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Preface

0.1 About these Notes

These notes were written by H Ratcliffe and C S Brady, both Senior Research Software
Engineers in the Scientific Computing Research Technology Platform at the University
of Warwick for a Workshop first run in March 2020 at the University of Warwick.

This work, except where otherwise noted, is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International Li-
cense. To view a copy of this license, visit http://creativecommons.org/

licenses/by-nc-nd/4.0/.

The notes may redistributed freely with attribution, but may not be used for commercial
purposes nor altered or modified. The Angry Penguin and other reproduced material,
is clearly marked in the text and is not included in this declaration.

The notes were typeset in LATEXby H Ratcliffe.
Errors can be reported to rse@warwick.ac.uk

0.2 Example Programs

Several sections of these notes benefit from a hands-on look at the concepts and tools
involved. Test code is available on Github at https://github.com/WarwickRSE/

ParallelismPrimer.

i

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:rse@warwick.ac.uk
https://github.com/WarwickRSE/ParallelismPrimer
https://github.com/WarwickRSE/ParallelismPrimer


Chapter 1

Introduction By Analogies

1.1 Why Analogies

Parallel computing can feel quite daunting and seem to be very different to anything
you encounter in daily life. Actually though, a lot of the general principles are things
you encounter and deal with every day. Most of the problems and solutions to running
things on “multiprocessor” computers are the same as trying to do several tasks at once
in real life. So, if you’ve ever prepared a complicated meal, packed for a holiday, or
arranged for home repairs or deliveries, you’ve probably got the basic skills down.

So to get started gently, we’re going to use some analogies that can be very helpful
for relating the things you’ll see here to real life. A well chosen analogy shares key
features with the real problem it’s being used to illustrate. But you have to be careful
- analogies get leaky and breakdown and a feature you identify in the analogy might
not be present or relevant to the real problem.

To try and make these as safe as possible, we’re going to be quite brief in our
analogies, and if you find them helpful we recommend that you try and extend them
yourself, although you’ll want to check that the extensions apply to the real problem
too. And remember, the analogy might be useful, but often the creating of it is more
of a benefit than making the final product neat and shiny.

1.2 Restaurant Analogies

Several of the sorts of layouts and strategies in parallel programming can be compared
to eating at restaurants.

1.2.1 The Buffet

Eating at a buffet is quite like the simplest model of doing multiple things at once.
Everybody does what they want completely independently, and only interfere with
each other if they try and use the same resource at the same time. One can eat dishes
in any order, sample as many as one wishes, and eat as much as wanted. For example, 4
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2 CHAPTER 1. INTRODUCTION BY ANALOGIES

people (borrowing the classic Computer Science names), Alice, Bob, Charlie and Dave
might eat like the following picture:

Duck Chilli

Curry

Pause for 
Drinks

Pudding

Pudding

A B C D

Pudding

Pudding

Sushi

Duck

Liqueurs

Pudding
Curry

Curry

Pudding

We can compare this to a computer in normal operations. Programs (tasks, dishes)
are split onto different processors so that they are all used (everybody eats). So for
example running two programs at once usually puts them on two different processors
(note this is a gap in the analogy we will not try and patch over).

This is sometimes called “Embarrassing Parallelism” (because it is embarrassingly
easy to program) where we simple run many programs, or copies of a program, all at
once. They run independently, and while a processor can run one at a time (eat one
dish at once) they can swap about and sequence them any way they wish.

If we briefly switch analogies and compare dishes to resources (computer processing
power, memory, disk etc) then we see that we don’t want too many programs running
at once (people at the buffet) otherwise they will collide over dishes and have to wait
their turns.

