ an unforgiving starting point for learning how to use compiled languages.

“The Angry Penguin“, used under creative commons licence
from Swantje Hess and Jannis Pohlmann.

Warwick RSE Group

Warwick RSE 4

Entry Points

All normal computer programs work by having an entry point - a part of the code that is run
automatically when the program starts. In C and C++ it is a function having a specific name
“main”. main is also used in other languages such as Rust. There are two (technically 3, but two
are different ways of saying the same thing) valid versions of the main function, but we will only
use the simplest

int main(){

}

This is the simplest form of main and is a C++ function returning an integer value (typename
int in C++) and taking no parameters. The curly braces { } indicate the start and the end of the
function. This code is actually the simplest possible valid C++ program. It does nothing, but it is
valid and will compile and run.
This version is similar but the main function now takes two arguments. The first one is the num-
ber of command line parameters that the program was started with and the second one is an
array of strings containing the command line parameters. We’re not going to use command line
arguments in this course and we’re also not going to work with these old C-style strings, but this
form is common enough that you have to see it.

int main(int argc, char*argv[]){

}

You can only have one main function in your entire code (or how would the operating system
know which one to start?) and your code will fail to compile if it finds two copies of main.
The final point to note is that both of these main functions are valid as they are, and that makes

Entry points

Any programming language needs
to have an entry point to know
where the program starts.

In Fortran it is the PROGRAM block
which is unique and different to
every other code construct in the
language. In Julia and Python it is
simply that any code that isn’t part
of any other function is run when
the program is started. In Java you
can create different classes each
having a main method and select
which to use to start the program
when you run it

them subtly different to every other function in C++. They
are functions that are defined to return an integer value
that specifies whether or not your program completed
successfully (0 is ran OK, any other value is a custom
value that you can pick up from outside the program and
use to identify the error). Any other function that can
return a value must return a value in C++, but main is
special and returns “0” (exited normally) unless you
manually tell it not to.

For every other kind of function in C++ failing to return a
value is undefined behaviour. Undefined behaviour is
a very bad thing and you should not write code that in-
vokes undefined behaviour. It is an indication of how bad
undefined behaviour is that we are warning you about it
before we actually tell you about writing any code. We
can’t list all of the things that can go wrong if your code
invokes undefined behaviour because technically what
can happen is completely undefined. Avoid it!

Warwick RSE5

First code

#include <iostream>

int mymax(int i1, int i2){
 if (i1>i2) return i1;
 return i2;
}

int main(){
 std::cout << “Maximum of 1 and 10 is “ << mymax(1,10) << “\n”;
 std::cout << “Maximum of 1 and -1 is “ << mymax(1,-1) << “\n\n”;

 int mytestval = 5;
 for (int value1 = 1; value1 < 10; value1++){
 std::cout << “Maximum of “ << value1 << “ and “ << mytestval << “
is “
 << mymax(value1, mytestval) << “\n”;
 }
 return 0;
}

This is the first code that comes in the introduction to the first lectured section of this course
and it shows all of the key elements of computer programming - variable declarations, loops,
conditionals and functions.

Here we recap all of these parts of C++, and possibly add some formal information that you

might not know. Read on for more…

Printing
Generally one wants to get output from a code in some way and the easiest way of starting is
printing to the screen. In C++ there are two ways of doing this - the C legacy “printf” statement
and the stream IO system. We’re going to teach stream IO which is a bit simpler and more
common in real C++ code.

std::cout << “Maximum of 1 and 10 is “ << mymax(1,10) << “\n”;

Streams

Streams can be connected to lots
of different things and used in the
same way. File streams are very
common

There are two elements to stream IO. The first is a stream
object. This describes where the output should go.
“std::cout” is the stream corresponding to normal output
to the screen, but you can also create stream operators
for outputting to files, to strings or just to chunks of
memory. We’re almost entirely going to be using
“std::cout” here. The second element is the stream
operator “<<“ which outputs what is on the right of it to

Warwick RSE 6

the stream on the left of it and is applied from left to right through a list of objects to be output.

Technically the stream operator takes what is on the right of the operator, writes it to the
specified stream object and then returns the stream object, so because the line is parsed from
left to right it is equivalent to

std::cout << “Maximum of 1 and 10 is “;
std::cout << mymax(1,10);
std::cout << “\n”;

This also shows up another feature of C++ that it has in common with C and is different to many
other languages. In C++ lines continue until a “;” (semi-colon) character is encountered. There
can be as many human readable line breaks in the source
code as you want but as far as the C++ compiler is
concerned they are all the same line until you reach the ;.
C++ allows very long lines (at least 65,000 characters in
all modern versions of C++) Semi-colons are also used in
a few other places in C++, as we’ll see soon, but mostly
they are used for line endings.

You can also see string literals in use in this code,
specifically the string “Maximum of 1 and 10 is ”.
Characters that can’t be typed into strings directly are
escaped by using the \ character followed by a character
determining what special character to create. So \t is a
tab character and \n is a newline character. As you can

Lines across OSes

What ends a line is not entirely
common between operating
systems. There are two special
characters that may be involved :
Line Feed (\n in C++) and Carriage
Return(\r in C++), the names
coming from early systems that
printed their output to paper.

Unix like OSes like Linux have
always used a single line feed
character. Early Apple systems
used just a single carriage return
character and Windows originally
used both, in what was often called
CRLF. Nowdays, all operating
systems can work with just line
feed

see we have
included a newline
character explicitly
at the end of each
std::cout statement because unlike many languages
C++ doesn’t explicitly add a newline character after
printing, so you have to add one manually You can use
escaping to include some characters that can be typed
but would cause other problems, so if you want a double
quote in your string literal then put in \” to avoid the
quote closing the string literal and if you want to put in a
backslash then that also has to be escaped as \\ to let the
compiler know that you want an actual backslash, not an
escaped character.

mymax is another function that we will describe later that
determines the larger of the two numbers passed to it.
All functions in C++ are called by specifying their name,
opening round brackets, entering a comma separated list
of values or variables for the parameters to the function
and then closing the round brackets. There are no other
calling methods in C++ (no keyword calling, no calling a
function with an array of values rather than a parameter

list etc.). Unlike in languages like Fortran there is no fundamental distinction between how you
call functions that return values and functions that do not, and you can freely call a function
that returns a value without storing the return value to a variable and that return value is silently
discarded.

