
Warwick RSE

“The Angry Penguin“, used under creative commons licence
from Swantje Hess and Jannis Pohlmann.

Introduction and Analogies

17/03/2020



Why analogies?

• Parallel computation feels like something that is 
very outside of your normal experience 

• Actually a lot of the general things that you have to 
understand make intuitive sense 

• Most of the problems, and solutions, to running 
things on multiple processors are the same as 
trying to do multiple things in real life



Limits to analogies
• Be very careful with analogies! 

• They can be extremely valuable and quite often a feature 
that you can identify in the analogy is also a feature in the 
real problem 

• But there are definitely cases where the feature that you 
identify is an analogy breakdown and the feature is not 
present in the real problem 

• If you find these analogies useful then you might want to try 
to extend them yourselves, but always check to see if the 
extension apply to the real problem



Where to start?

• The simplest thing that you can think of when it 
comes to doing things at the same time is eating 
in a buffet restaurant 

• Everyone does what they want independently 

• People only interfere with each other if they want 
to use the same resource at the same time



Buffet

Duck Chilli

Curry

Pause 
for 

Drinks

Pudding

Pudding

A B C D

Pudding

Pudding

Sushi

Duck

Liqueurs

Pudding Curry

Curry

Pudding



Computer Analogy
• Normal operations of the computer 

• Programs are split onto different processors so that they are all 
used 

• Running two programs at once will normally put one on each 
processor 

• “Embarrassing Parallelism” 

• Solve many problems by running several programs or many 
copies of one program 

• Don’t want more programs than you have processors or some 
have to wait their turn, just like at a buffet



A La Carte

Soup

Pie

A B C D

Nachos

Burger Curry Fish

Ice 
Cream Cake

Coffee Brandy Coffee



Computer Analogy
• Weakly coupled parallel computer programs 

• Mostly things do their own thing with little 
reference to other things that are doing their 
work 

• You occasionally have to synchronise information 
between running things to make things happen at 
the same time 

• Or to make things have a specific sequence



Prix Fixe

Starter

Main 
Course

Coffee

Dessert

A B C D

Starter Starter Starter

Main 
Course

Main 
Course

Main 
Course

Dessert Dessert Dessert

Coffee Coffee Coffee



Computer Analogy

• Tightly coupled parallel processing 

• Many sequencing points where things don’t 
advance to the next level until everyone has 
reached the same point 

• Things may be doing different tasks but you have 
to treat them as if they are all the same because 
you can’t move on until all of them are finished



Take 
spoon

The Buffet Spoon

Try to 
take 

spoon

Spoon 
in use!

Wait for 
spoon

Serve 
food

Return 
spoon



Computer Analogy
• Lots of things! 

• This is how almost all resources that can only be 
used by one thing at a time work in computers 

• In particular you can deliberately make it happen by 
using Mutual Exclusion objects. Things that only one 
processor can have at a time. More on this later 

• There’s actually quite a lot of work devoted to making 
sure that everything gets its turn with the spoon (actual 
queues are unusual in computers)



Eat 
Chips

The Bowl ‘o Chips

Eat 
Chips

Eat 
Chips

Bowl 
Empty

Waiter Sees 
Empty Bowl

Waiter Takes 
Empty Bowl

Waiter 
Brings New 

Bowl



Eat 
Chips

The Bowl ‘o Chips

Eat 
Chips

Eat 
Chips

Bowl 
Empty

Waiter Sees 
Empty Bowl

Waiter Gets 
New Bowl

Waiter 
Brings New 

Bowl

Waiter Sees 
Empty Bowl

Waiter Gets 
New Bowl

Waiter 
Brings New 

Bowl



Eat 
Chips

Chipslosion!

Eat 
Chips

Eat 
Chips

Bowl 
Empty

Waiter Sees 
Empty Bowl

Waiter Gets 
New Bowl

Waiter 
Brings New 

Bowl

Waiter Sees 
Empty Bowl

Waiter Gets 
New Bowl

Waiter 
Brings New 

Bowl



Analogy
• This is an example of something called a race condition 

• If a waiter sees you have an empty bowl he will go and get you a new 
one 

• If two waiters both see the empty bowl then you wind up with two 
bowls of chips 

• If the first waiter gets back before the second waiter sees the empty 
bowl then you only get one bowl 

• Hence race condition. The result depends on how fast your waiter 
is 

• If the first waiter to see you have an empty bowl takes it away then 
everything will work (no bowl isn’t an empty bowl)



Computer Analogy
• Exactly the same happens with computers 

• If two threads are waiting for a signal then things can happen twice if 
the first one doesn’t signal that it has handled it before the second 
one sees the signal 

• How you actually do the signalling involves things called atomic 
(Greek - Indivisible) operations 

• We’ll see these briefly later 

• There are other race conditions e.g. two threads setting a variable to 
a given value - the value will depend on which processor happens to 
get there last 

• They are always a bad thing



Computers



Computer Terms
• Probably a lot of this is familiar but it is important 

that you understand some important terms before 
we start 

• Core - the smallest unit capable of independent 
general purpose computation. You can get 64 
cores in a single chip nowadays 

• CPU (or chip) - Central Processing Unit. Physical 
computer chip that will (nowadays) usually contain 
multiple cores



Computer Terms

• Socket - Used to refer to the number of physical 
chips in a computer (“a 2 socket workstation”) 

• Node - A single complete computer but usually 
one that is part of a cluster 

• Cluster - A collection of computers connected 
together for parallel processing



Computer Terms

• RAM - Random Access Memory. The part of the 
computer that stores the data that you are working 
with 

• Hard Drive/Disk - Long term stable storage 
medium that persists data after the computer is 
switched off.



Computer Terms
• Process - Technically the name for a running 

program. Processes do not interact directly with 
each other (normally, there are mechanisms to do 
it) and will generally run on separate cores to each 
other if possible 

• Thread - A part of a process created to run 
independently. Threads are connected to a single 
process and a given process can have many 
threads.



CPUs
• Mostly we’re going to be talking about cores here 

because they are what actually does the parallel 
processing 

• The idea is to move from using one core to 
many cores 

• Sometimes very many 

• CPU behaviour in a computer doing many things 
is very like that buffet example



4 Core CPU
System Scheduler

Core Core Core Core

Task
Task

Task

Task Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

A possible, heavily simplified schedule



CPUs
• We mentioned that in the buffet people have to wait if 

they both want to get the same food 

• Computers don’t quite work like this (analogy failure) 

• If they did then as soon as you had one program 
running per processor in your computer you would 
have to wait for one of them to finish before you 
could do anything else 

• Timeslicing - suspend one program to allow another 
to run



CPU Multitasking
System Scheduler

Core Core Core Core

Task
Task

Task

Task Task

Task 1

Task 2

Task 1

Task 2

Task 1

Task 2

Task 1

Task

Task

Task

A possible, heavily simplified schedule with one more task than available CPUs



CPUs
• Time slicing is brilliant for problems like web servers. 

• The thread that is serving a website to any one 
person is mostly not doing much (waiting for the 
person to load new data) 

• So having multiple threads being interleaved 
works quite well even when you have more 
threads than you do cores 

• This isn’t generally true for academic codes where all 
threads are working flat out at all times



Hyperthreading
• Technically “simultaneous multithreading” (SMT) 

• Hyperthreading is Intel’s proprietary name 

• Remember that a core is “the smallest unit capable of 
independent general purpose computation” 

• Since cores can do different types of processing 
this means that some bits will always be idle since 
you aren’t doing that type right now 

• SMT means that if another thread wants those 
unused bits it can use them as well


