Point to Point Communication

“The Angry Penguin®, used under creative commons licence
m Swantje Hess and Jannis Pohlmann.
<!
-

Warwick RSE

Overview

Most common form of MP| communication

Relies on one processor (the source) sending a
message to another processor (the receiver)

The receiver has to post a matching receive

We'll come to what is meant by matching a bit

later

Deadlocks

* The most common problem in MPl programming is
deadlocking

* This is where a send happens without a matching receive
* OR areceive happens for a message that is never sent

 Thisis because the default MPIl send and receive
commands are blocking

* They don't return control until they have completed
(sort of, we'll come back to that)

Sending

int MPI Send(const void *buf, int count, MPI Datatype
datatype, int dest, int tag, MPI Comm comm)

* buf - a buffer containing the data

* count - Number of elements to send
* datatype - Type of elements to send
* dest - rank of the receiver process

* tag - integer code that identifies this message. Has to match in
receive

e comm - communicator

Receiving

int MPI Recv(void *buf, int count, MPI Datatype datatype,
int source, 1int tag, MPI Comm comm, MPI Status *status)

* buf - buffer to hold the received data

e count - Number of elements to receive

* datatype - Type of elements to receive

e source - Rank of source

* tag - integer code that identifies this message. Has to match in send
e comm - Communicator

* status - object containing information about the message

» INTEGER, DIMENSION(MPI_STATUS_SIZE) in Fortran
D

Matching sends and receives

* Matching sends and receives have three
properties

* The dest parameter to MPI_Send is the rank of the
receiver

* The source parameter to MPI_Recv is the rank of
the sender

* The tag to both MPI_Send and MPI_Recv is the
same

Matching sends and receives

* There are special values for source and tag in

MPI_Recv

 MPI_ANY_SOURCE means that a message from

any source will be accepted

« MPI_ANY_TAG means that a message with any tag

will be accepted

* You usually want to have eithert
source be fixed or it's hard to tel

ne tag or the

messages apart

Simple example

* The simplest example of MPI point to point
communications is what is called a ring pass

* Each processor sends it's rank to it's neighbour
that then prints what it has received

e Doesn’t have much in common with real MPI
codes

* Also has some ... interesting pathologies

* Pretty much the standard, so let's go with it
D

Simple code

int main(int argc, char **argv)l
int rank, nproc, rank right, rank left, rank recv;
MPI Status stat;
MPI Init(&argc, &argv);
MPI Comm_ rank(MPI_ COMM _WORLD, &rank);
MPI Comm size(MPI COMM_WORLD, &nproc);

rank _left = rank -1;
if(rank left == -1) rank left = nproc-1,;

rank _right = rank + 1;
if(rank _right == nproc) rank right = 0,

MPI Send(&rank, 1, MPI INT, rank right, , MPI _COMM WORLD) ;
MPI Recv(&rank recv, 1, MPI INT, rank left, , MPI _COMM WORLD, &stat);

printf(, rank, rank recv,
rank left);

MPI Finalize();

Simple code

* All processors print what you'd expect
 BUT If you run that code you might get a shock

* On most computers it will run and work as
expected

e Butif you go to a cluster it'll deadlock (usually)

o Why?

Simple code

main (argc, **argv)ii
rank, nproc, rank right, rank left, rank recv;
MPI Status stat;
MPI Init(&argc, &argv);
MPI Comm_ rank(MPI_ COMM _WORLD, &rank);
MPI Comm size(MPI COMM_WORLD, &nproc);

rank left = rank -1;
if(rank_left == -1) rank_left = nproc-1;

rank _right = rank + 1;
if(rank _right == nproc) rank right =

printf(, rank, rank recv,
rank left);

MPI Finalize();

* Sending and receiving are blocking

e So all processors get into the send command so
the matching receive command never happens

e Deadlock is the correct outcome

* So why does it work on my laptop/desktop?

Wait a minute!