Character vs String

In C++ all string literals are
enclosed in double quotes,
and unlike many languages you
cannot use single quotes as
an alternative. Single quotes in
C++ are character literals and
it is important to note that C++
considers a single character and a
string of characters to be different
things (you can have a string that
is only a single character long, but
that is a 1 character string, not a
character).

Warwick RSE7

Includes

#include <iostream>

One final note here is that like C but unlike most other languages most built in functions and
constants of C++ are not always available, but must be imported by an include directive. The
std::cout stream object is only available if you import the header iostream. Before using most
features of C++ you will need to find out which header is needed for that feature and include it.
Built in header files in C++ usually have no file extension, but using older C header files in C++
is common and they have the file extension “.h”. Some developers also use “.hpp” for C++
header files. Whether there is a file extension or not, #include is doing the same job - opening
the specified file and pasting in the content of it at the location of the #include directive.

Functions

int mymax(int i1, int i2){
 if (i1>i2) return i1;
 return i2;
}

As we have already said, mymax is a function that we have written and functions need to have
implementations defined. The structure of a function definition is almost always the same. First
you have the return type of the function, which can be any C++ type (although C style arrays
cannot be returned directly). There is a special return type of void for a function that does not
return values. After the return type is the name of the function. After the function name is the list
of parameters to the function enclosed in round brackets. These are pairs of variable types and
names with each pair separated by commas, type followed by name. If you have a function with
no parameters then just leave these brackets empty - unlike in C putting void into the brackets
to signify that no parameters are wanted is not necessary (although it is permitted). You can
have as many parameters to a function as you want but keep in mind that generally users will
have to type in all of the parameters so you will want to keep the number of parameters as small
as possible to let the function do its job. C++ is a pass by value language, which means that the

Pass by reference

Most compiled languages
nowadays can pass both by
reference and by value. Avoiding
copying large objects is so useful
that mechanisms to avoid it are
always present.

Other languages can almost all
interoperate with C so must be
able to pass by value to do that

parameters to a function are copied when the function is
called and changing a parameter inside the function will
not change the value that is passed as a parameter when
the function is called. This is different to pass by
reference languages like Fortran where the function is
given a reference to the variable that is passed when the
function is called and can (with certain restrictions)
change the value of the parameters. To pass a variable by
reference as a parameter to a function in C++ simply put
an & after the parameter type and before the name. So
void func(int i) becomes void func(int &i).

 No changes are needed when calling the function,
but there are more restrictions on what can be passed
by reference. In particular, you cannot pass literals

like “Hello world” or 14.7 by reference because the memory that stores literals cannot be

Warwick RSE 8

changed. As well as being able to modify the value of
a function parameter if it passed by reference you also
can improve performance when passing large data sets
since a copy of the data does not have to be made if it is
passed by reference.

All functions in C++ that do not have a void return
type (i.e. all functions that return a value at all) except
main must have a return statement in all normal exit
paths from the function. That return statement must be
followed by a value of a type that matches the specified
return type in the declaration. By “normal exit paths” we
mean that if your code uses an if statement to perform
code conditionally then a return statement must be
encountered in every possible branch of the conditions.
If this is not followed then you are into the world of
undefined behaviour and unpredictable things can occur
(including the compiler deciding that the branch without
a return in it cannot happen and removing the test for it!).
It is permitted to exit the code using the exit function or
raise an exception (a built in method of error handling in
C++ that we are not going to cover) rather than returning
a value, but these are the only times that you do not have
to return a value. You cannot (directly) return different types from a single function.

In C++ before a function can be called in a given line of code the compiler must have
encountered the declaration of the function, that is to say the return type, name and
parameters. The easiest way of doing that is to fully implement functions that you want in the
order the you want them, but you can easily imagine a situation with a doubly recursive function
with fnA calling fnB which calls fnA again etc. which would make this impossible. The solution
to this is an explicit function declaration. Function declarations look exactly the same as the
first part of the function definition containing the return type, name and comma separated
parameter list in brackets, but then just end with a semi-colon. There are no curly brackets and
no code defining what the function does. This declaration alone is sufficient to allow you to
make use of a function without the compiler complaining, although you obviously do need a
definition somewhere in your code. These declarations also allow you to use functions that are
defined in a different file to your current one, and generally every .cpp file other than the one
containing the “main” entrypoint has an associated header file (.h or .hpp) that contains the
declarations of the functions in the .cpp file so that they can be #include-ed in files that want to
use those functions. We will come back to header files later.

Conditionals

 if (i1>i2) return i1;

myfunc contains a very simple example of a C++ if or conditional statement. The structure of
the statement is very simple. if followed by open brackets, then a statement that evaluates to
either false or true, then close brackets and then the statement or statement block to execute if
the value is non zero. By statement block, we again mean a set of code lines defined in a set of {
} curly braces and by statement we mean a single line of code without curly braces. If you use
the curly braces then you can follow the closing } with an else statement and then another
statement or statement block that is executed if the value in the if statement evaluates to true,

Literals

Literal value are, obviously, stored
in the computer’s memory or they
couldn’t be used, so it isn’t obvious
why you can’t have a reference to
them. The key to understanding
is that while they do exist in
memory they are normally in an
area of memory that cannot be
altered. This means that passing
them by reference is dangerous
because changing the value would
crash the program. Flagging
the parameter to the function
as const to indicate that the
value cannot be changed allows
literals to be passed by reference.
Compare this to INTENT(IN) and
INTENT(INOUT) in Fortran

Warwick RSE9

so the example in the myfunc function could be rewritten as

 if (i1>i2)
 {return i1;}
 else
 {return i2;}

Since you can follow else with a statement, you will often see code like

 if (i1>i2)
 {return i1;}
 else if (i1==0)
 {return i2;}

so that the else statement is only evaluated on another condition. This is not a formal elseif or
elif statement such as is present in some languages, but is simply an else followed by a new if
statement. That second if statement can itself be followed by an else that will trigger if that if
evaluates to false, and you can continue chaining as many if/else conditions as you want like
this, although there is also a switch construct for dealing with many related conditions on a
single variable that can be faster.