1.2.2 A La Carte Menus

The “A La Carte” Menu is rather more regimented than a buffet, but still leaves lots
of choice. Not everybody has all parts of the meal (starters, puddings, drinks), and not
everybody has the same things for any course, but there is general synchronisation -
mains are served only after starters are done, pudding comes last etc. This might look
something like the following picture:
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Soup

Pie

A B C D

Nachos

Burger Curry Fish

Ice Cream Cake

Coffee Brandy Coffee

In computing terms, this is a “weakly coupled” parallel program - a program where
things mostly do their own tasks without reference to what other things are doing, but
sometimes there is a need to synchronise so that somethings happen at the same time,
or happen in some needed sequence.
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1.2.3 The Prix Fixe

The expensive end of the restaurant analogy is the Prix Fixe or “set menu” where a
restaurant offers a pre-selected set of dishes at a fixed price. Everybody gets their dishes
at the same time (at least at a single table) and there may be small options (peas or
salad, cheese course or sweet) but generally everything is very fixed. For instance:

Starter

Main 
Course

Coffee

Dessert

A B C D

Starter Starter Starter

Main 
Course

Main 
Course

Main 
Course

Dessert Dessert Dessert

Coffee Coffee Coffee

In computing terms, this is “tightly coupled” parallel programming, with many
sequencing points where nobody can advance until every task has reached the same
point. Things may do slightly different tasks between these points, but you can’t move
on until everything is finished.

1.2.4 Another Angle - The Buffet Spoon

We mentioned along with the buffet that you can think of this where people are proces-
sors and dishes are programs, or you can usefully think of it where people are programs,
and dishes are computer resources (see later for discussion of what sorts of things count).
If we think of the second one, we have a very handy analogy in the buffet dish with a
single serving spoon.

If you want some of the dish, you have to acquire the spoon, serve yourself some
food, and then return the spoon. As long as you have the spoon, nobody else can access
the dish, and they must wait for you to finish. The following picture shows this:
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Take spoon Try to take 
spoon

Spoon in use!

Wait for spoon

Serve food

Return spoon

Note one very important thing which holds in the analogy and reality - if you forget
to return the spoon, the dish is effectively “locked out” for anybody else, AND the wait
for spoon loop need not ever end. If you are unlucky, you can wait a very long time
while other people pass the spoon around and never get your turn.

In computing, this analogy applies to a whole lot of things, basically any resource
which can only be used by one thing at a time, such as disk (you can only read
from/write to a single location at one time), parts of the operating system, etc.

The buffet spoon is analogous to a Mutual Exclusion (Mutex) object (Mutex) - a
thing that only one program/processor/task can hold at a given time. We’ll talk about
these more later. In real systems, a lot of work goes into making sure everybody gets
their turn with the spoon, and this is rarely as simple as a “first come first served”
queue.

1.2.5 Another Angle - Bowls O’ Chips

Another angle on the “getting the order right” question is the thing at some restaurants
where you might get an endless bowl of table snacks to eat before the meal (bread rolls,
chips (American parlance), poppadums etc). The intended scenario is like this:
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Eat Chips Eat Chips Eat Chips Bowl Empty Waiter Sees Empty 
Bowl

Waiter Takes 
Empty Bowl

Waiter Brings New 
Bowl

You eat the snacks, and when it is empty, a waiter/server takes the empty bowl
away and brings another.

Now suppose the waiter didn’t take the empty bowl away, but simply brought a new
bowl. The “signal” of the empty bowl stays, so another waiter/server might also see it
and respond. Soon, you are piled high with chips (although the analogy leaks again -
what’s so bad about having too many chips?).

Eat Chips Eat Chips Eat Chips Bowl 
Empty

Waiter Sees 
Empty Bowl

Waiter Gets 
New Bowl

Waiter Brings 
New Bowl

Waiter Sees 
Empty Bowl

Waiter Gets 
New Bowl

Waiter Brings 
New Bowl

In computer terms, this best represents what we call a race condition. The empty
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chip bowl represents a signal which the full bowl or absent bowl does not. If two
processes (waiters) both catch this signal, they both act to remedy it, and the result is
an excess of chips (in computers, more likely a crash, wrong result etc). The key point
is that there is a delay between noticing the signal, and resetting the signal, during
which the signal can be seen multiple times. When the waiter instead takes away the
chip bowl, the signal is instantly reset, even before the action is complete.

