
Warwick RSE

“The Angry Penguin“, used under creative commons licence
from Swantje Hess and Jannis Pohlmann.

19/03/2024

Intermediate MPI

Chris Brady

Heather Ratcliffe

19/03/2024

MPI Concepts
• MPI_Init to start MPI

• MPI_Comm_rank to find
unique processor rank

• MPI_Send/MPI_Recv
pairs

• More Send/Recv

• MPI_Finalize

MPI_Send MPI_Recv

MPI_Finalize

MPI_Send MPI_Recv

MPI_Send MPI_Recv

MPI_Init

MPI_Comm_rank

19/03/2024

MPI In Practice

• Real working codes that scale well to the largest
computers in the world sometimes use only
MPI_Sendrecv and MPI_Allreduce (for their main
communications at least)

• What we are teaching here ranges between

• “helpful and makes code neater” - MPI Types

• Still worth knowing that this stuff is available

Case study
• To get any further, need a good example of

something that can be split up over processors

• Spatial decomposition

• Want object that has spatial extents

• Sheet of metal

• Density - Fixed

• Temperature (?)

Case Study

• Temperature of sheet

• Top and right edges kept
hot

• Bottom and left edges
kept cool

• What is temperature
across the sheet?

Brief details
• Solve heat equation (https://en.wikipedia.org/wiki/Heat_equation)

for steady state

• Split space up into a set of discrete grid points

• Lots of details, but can reduce calculation to simply averaging four
cardinally adjacent cells (for some specific values)

• Keep going until solution is “finished” (i.e. converged to a given
level of correctness)

• Iterative solution of final answer - not change in time

• Hot and cold edges are implemented as a “halo” of “ghost” or
“guard” cells

https://en.wikipedia.org/wiki/Heat_equation

Diagram

1 nx0 nx+1

1

ny

0

ny+1

Diagram

1 nx0 nx+1

1

ny

0

ny+1

Diagram

1 nx0 nx+1

1

ny

0

ny+1

Implementation Details
• Fortran code using F95

• Allocatable multidimensional arrays with explicit upper and
lower bounds

• Copy and assign operations on array sections

• C code using C99

• Equivalent arrays created in our code (include Fortran array
ordering!)

• See support/array.c for details

• See code to see implementation

Diagram

1 nx0 nx+1

1

ny

0

ny+1

Domain decomposition

1

nx_l0
nx_l+1

1

ny

0

ny+1

1

nx_l0

nx_l+1

1

ny

0

ny+1

Domain decomposition

1

nx_l0
nx_l+1

1

ny

0

ny+1

1

nx_l0

nx_l+1

1

ny

0

ny+1

Parallelising
• The concept of parallelising this code is simple

• Create additional “virtual” boundaries between
spatial domains

• Good practice is to have a special boundary conditions
routine

• Includes both virtual boundaries and real boundaries

• Real boundaries not needed in this case because
they are fixed

• Set once and leave

Ranges
• Global domain

• (0:nx+1) x (0:ny+1) total cells

• (1:nx) x (1:ny) simulation domain

• Local domain

• (0:nx_l + 1) x (0:ny_l + 1)

• (1:nx_l) x (1:ny_l)

• We call nx_l and ny_l “nx_local” and “ny_local” in code
because otherwise hard to see

Selecting local sizes
• nx and ny are usually defined by the problem (at least you

have to have enough points)

• nx_l and ny_l can only be defined at runtime

• Depend on the number of processors and how you
choose to split the processors up

• In general, this is a hard problem

• Load balancing

• Here just want to minimize perimeter to area ratio

MPI topologies

MPI Topologies
• You can tell MPI how your domains are connected together

• Create new communicator

• Tries to keep connected nodes “close” in the physical hardware of the
machine

• Two kinds

• MPI_Graph_create

• MPI_Cart_create

• Only going to talk about MPI_Cart_create here

• The created communicator can be used wherever MPI_COMM_WORLD
is normally

• Will in general have different rank in different communicator

MPI Topologies

• We use another helper routine MPI_Dims_create

• This routine gives you a possible decomposition
of N processors into a grid of N dimensions

• It isn’t necessarily optimal for a given problem, but
it is an easy way of doing this decomposition

Cartesian topology

0 1 2 3

0,3 1,3 2,3 3,3

0,2 1,2 2,2 3,2

0,1 1,1 2,1 3,1

0,0 1,0 2,0 3,0

Coordinates
• Once you have a grid of processors you now have the

concept of a processors coordinate in this grid as well
as its rank

• You can get a processor’s rank in the Cartesian
communicator by using MPI_Comm_rank with the
new communicator rather than MPI_COMM_WORLD

• MPI_Cart_coords lets you get the coordinate of a
processor from this rank

• MPI_Cart_rank lets you get a rank from coordinates

• You still use rank for communication, not coordinates

Getting neighbours
• As well as your own position in the grid, you will in

general also want to know the rank of your
neighbours

• You can get this by just offsetting your coordinates
and using MPI_Cart_rank to get the position