It is worth remembering that C++’s if will automatically convert integer and pointer types into
Boolean conditions on their equality to zero. This is required to be compatible with C (which
uses integers equal to 0 for true and non zero for false), so a statement if(value) should always
be read as if(value==0). There is an explicit Boolean type bool in C++ that is the return type of
the comparators like greater than (>), less than (<), equals (==) and not equals (!=) and can also
be used as a variable declaration to hold logical conditions.

Variables
Initialization

C++ has very complex rules
for initializing variables. If you
just declare a variable then it is
default initialized which, for
normal variables, means contains
whatever happened to be in the
memory beforehand. Otherwise,
if you put { } or () with nothing in
them after the name of the variable
then it is value initialized, which
for normal variables means zero
initialized. You can also manually
specify initial values by copy
initialization using =, or by direct
initialization using () or {}

Before variables can be used in C++ they must be
declared, that is a given variable name must be given a
type. There is no concept of implicit variables like Fortran
(which is convenient since it means that you don’t have to
turn it off). There is a concept related to the one in Python
of a variable being given a type based on the value
assigned to it, but there is an important difference - in
C++ a variable name can only be given a type once (you
can have the same variable name in different scopes but
we’ll come to that later) and it can never change it’s type.

Variable definitions in C++ are mostly simple. Unlike
Fortran and early versions of C, you can define variables
wherever you want in a function, although thought
must be given to clarity so it can be helpful to define
your variables in specific places within your code. The
declaration starts with a type declaration and then a

int mytestval = 5;

Warwick RSE 10

comma separated list of variables to be given that type.
You may optionally specify an initial value for the variable
with an = sign after the name of the variable and the
value to give it. You will sometimes also see constructor
initialisation or uniform initialisation which involve
following the name of the variable with (value) or {value}
respectively, but assignment by equality is more common
and can be done both to intialise a variable and to assign
it a value later. All of the forms of initialisation do the
same basic job (at least for simple variables) - they assign
an initial value to the variable. Assigning a value like this
occurs each time a function is called and variables in a
function do not retain their value between invocations
of the function unless you explicitly flag them to with the
static keyword before the type definition. Variables can
be assigned a value at any time after they are declared.
Assignment is always by using an equals sign to assign a
value. This often annoys mathematicians, but is common
in almost all programming languages with Pascal and R
being notable exceptions.

auto mytestval = 5;

The option to define the type of a variable based on what
it is initialised with is very simple - simply replace the typename with auto and the variable will
be given a type based on its initial value. In this case you must have an initial value assigned on
the declaration. There is no way of declaring a variable as auto type but assigning it a value
later. auto is mostly not used for simple variables like this but can be a very convenient when
you are setting the type of a variable based on the return from a function. REMEMBER a
variable can still only have one type! You cannot change the type of a variable once it has been
given a type, even if it has been given a type by auto inferring the type from assignment.

Scope
Shadowing
When you enter a new set of {
} you can choose to shadow a
variable that was defined outside
that set of { }. You can create a new
variable with the same name as
an existing variable (potentially
with a different type) and the
compiler will act as if the original,
shadowed variable no longer
exists until the new shadowing
variable goes out of scope. This
doesn’t affect the original variable,
but may affect your hair while
debugging - you might have less
afterwards

Variables have scope, that is to say a part of the code in
which they exist and can be used. Scope is in general
quite a complex idea, but mostly it can be boiled down
into a few simple rules

1. Variables exist within the { } set in which they are
defined and do not exist outside those { }

2. Function parameters are scoped to within the
function that they are parameters to

There is a related concept to scope of lifetime which
is for how long a variable refers to a valid piece of the
computer’s memory, but the rules are fairly simple at
least for normal variables. All non static variables have a
lifetime that is the same as their scope - that is if they are
out of scope they do not exist in the computer’s memory.
Pointer and reference variables (which we will cover in
the course) decouple lifetime and scope because they

Modifiers

There are several keywords that
can be used before a typename
like this and all of them affect all of
the variables defined on that line.
The most common are :

static means that a variable has
the same lifetime as the whole
program, so static variables
defined in functions retain their
values between calls and static
variable in classes are the same for
all instances of the class

const means that you want
the compiler to guarantee that
you can’t change the value of a
variable after it is initialized

Warwick RSE11

are types of variable that refer to other memory locations. We will discuss their lifetimes when
we introduce them.

When working out lifetimes for variables one does have to be careful to remember that there
are some times when variables are copied (such as when they are passed to a function) and the
lifetime of the copy might be different to the lifetime of the original variable.

For loops

 for (int value1 = 1; value1 < 10; value1++){

 }

For loops in C are by far the most common type of loops. They are more complex than for loops
in most other compiler languages, but also more powerful.

While the syntax is more powerful than in many languages you can easily produce a normal for
loop like those in most languages, which is as shown below

In a for loop, you have three sections which are separated by semi-colons, and then the code
to be run repeatedly in curly braces. In the above example, you first create the loop variable,
here value1 and you initialise it, here to the value 1. Then, in the next section you set up the
condition for when the loop should continue running, here the loop should continue running
for so long as the value is less than 10. Many other languages have loops that run until and
including when a given value is reached, in which case this should be value1<=10. Finally, you
set how the loop variables should be incremented on each iteration, here that value1 should
be incremented by 1 on each iteration. In most languages you do have control on how the
loop variable should increment on each iteration, where it is usually called the stride. Where C
and C++ are unusual are in needing to specify the increment even when you are just adding 1.
This type of loop is by far the most common way of using for loops in C++, but it is much more
powerful than this, and it is worth examining the for loop in more detail.