 MPI_Send actually isn't required to block until a
message is received

* It's just required to block until you can reuse the buf
variable again

* That can be when the data is copied by the MPI library
into an internal buffer

* But you can't count on that, so you shouldn't write a
program that relies on that behaviour

* There is a variant MPI_Ssend that is guaranteed to block
until the message is received. Try it in the example

 MPI_Recv equivalently only technically blocks until
the buf variable contains the received value

* That's the same as blocking until the receive has

completed, which can’t happen until the send
has completed

* You know that the send has completed by the
time the matching receive has completed

* |n most use cases you don't care when a send has
completed, only that it has done so sately

Fixing the example

* There's lots of ways of fixing the code

* Simplestisto getrank 0 to send and then

recelve

» All other ranks receive and then send
» Data travels as a “wave” through the processors
¢ 0->1->2->...

* Actually a very inefficient way of doing almost
anything (see intermediate MPI course)

Fixed code

MPI Send(&rank, , MPI INT, rank right, , MPI _COMM WORLD) ;
MPI Recv(&rank recv, 1, MPI INT, rank left,
MPI COMM WORLD, &stat);

1T (rank == 0) {
MPI Ssend(&rank, 1, MPI INT, rank right, , MPI _COMM WORLD) ;
MPI Recv(&rank recv, 1, MPI INT, rank left, , MPI _COMM_WORLD,

&stat) ;

} else {
MPI Recv(&rank recv, 1, MPI INT, rank left, , MPI _COMM _WORLD,

&stat) ;
MPI Ssend(&rank, , MPI INT, rank right, , MPI _COMM WORLD) ;

;

Fixed code

Fixing the example

* This now works as expected

 Note the use of MPI_Ssend

* That ensures that there’s no trickery, this will work

on any machine

Fixing the example

* Note that the print statements are nearly in rank
order

* Much more nearly than for the “simple” code

* This is a feature of the "“wave"” propagating
through the ranks

* This is what makes this approach poorly
performing

* Rank n+1 can't do anything until rank n has
finished
D

Fixing the example

* Note that it doesn’t work on one processor!

* That's because rank 0 should both be sending and
receiving at the same time

* Wanting to send in one direction while receiving in

another is a very common thing to want to do in
MPI codes

* There is a command to help!

« MPI_Sendrecv

MP| Sendrecv

int MPI Sendrecv(const void *sendbuf, int sendcount, MPI Datatype sendtype,

int dest, int sendtag,
void *recvbuf, int recvcount, MPI Datatype recvtype,

int source, int recvtag,
MPI Comm comm, MPI Status *status)

 MPI_Send and MPI_Recv glued together

* Doesn't deadlock so long as both the send anad
the receive parts complete

Sendrecv code

if (rank == 0) {
MPI Ssend(&rank, 1, MPI INT, rank right, , MPI_COMM_WORLD) ;
MPI Recv(&rank recv, 1, MPI INT, rank left, , MPI _COMM_WORLD,

&stat) ;

} else {
MPI Recv(&rank recv, 1, MPI INT, rank left, , MPI _COMM_WORLD,

&stat) ;
MPI Ssend(&rank, 1, MPI INT, rank right, , MPI _COMM WORLD) ;

;

MPI Sendrecv (&rank, , MPI INT, rank right,
&rank recv,1, MPI INT, rank left |,

MPI_COMM_WORLD, &stat):

Sendrecv code

Sendrecv code

 Code now works on 1 or more processors
» Qutput text is mixed up again

* No longer have the "wave” propagating through the
Processors

e Performance will be much better
* No risk of deadlocking

e This is the preferred solution for most programs that
have this “send right, receive left” type behaviour

More than one item

* You will probably have spotted that in all of these
examples I've only been sending a single item

* If you send more than one item then MPI simply
copies them from memory contiguously

* It you want to send more than

message you have to hand MP

item in a single
a 1D array

 |f you wantto send part of a 2D or 3D array then
you have to copy itinto a 1D array

 |n Fortran array subsections work as expected
D

Recap

 Can now
e Combine data from all processors
e Send data from one processor to another

* Deal with the simplest class of deadlock for
“send right-receive left” problems

* That's actually all that you need to get started

* Next, onto how you do actual parallel code