• There is a useful function MPI_Cart_shift that tells
you about your neighbours which is demonstrated
in the example code

• It introduces one last value that ranks can have

Getting neighbours
• When you call MPI_Cart_create you can specify if boundaries are

periodic or not - if they are then processors on an edge of the grid have
neighbours on the other edge

• If not then when you use MPI_Cart_shift to get each neighbour you get a
special value MPI_PROC_NULL

• MPI_PROC_NULL turns any send or receive operation where it is passed
in as the rank into a null operation - no communication is done

• You can use MPI_PROC_NULL to avoid having to have your own code to
check if you are at the edge of a domain - just use MPI_PROC_NULL to
indicate that nothing should happen

• If you use MPI_PROC_NULL with MPI_Sendrecv then the send and
receive bits are inactivated separately depending on if their rank is
MPI_PROC_NULL

Back to case study

Mapping

1

nx_l0
nx_l+1

1

ny

0

ny+1

1

nx_l0

nx_l+1

1

ny

0

ny+1

Mapping

• (nx_l,1:ny_l) on 1 ⇒ (0, 1:ny_l) on 2

• (1,1:ny_l) on 2 ⇒ (nx_l+1, 1:ny_l) on 1

1 2

Mapping

• To send right (nx_l,1:ny_l) ⇒ (0, 1:ny_l)

• To send left (1,1:ny_l) ⇒ (nx_l+1, 1:ny_l)

• To send up (1:nx_l, ny_l) ⇒ (1:nx_l, 0)

• To send down (1:nx_l, 1) ⇒ (1:nx_l, ny_l+1)

Communicating
• This is easy enough, just write MPI_Sendrecv calls matching

these

• For each direction send to the processor at higher coordinate
and receive from the processor at lower coordinate

• Then reverse and send lower and receive higher

• You want to send just the strip of data that is needed to
populate the ghost cells

• Easy to send an array subsection in Fortran, has to be copied
into a temporary in C/C++

Results
. . + + + + + + + + + + + + + + + + + +

. . . . + + + + + + + + + + + + + + + +

. + + + + + + + + + + + + + +

* + + + + + + + + + + + +

* + + + + + + + + + +

* + + + + + + + + +

* + + + + + + + +

* * + + + + + + +

* * + + + + + +

* * + + + + +

* * * + + + +

* * * + + + +

* * * * + + +

* * * * + + +

* * * * * + +

* * * * * * + +

* * * * * * * * +

* * * * * * * * * * +

* * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * . . .

. . + + + + + + + + + + + + + + + + + +

. . . . + + + + + + + + + + + + + + + +

. + + + + + + + + + + + + + +

* + + + + + + + + + + + +

* + + + + + + + + + +

* + + + + + + + + +

* + + + + + + + +

* * + + + + + + +

* * + + + + + +

* * + + + + +

* * * + + + +

* * * + + + +

* * * * + + +

* * * * + + +

* * * * * + +

* * * * * * + +

* * * * * * * * +

* * * * * * * * * * +

* * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * . . .

1 Processor 16 Processors

MPI Custom Types

MPI Types
• Remember that in all of these communication routines we

have been passing one parameter which is the type of the
data to be sent or received

• Usually MPI_DOUBLE or MPI_DOUBLE_PRECISION

• Why do we need to do that?

• The compiler knows the type of the variable that we are
passing to be sent or to have data received into

• We can create custom types for a variety of jobs

• Including removing those temporary copies in C/C++

MPI Types
• There are a variety of MPI routines for creating custom

datatypes, ranging from the simple to the quite complex

• Important things to note before looking at any of them

• Creating the type does not make it usable for
communication you have to pass it to the function
MPI_Type_commit first

• Once you have finished with a type, free it with
MPI_Type_free

• Only so many slots for types are available, so don’t forget
this

Most basic custom type

• What about if you want to send the red cells above?

• You can just send them by using a primitive datatype and
saying how many you want to send

• You can create a custom type using MPI_Type_contiguous

• Note that when you use your new contiguous type you now
only send one of it even though you are now sending
multiple items

• Sending two of this type would send 16 items in total

More useful ones?

• What about if you want to send the red cells
shown now?

• You can create several types that would let you do
that

• Simplest is MPI_Type_indexed

More useful ones?

• Many MPI type creation routines work by
specifying block lengths and block offsets

• MPI_Type_Indexed works like this

More useful ones?
2 Blocks

Block 1

Offset = 0

Count = 2

Block 2

Offset = 4

Count = 3

• Create arrays holding the offsets and counts

• Pass to MPI_Type_indexed

• Then pass the resulting type to MPI_Type_commit

Mixing types
1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0

• Source array is set to be 1-8

• Destination starts as all 0

• After comms, destination reads

Source

Destination 0 1 2 5 0 6 7 0

Structures
• You can send C structs and some kinds of Fortran

TYPE using MPI types

• Have to specify

• The offset of each member of the struct from the
start of the struct in BYTES (this is not something
that you work out, because due to compiler
padding of datatypes you have to be careful)