You start with the for keyword, open bracket, three sections which are separated by semi-
colons, a closing bracket and then a line of code or code block in { } to execute repeatedly. The
semicolons in the for loop are doing a different job to the semicolons that end lines and are are
one of the few other uses of ; in C++. Each of the three sections is run at very specific times as
the loop is run, and each section may be empty if there is no code to run at that section.

 for (int value1 = 1; value1 < 10; value1++){

 }

The first section (now highlighted in orange) runs before the loop first starts and is generally
used to initialise values used within the loop. In C++ and versions of C newer then C99 you can
both initialise and define a loop variable in this section as is demonstrated in this example. You
don’t have to do this, and can use this section to initialise a variable defined outside the loop,

Warwick RSE 12

although the loop variable does have to be defined somewhere.

Unlike many languages, you are not required to specify an initial condition for the loop variable
here, and if the loop variable has to be given a complex initialisation it is common for the loop
variable to be defined and initialised outside the loop, in which case this section is just empty
and the for statement opens with a ;.

 for (int value1 = 1; value1 < 10; value1++){

 }

The second section (also now highlighted in orange) runs before every iteration of the loop. It
must be an expression that returns a value and that value is treated as if it was a parameter to an
if block. If the expression evaluates to true then the loop ceases evaluation and control transfers
to after the code within the for statement. If the expression evaluates to a non-zero value then
the loop iteration executes. If this section is empty the the condition is always assumed to be
non-zero and the loop will continue until it is exited by another means. As such, the general use
of this section is the termination condition for the loop.

 for (int value1 = 1; value1 < 10; value1++){

 }

The third and final section (highlighted in orange) runs after every iteration of the loop. It always
runs unconditionally after each iteration of the loop and is generally used to say how to update
the loop variables. This is similar to, but more powerful than the stride that many languages
have in their loop constructs. With a stride one can say what should be added to the loop
variable after each iteration, but here in C++ we can modify the loop variable however we want.
If we want the loop index to increment by 1 (as shown here) we can use the ++ increment
operator to simply increase the loop index by 1 (value++ is equivalent to value = value +1). If we
want the loop index to increase by 2 then we can use the equivalent operator value+=2. If we
want more complex things then we can just write them, so having value *= 2 would be
completely valid (as you might guess, that multiplies value by 2 each time the loop finished).

We have examined in detail here a for loop that is of conventional type, but from this
breakdown you can see how the extra power comes. You don’t have to have a normal loop
variable, or indeed any particular requirements to be satisfied at all. You can call a function in
the second section to check termination, so a loop that stops with 50/50 probability could be as
simple as

for (;random_unit()<0.5;){

}

Warwick RSE13

if random_unit() returns a random value between 0 and 1. The net effect of this is to make C++
for loops a bit more complex than in many languages, but much more powerful.

There is a different form of for loop in C++ which is equivalent to for element in list: in Python
and loops over the elements of a container, giving you access to each element. This form of for
typically looks like

 for (auto element:list){
 std::cout << el << “\n”;
 }

We won’t cover this form in detail here, but it is useful to know that it exists so that you aren’t
confused if you see it in the wild.

Loop controls

break - immediately exit the loop regardless of any other conditions and jump to the code
after the loop body

continue - immediately begin the next cycle of the loop. In a for loop the third section will
execute and the second section will be tested to see if the loop should then trigger. Calling
continue on the last cycle of a loop will cause the loop to immediately terminate

Unlike in many languages you can modify the values of loop variables within the loop in
C++, but it is generally a bad idea to both have the loop variable updated in the third
section of the loop construct and change the variable in the loop body. It can lead to
confusion

Be careful not to lose readability when designing loops! You can easily confuse yourself.

While loops
While loops are the other type of loops in C++ and come in two related forms. The first has
while at the start of the loop

 int i=0;
 while (i<10){
 i++;
 }

This type of while loop is very simple. You have while followed by a condition in brackets. The
condition is evaluated before the start of each iteration and as long as that condition evaluates
to non-zero the iteration will proceed. Here we are effectively reproducing a for loop but
moving the increment operator inside the loop. This type of while loop will only execute at all if
the condition is non-zero when the loop is first encountered. This type of loop can be
reproduced in a for loop that looks like for(;i<10;) with the first and third section empty.

Warwick RSE 14

The second type of while loop looks like

 int i=11;
 do {
 i++;
 } while (i<10);

and starts with do, then the loop body in { } and then finally a while statement much as before. In
this case, the while statement is evaluated at the end of the loop iteration and is used to
determine if the next iteration of the loop should continue. So in this example, even though i is
given the initial value of 11, already greater than the test value of 10, the loop will run once
because the test is only performed at the end of the loop. Note that unlike all of the other types
of loops there is a ; after the while statement here because the construct doesn’t end with the
close of the curly braces.

Compiling

Once your code is written you have to compile it into an executable so that it can be run. C++ is
a very popular language with a formally defined ISO standard so there are many C++ compilers
that you can chose from. If you are running under Linux then you will usually be using the free,
open source “g++” compiler which compiles from the command line. You might have to install
this from your package manager, where it will usually be either in a package called g++ or gcc.

If you are on a Mac then you want to start by installing XCode. XCode is an integrated
development environment and can be used as a graphical tool, but also installs that g++
command line compiler (technically on Mac the default compiler is a different tool called
clang++ but typing g++ will run clang++ on a Mac. You can install actual g++ through various
package managers, but mostly clang++ is as good as g++, so we don’t particularly recommend
that people do).

Native Windows Compilers

The most popular native Windows C++
compiler is Microsoft Visual Studio where
the “community edition” is free to students
(https://visualstudio.microsoft.com/students/),
open source developers (might apply to
some University projects) and individual
developers (might apply to you personally,
but as employed by the University you are not
an individual developer). We are not going to
cover how to use Visual Studio in this course.

On Windows 10 or 11 you can install the
Windows Subsystem for Linux (https://learn.
microsoft.com/en-us/windows/wsl/setup/
environment) that basically gives you a
working Linux installation within Windows.
You can then install g++ inside that Linux
environment and use it as you would with
Linux (https://learn.microsoft.com/en-us/
windows/wsl/setup/environment).

The final result of installing these things
should be that there should be a command
line somewhere where you can type “g++”
and get a response that looks something like

Warwick RSE15

g++: fatal error: no input files
compilation terminated.

or, on a Mac

clang: error: no input files

Both of these errors are saying that the compiler has been found and run successfully, but we
haven’t told it what files to compile. If you get an error about “command not found” then you
have not successfully installed g++ so you will want to check about doing that. The problem
with not having specified a file to compile is easily fixed - simply put in the name of your cpp file
immediate after g++. The exact parameters to g++ and to clang++ are slightly different, but
most of the common parameters are very similar, so for this document, we will treat them as
interchangeable. So, if your C++ program is in the file “main.cpp”, simply type

g++ main.cpp -o program

The first two bits are fairly obvious. g++ is the compiler that we want to run, main.cpp is the C++
source file that we want to compile. The “-o” flag is fairly simple as well and simply specifies
what filename the executable program that the compiler creates will have, in this case
“program”. If you don’t specify an output filename like this the compiler will generate a
program called “a.out” (for historical reasons). That is an unhelpful name and shouldn’t be
generally used. It is the most common program observed running on many supercomputers
which indicates how often people forget to use -o but it is always unhelpful!

If your program compiles successfully then there will be no output from the compiler and it will
just return you straight to the command prompt. If the compiler outputs things that are flagged
as “warnings” then that is not a good sign because it might mean that there is an error in your
code but not one bad enough to stop the code from compiling. If the compiler outputs that
there are errors then your code will not have compiled. The specified executable may exist
anyway if you have previously compiled your code successfully with the same name because
the compiler doesn’t delete the existing file, it simply overwrites it with the new one. Watch
out for this because you can get very confused if the code fails to compile and you run an old
version of the executable file.

If you get errors or warnings from a compilation then there are no fixed rules on how to fix it. An
error definitely means that you have written code that is invalid (compiler bugs are extremely
rare, so it is almost never worth considering that a failure to compile is due to a compiler error.)
One of the problems with C++ is that it can generate a large number of errors, and some of
them might not be errors directly but are “follow-on” errors due to an earlier problem. For
example, if you miss a semi colon on the end of a line then not only is that line invalid, but it will
make the line below invalid. Missing close curly braces can make errors appear for many lines
after the line that is really causing the problem. As a general rule, you should look through the
list of errors and warnings from the top and read downwards. Mostly as you fix errors near the
top other errors lower down will tend to fix themselves since they are these follow-on errors. Do
not try and fix errors from the bottom up, even though it is tempting because those errors are
the ones that you see first when the compiler finishes printing errors! One useful trick is to get
the compiler to output the errors to a text file so that you can read them all at your leisure. The

Warwick RSE 16

command on Linux, MacOS and WSL is

g++ main.cpp -o program >& error.txt

When you run this command you will see no output to the terminal but the file error.txt will
contain the errors from the compilation.

Once your program is compiled you can generally just run it by typing

./program

The “. /“ in front of the name of the executable being needed since for security reasons Linux
and similar OSes don’t generally just run programs in the directory that you are in by default, so
specifying “./“ means “find this program in my current directory”.

There are methods of writing C++ code and having it be executed as soon as it is written rather
than compiling it and then running the resultant code (see for example https://www.pranav.ai/
cplusplus-for-jupyter) but generally there is little point writing a compiled language like that and
it is very uncommon in the real world.

Multiple files
It is generally good form to not hold all of your code in a single file, but to split it into multiple
files, where each file contains code that is logically connected together. By logically here, we
mean in terms of making sense to a person trying to read your code, so you might combine
functions that deal with different parts of your algorithm, split off code dealing with reading and
writing files from code that works with the data or similar approaches. In object oriented code,
it is very common for each object’s code to be defined in its own file since the idea of object
oriented design is the objects are already independent pieces of logically connected code.
Some people go so far as to have each function in its own file, but this was mainly to make it
easy to find a function in the days before modern editors so this is much less common than it
used to be and not particularly recommended.

One Definition Rule

In C++ there is one very important rule that
you have to know about which is called the
one definition rule. The actual rule is quite
long because it has to be precise, but the idea
is fairly simple - things like function definitions
can only exist once in the entire program,
and certain other things (notably those class
definitions that we mentioned as part of
object oriented design) can only appear once
when compiling a given file. It is easy to see
examples of why the rule exists - if there are
two definitions for the same function then how
can the compiler know which one to choose?

In C++ functions can only be declared once
because of the one definition rule. You
can have as many declarations as you like,
but only one definition. The solution is to
separate the definitions of your functions
from the declarations of them. This is done
by splitting your code in source files (.cpp
extensions) containing the definitions and
header files (.h or .hpp extensions) containing
the declarations. The declaration has to be
available anywhere you use the function,
so you #include the declaring header
file anywhere you want to use it , but the
definition is effectively compiled all by itself
and linked to the places you call it by the