• The MPI datatype of each member of the struct

• The number of elements of the MPI datatype in
each member of the struct

Structures

typedef struct {
 int a;
 int b[2];
 float c;} mystruct;  
 
mystruct struct_instance;

TYPE mytype
 SEQUENCE
 INTEGER :: a
 INTEGER, DIMENSION(2) :: b
 REAL(KIND(1.0)) :: c
END TYPE mytype  
 
TYPE(mytype) :: type_instance

Structures

• Types are easy

• MPI_INT

• MPI_INT

• MPI_FLOAT

int a;

int b[2]; int b[2];

float c;

Structures

• Blocklengths are
easy

• 1

• 2

• 1

int a;

int b[2]; int b[2];

float c;

Structures
• Offsets are a bit harder

• Need to know how far
from the start of your
type you are in bytes

• Not going to labour the
point here but in C
there is a standard
function offsetof and in
Fortran there are MPI
routines to help do this
(MPI_Get_address and
MPI_Aint_diff)

int a;

int b[2]; int b[2];

float c;

Structures
• Once you have created and committed the type

representing your structure you can send and
receive all of the data in a structure or in arrays of
structures in a single message

• This can be much quicker than using one message
for each component of a structure

• Note that in Fortran only BIND(C) or SEQUENCE
types can be sent and received like this because
normal types are not guaranteed to have any
particular memory layout

Back to Case Study

Most useful MPI_Type routine

• The most broadly useful MPI type creation routine
is one that allows you to create a type
representing a subsection of an array

• Use it in the case study in place of the array
temporaries

• Makes the C code much more readable

• Routine is MPI_Type_create_subarray

MPI_Type_create_subarray

• To create a subarray you have to specify

• The size of the whole array in each dimension

• The size of the subarray in each dimension

• The offset of the subarray into the whole array in
each dimension (called starts by
MPI_Type_create_subarray)

• The ordering in memory of the array

MPI_Type_create_subarray

0,4 3,4

0,0 3,0

Sizes = [4,5]

Subsizes = [2,3]

Starts = [1,1]

Array order

1,0 1,1

0,0 0,1

2D array
0,0 1,0 0,1 1,1

0,0 0,1 1,0 1,1

Fortran Order

MPI_ORDER_FORTRAN

C Order

MPI_ORDER_C

Array order
• By default

• C is row major order

• Last index varies fastest

• Fortran is column major order

• First index varies fastest

• Both languages can “mock up” arrays ordered the other way round

• You pass in either MPI_ORDER_FORTRAN or MPI_ORDER_C to
MPI_TYPE_CREATE_SUBARRAY

• You always specify starts, sizes and subsizes by index order
regardless of the order in memory

Results
. . + + + + + + + + + + + + + + + + + +

. . . . + + + + + + + + + + + + + + + +

. + + + + + + + + + + + + + +

* + + + + + + + + + + + +

* + + + + + + + + + +

* + + + + + + + + +

* + + + + + + + +

* * + + + + + + +

* * + + + + + +

* * + + + + +

* * * + + + +

* * * + + + +

* * * * + + +

* * * * + + +

* * * * * + +

* * * * * * + +

* * * * * * * * +

* * * * * * * * * * +

* * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * . . .

. . + + + + + + + + + + + + + + + + + +

. . . . + + + + + + + + + + + + + + + +

. + + + + + + + + + + + + + +

* + + + + + + + + + + + +

* + + + + + + + + + +

* + + + + + + + + +

* + + + + + + + +

* * + + + + + + +

* * + + + + + +

* * + + + + +

* * * + + + +

* * * + + + +

* * * * + + +

* * * * + + +

* * * * * + +

* * * * * * + +

* * * * * * * * +

* * * * * * * * * * +

* * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * . . .

1 Processor 16 Processors

Non-blocking in brief

Concept
• We replaced matched MPI_Send and MPI_Recv calls

with MPI_Sendrecv so that you could do a single send
and a single receive at once

• What about if you wanted to do more sends and
receives at once?

• Non blocking communication

• Can send or receive data and then immediately
go on to do other things while waiting for the
communications to happen

Why?
• Not many reasons

• Don’t need synchronisation but need to get data
away to another processor

• Posting results back to a master process for
example

• Can do other work while the communication
happens

• “Over lap compute and communicate”

Very similar
• The non blocking send and receive commands are MPI_Isend

and MPI_Irecv

• Almost the same as MPI_Send and MPI_Recv

• You add one new parameter and one new concept the
communication handle

• Communication handles tell you about an inflight communication

• It also adds MPI_Test and MPI_Wait to either test for completion
or wait for completion

• Note that non-blocking is just another way of sending messages -
you can send a message with MPI_Isend and receive it with
MPI_Recv

Why not always
• It does add complexity to your code

• You have to work out exactly when you want data

• You have to guarantee that you won’t alter the data in
a send buffer until a send has completed

• There is an overhead to setting non-blocking calls up
so you need to have a real advantage to latency hiding

• There are persistent communication versions if you
regularly send or receive from the same buffers which
almost eliminate this overhead