Warwick RSE17

compiler. So what does this look like? Fortunately, it isn’t too horrible

#include “function.h”

double my_function(double d){return d * 2.0;}

function.cpp

This is an example of a source file defining a function called my_function. It looks exactly like
the files that we have already written but without the special main function that tells the
program where to start. That is correct because there can only be one main function, so only
one source code file in a C++ program has main in it (it is often called either main.cpp or
programname.cpp where programname is the name you have chosen for your program) It
looks a little bit different since we haven’t split up the definition of the function over multiple
lines in the source code, but remember that in C++ that the compiler really only cares about { }
pairs and semi colons so that is only a change in how the code looks. You will notice that there is
a #include line that is similar but different to the line that we already saw #include<iostream>.
The difference is between using < > to indicate which file to include and “ “. There are some
subtleties to exactly what this difference is but basically you should use < > when you are
including headers built into the language and “ “ when you are including your own header files.
The difference is basically whether the compiler should search for files in your custom header
file locations or the default header file locations. Using “ “ with a built in header file will work but
will take the compiler slightly longer to compile your code. Using < > with your own header files
won’t work because the compiler will only look in the default locations for header files. You
might wonder why we are including the header file matching this cpp file in the cpp file. This
isn’t essential for functions, but things like defining classes and structs is usually done in the
header file and one needs the declaration of a class when one is writing functions that act on
them, so one generally includes a header file in the cpp file that goes with that header file as
well as other files that want to use functions and structures declared in the header file.

Next, we want to go to the header file. It isn’t very complex, but has a couple of new elements

#ifndef FUNCTION_H
#define FUNCTION_H
 std::string my_function(double d);
#endif

function.h

The first thing to note is the declaration of the function my_function this has to match the
return type, name and parameters of the function definition in the function.cpp file, but should
not have the curly brackets or the implementation of the function. It should end after closing the
round brackets for the function parameters and be followed with a semi colon. You can have as
many of these function declarations as you want - feel free to try it! Just copy and paste the
definition of my_function as many times as you want and the compiler won’t complain at all. But
you can only have a single definition of the function. Try to copy the definition in the cpp file
and the compiler will complain.

Warwick RSE 18

A couple of brief notes before we go on

1. You will sometimes see that the declarations of functions don’t have the names for the
parameters in the round brackets after the function name, just the type names. This is
perfectly OK. All that the compiler needs is to know the types of the parameters to the
function to allow it to generate code to call that function. The names of the parameters are
only needed in the definition of the function so that you can actually use the parameters in
the function by name (if you want to scare yourself, look up variadic functions in C - you can
access parameters passed to a function without them having names!)

2. You will sometimes see functions defined in header files as well as declared there. This is
also fine. Because header files are pasted into files where they are used this is effectively
the same as declaring and defining the function on the same line and it can be a popular
approach to creating what are called header only libraries which are a popular way of
shipping certain types of library code. This works but you often run into the one definition
rule. If you include a header file with function definitions in it into two different cpp files
which are both compiled as part of the same program then the compiler has no way of
knowing that the apparent two definitions of the function are actually the same function
in two places. There is a special keyword inline that you can use to tell the compiler that
you absolutely guarantee to it that every copy of a function that it encounters is actually
just another copy of the same function, but it has to be used with care because you are
effectively telling the compiler to turn off some safety checks because you guarantee that
they aren’t needed! Similarly, for some special types of functions (which we will come to in
the actual course) this inline behaviour is assumed and we’ll discuss why in the course. If
you put in the inline keyword but actually define two different versions of a function then
there is no guarantee about which version of the function will be called at any given place
and bad things are almost guaranteed to happen.

The final new element is the three lines that begin with #. These lines will look vaguely familiar
because the #include directive that we have already met looks similar, and indeed the # at the
start does mean that they are processed by the same part of the compiler chain - a thing called
the C preprocessor (it is worth noting here that while the C preprocessor was originally from
the C language, many languages including C++ make use if it nowadays and all still call it the C
preprocessor).

The C preprocessor runs before the compiler sees the source code and is responsible for things
like pasting in the content of header files in response to #include directives, but is is actually
much more powerful. The preprocessor it its own language and doesn’t know anything about
C++ source code. It reads its own special code and has its own variables. The final result of the
preprocessor effectively a new text file that is handed to the compiler. In this case those lines
are called include guards. The three lines can be read as follows

1. #ifndef FUNCTION_H - If the preprocessor variable FUNCTION_H has not been given a
value then pass the code between this and the matching #endif command to the compiler
to compile. Note that this is ifndef i.e. if not defined. There is also #ifdef which passes the
code through if a preprocessor variable is defined. There are quite a few commands in these
preprocessor conditionals. For example you will sometimes see #if !defined(FUNCTION_H)
as an alternative to #ifndef FUNCTION_H

2. #define FUNCTION_H - Give the preprocessor variable FUNCTION_H a value. In this case,
it is given an arbitrary value, but not any particular value. #define FUNCTION_H 1 would
give it the value of 1

3. #endif - End if matching #ifndef FUNCTION_H

Warwick RSE19

The net result of this set of three commands is that only the first time that the compiler
#includes a given header file when compiling a given cpp file is the contents of the header
file pasted in. It is important to note both of these conditions. Including a header file in two
different cpp files will cause the header to be included in both of the cpp files, but including it
twice in a single cpp file will not cause the header to be included twice. Why would you include
a header file twice? Well, sometimes by accident but more often only indirectly. That is by
including a header file that itself includes a header file. So, why would a header file include
a header file? For various reasons, but mostly because you want to use a class or struct that
is defined in a header file when defining your functions. For an example, imagine a different
version of function.h where my_function returns not a double precision number but a string.
C++ has various ways of representing strings, including the old C style char* character array
system, but many C++ programmers use a string class called std::string. std::string is a class
i.e. a definition of an object, so you create instances of it as you would other variables. Unlike
simple variables, but like many other things in C++ std::string is defined in a header file,
specifically one called string.

#ifndef DIFFERENT_FUNCTION_H
#define DIFFERENT_FUNCTION_H
#include <string>
 std::string my_function(double d);
#endif

different_function.h

Above we see what a header file defining a function that returns an std::string would look like.
The only substantial change is that the return type is changed to std::string and that we are
now including the string built in header. Because header files are literally just pasted in place by
the preprocessor we have to include the header file before we can use std::string otherwise the
compiler has no idea what an std::string is! So the rule generally is that you include a header file
whenever you want to use the types or functions defined in that header file. But what about if
you both want to use std::string directly and make use of my_function? In which case by
including both files you will have two instances of #include<string>, one directly and one when
the contents of different_function.h are pasted in. Since the one definition rule only allows a
single definition of the std::string class (for each file that is being compiled) this would cause a
problem. The string header has include guards much like the ones that we just saw in ensure
that the second time that #include<string> is encountered a suitable preprocessor variable has
been defined and the content of the file is not included a second time. Before leaving include
guards there are two final elements to remember

1. Preprocessor variables defined by #define statements are only defined while processing
each individual cpp file. If you are compiling multiple files then a value given by #define
only applies to files that encounter that #define statement. Pretty much all compilers let you
specify a flag on the compile line to define a preprocessor variable to have a given value
and that will apply to all files that are compiled with a compiler line containing that flag.
There is no standard way to ensure that a file is only included once across all cpp files that
make up a project.

2. The name of the preprocessor variables used in the include guard are arbitrary, but they
must be unique for each header file in the project. The standard header files like string or
iostream have unique enough include guard variables that you do not really have to worry
about colliding with them accidentally (i.e. string in the gcc compiler uses the variable
_GLIBCXX_STRING for its include guard), but you need them to be unique across your

Warwick RSE 20

code. The approach that I used above is the one I prefer. Use the name of the header file
appended with _H. That is not a rule, and there are cases where it will not be sufficient
(imagine where you have a lot of subdirectories of your source code, all with a header file
called “defines.h” for example), but so long as you can make the variable unique anything
is fine. Variable names must be made up of only alphabetic characters a-z in either upper or
lower case, numbers 0-9 and the underscore character. Some C preprocessors will permit
other characters but you shouldn’t use any others if you want your code to work on all
compilers.

We said that you can define functions as many times as you want, but have to only declare them
once. Since you put function definitions in headers, why do you need include guards? We have
said that it is because you can’t have multiple definitions of classes, but why not? Well, first lets
go back to functions

#ifndef FUNCTIONS_HEADER_H
#define FUNCTIONS_HEADER_H
#include <string>
 double my_function(double d);
 std::string my_function(std::string s);
#endif

functions.h

The above looks like it should be an example of inconsistency that should cause problems, but
it actually isn’t. In C all functions have to have unique names and this maps onto a low level
feature of how most operating systems work requiring that all functions within the program
must have unique symbol names. In C++ this requirement is relaxed a lot. In C++ you can have
multiple different functions with the same name so long as the functions have different
parameters. This is called function overloading and is one of the very powerful features of
C++. When you call the function the compiler will use the parameters that you actually call the
function with to determine which version of the function to call, so in this case calling my_
function(1.0) will call the double version and my_function(“Hello world!”) will call the string
version. There are quite a few restrictions on exactly what can work, especially when you don’t
call a function with exactly the type that is required (so for example, if you have my_
function(int,long) and my_function(long,int) and try to call it with two ints it won’t be able to
decide because neither is a better fit, even though they are valid overloads and if you called
them with an int and a long it would select one function or the other based on the order.) but

Name Mangling

If you are wondering how C++ gets around
the OS requirement that symbols be unique it
is by a process called name mangling which
combines the name that you give a function
with the types of the parameters to the
function (and a few other things) to produce
the name of the symbol. The symbols in the
final file are always unique. Other languages
use the same trick - this is why subprograms
in Fortran can have the same name in different
modules.

the main thing to remember is that the
compiler can only select between
overloaded functions by the number and
type of the parameters to the function. In
particular, it cannot select based on the return
type of the function.

So the compiler has very few cases of truly
inconsistent function declarations, mainly
functions having the same name, same
parameters but different return types, and
when the compiler encounters those two
functions it will pretty much always fail to
compile your code unless you try to trick it
in some way. This makes sense, all that the

Warwick RSE21

compiler needs to do to call a function is to know what parameters to pack up to call it, what to
do with the return value and where in memory to jump to find the machine code instructions
for the function (that is what the unique symbol names are used for!), so as long as it doesn’t
encounter any inconsistent declarations it just keeps on ticking along until it has finished
compilation. So long as you only have one cpp file defining the definition of the function then
you won’t have any problems (if you do have two definitions then the compiler might get to the
very last stage of putting all of the bits of the code together, called the linking step, and then
find that it has duplicate symbols which will cause it to fail to compile your code. If you get a
duplicate symbol or duplicate function error in any language look for multiple definitions of
the same function).

This approach could in theory work for declarations of classes and structs but is not allowed
to do so. Classes and structs will be described in the next section but they basically combine
several pieces of data together into a single data structure and are a very common feature
of C++. Unlike with a function, which version of a class or struct is to be used cannot be
determined by parameters, since there are no parameters - they act just like variables. This
means that multiple structs defined with the same name would either be trivially identical (i.e.
redefinition of a structure storing the same data in the same order) or would be an invalid
redefinition. While in theory C++ could allow the trivial redefinition it would require more work
from the compiler to check that it is a trivial redefinition so it is not permitted. This explains
what the include guards are mostly there to do - prevent a given struct or class being defined
multiple times due to the header file being included multiple times.

#include <iostream>
#include “function.h”

int main(){
 std::cout << my_function(1.234) << “\n”;
}

main.cpp

Finally after all of this we have almost all of the elements to actually compile a C++ code with
multiple files in it - we have defined a function in a second cpp file and declared it in a header
file, now we just need to define the code that implements main so that the program can actually
run, and then show how to compile the code. Well, main is very simple. All that is needed in
main is to include the “function.h” header, create a main function the same as before and then
call the function by name. There is no difference in how I call the function because it is defined
in another file.

Compiling codes consisting of multiple files is one of those problems that is as complicated as
you want to make it. The simplest way is to simply put all of the cpp files on a single line call to
your compiler

g++ main.cpp function.cpp -o program

You don’t need to put header files in the compile line because they are included in the cpp files
by the preprocessor. Unlike in some languages, you don’t have to put the .cpp files in the
compile line in any particular order. Any order will do.

Warwick RSE 22

g++ -c function.cpp

Sometimes you want to compile the source files one by one. There are various reasons for this,
but probably the most common one is to allow you to only recompile files that have changed
since the last time the code was compiled. There are tools, such as make that help with this, but
the core of all of them is the idea of compiling your code file by file. You can compile any given
file to an intermediate file called an object file. An object file contains your source code
transformed into machine code that the CPU can run, but without it being linked together into a
runnable program. This means that you can convert each source code file into an object file
individually without needing to know about other source files. The command is very similar to
the normal compile command

Simply add the “-c” flag to your compile line and remove the “-o” flag. You don’t need the “-o”
flag because the compiler will chose a sensible output name when compiling object files -
the name of the cpp file, but with the file extension change from .cpp to .o. Once you have
compiled all of your cpp files to o files, you can then simply compile them together into a single
executable

g++ main.o function.o -o program

Once again, the object files don’t need to be put in any particular order when performing this
final stage of compilation.

g++ main.cpp function.o -o program

It is also possible to combine directly compiling cpp files with object files, so the following is
also a fairly common idiom.

Combining the final cpp file containing main and one (or more) .o files like this is also fairly
common.

Structs and classes
The idea of classes and structs is a mix of the simple, the slightly more complex and the quite
sophisticated. Here we’re just going to talk about the first one, but we’ll mention all three

1. Classes and structs bundle together different variables into a single object. This is useful
when you have something that is described by several values that make no sense except
when you have all of them. A good example would be a particle moving in space. It has
x, y and z position values and x, y and z velocity values (it may also have acceleration etc.
but we’ll stop at position and velocity). Generally you will always want to think of a particle
having all of those properties so you’ll want to put them together. That is the simplest level
of what a struct or class does. Once you have created your particle class (which defines the
specification for what a struct or class looks like), you can create as many instances of that
class as you like to actually hold data, in pretty much the same way that you create integers
or doubles. Doing this basically creates your own type which you can use wherever you
would use a normal type declaration.

Warwick RSE23

2. You can also attach functions (typically called methods) to a class or struct. Unlike normal
functions, you don’t just call the function, you call the function attached to a specific instance
of a class or struct and it is called knowing which instance of the class or struct it has been
called on. We’ll cover this properly in the actual course

3. You can create inheritance chains. This is an important element of object oriented
programming. You create new classes that inherit behaviour from already defined classes.
The reasons behind this inheritance are often quite complicated, but often it is to create
specialisations. So you would implement a road_vehicle class and then create bus, car, and
bicycle classes that are specialisations inheriting from road_vehicle. You could then write
code that would take a general road_vehicle class but be happy being handed a bus, car or
bicycle. We’re not going to be covering object oriented programming really in this course,
but it is worth knowing that this is a thing in case you see it.

#ifndef STRUCT_H
#define STRUCT_H
 struct particle{
 double x, y, z;
 double vx, vy, vz;
 };
#endif

struct.h

The above code for struct.h shows a header file that defines a struct. You would create an
instance of it by just typing particle P; in a function and that would create a particle struct called
P, just as typing int I; would create an integer called I. This is shown below

#include <iostream>
#include “struct.h”

int main(){
 particle p;
 p.x=14.0;
 p.vx=17.4;

 std::cout << p.x << “\n”;
}

struct.cpp

You generally want to define a struct in a header file because this definition is needed whenever
this struct is used, so you include this header file whenever you need to use it. But what would
happen if you have two definitions of it?

Warwick RSE 24

#ifndef STRUCT_H
#define STRUCT_H
 struct particle{
 double x, y, z;
 double vx, vy, vz;
 };
 struct particle{
 float x, y, z;
 float vx, vy, vz;
 };

#endif

2struct.cpp

This is an example of two structs with the same name but only trivial changes. The question now
is “how could the compiler tell which of these you mean?”, and the answer is that it can’t. With a
function, the parameters that you pass to a function can, at least sometimes, uniquely identify
which version of a function you want, but with a struct there is no information that is given that
would allow you to select which one you want. As it happens C++ does actually have a
mechanism called templating that would allow you to have two structs that differ only in type
like this and we cover this briefly in the course, but without templating, there is nothing in the
way that you declare an instance of particle that would tell you which one you want. This is why
the definition of a class or struct has to be unique - there is no way to choose which one of
multiple definitions you want. As we already mentioned, not allowing identical redefinitions of a
structure is an arbitrary choice in for the language, but it is no loss since the redefinition would
be redundant. The include guards ensure that you only get a struct or class in a header file
declared once no matter how many times you include the header file.

Strictly it is possible to define a struct or class with the same name but different definitions in
different “translation units”, but it is generally unhelpful to have two different structs or classes
hanging around in a single program, so don’t do it!

We’ve been saying “class or struct” all through this section, but then just showed a struct, so
the immediate question is : is there a difference? The answer is “not really”. struct is a keyword
that C++ inherited from its background as a derivative of C and it is used in much the same
was as it is in C (in fact it can be used in exactly the same way as it is in C, but there is also the
slightly easier syntax shown above for declaring instances of structs in C++ which we’re going
to be using in this course). class is a new keyword in C++ and while it has other meanings in
the language, it can be used directly in places of struct in all cases in C++. There is one and
only one difference between them. When you define a struct or class in C++ you can flag
some of the member variables as being either public or private. Private variables can only be
used by methods of the class (those functions that I said could be connected to classes and
structs). Public variables can be accessed by any code, as you can see us doing in struct.cpp
above using the dot (.) operator to access the internal elements of the struct. This is then the
only difference between struct and class in C++ - structs are default public, classes are default
private. You can alter either of them to have both public and private members but for the kind
of data storage that we show above, struct is more common than class because of this default
public variable behaviour. We will cover this in more detail in the actual course