You might notice that there are 3 “states” to this problem. There is the full bowl,
the empty bowl, and the absent bowl. This is a feature of many real problems too -
there is a difference between I am handling this, but am not yet done and I have handled
this and am complete. This is an example of what is called a sentinel value - a value
which represents some sort of signal. The chip bowl can contain any amount of chips,
but an empty bowl, or absence of the bowl, means something special.

1.3 Computer Terms

A lot of this section might already be familiar, but it is important to understand some
terms, and make sure we mean the same thing that you do when we use computing
terms.

Firstly, the core - an individual bit of a computer chip, the smallest bit which can
independently do general purpose computation (there are bits within the core which
can do specific tasks).

The actual Central Processing Unit (CPU) or chip, the of a computer, the physical
chip. Usually now contains multiple cores. Some people call the box part of a computer
(the tower etc, where the On button is) the CPU and they’re pretty much wrong.

The socket - technically the thing the CPU plugs in to, usually used to refer to the
number of physical CPUs in a computer, e.g. a two socket workstation. Each socket
usually has its own memory

A node - a single computer, usually used in the context of a cluster (many nodes
that can communicate)

The RAM (Random Access Memory) is the part that stores the data your program
is generally working on. Bits of this might be moved into small caches which are part of
the CPU temporarily. Be careful to distinguish this memory from the hard drive (disk)
- the long term storage that keeps data even when the computer is powered down.

1.3.1 The CPU

Most of this Workshop is going to focus on the CPU, because that is what actually
does the parallel processing - we’re trying to move programs from using one single core
of a CPU across to many, perhaps very many.

The normal way the CPU in your computer works is quite like the buffet analogy -
lots of programs doing lots of tasks. If we draw the same sort of block diagram, we get
something like (a very simplified schedule):
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System Scheduler

CPU CPU CPU CPU

Task

Task

Task

Task Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

We mentioned in the buffet examples that people have to queue and wait if they
want to get the same food, and can only sample one dish at a time - taken literally this
is an analogy failure because computers don’t work like this. If they did, you could
only run one program per core you have, otherwise things would have to wait in line.

Real CPUs make a lot of use of time slicing, where one program is suspended to
allow another to run. This is especially effective for interactive programs, where there
might be a lot of time spent waiting for input that could usefully be spent by another
program. This looks a bit like:

System Scheduler

CPU CPU CPU CPU

Task

Task

Task

Task Task

Task 1

Task 2

Task 1

Task 2

Task 1

Task 2

Task 1

Task

Task

Task



Chapter 2

Concepts in Parallel Programming

2.1 Introduction

Before discussing the dedicated libraries for parallel programming, we’re going to talk
over the general concepts, and also introduce one program, because it happens to fit
here.

2.2 Task Based Parallelism

The first, and simplest, way to get more stuff run faster is to just run a bunch of things
at the same time on a big computer. This is really easy if your problem is to explore
some parameter space (run a bunch of copies on different input data), and/or run the
same problem a bunch of times (for instance doing multiple Monte-Carlo realisations
or changing a randomness generator to investigate uncertainties).

You can run these multiple copies on different processors (cores) of a single computer,
or across multiple separate computers. You might need something simple to make sure
each task selects a unique parameter set or random realisation, but this can be done
“before the fact”, often by picking the next thing from an input file, knowing one’s order
in a set (e.g. task number N takes parameter set N), or in the case of randomness, by
properly generating a random number.

This sort of parallelism scales exceptionally well, usually limited only by the number
of tasks you have to run and the number of processors you have to run on. If you have
one processor per task, you can get them all done in the same time (on the clock, or
the wall time) it would have taken to do one task.

The main wrinkle in this sort of parallelism is for very small, short tasks, where the
time to start them can be a substantial amount of the total time, and you will want
to “bundle” mutliple sets into a single invocation. A similar wrinkle occurs if you have
a truly vast amount of jobs (e.g. 10s of thousands in a few days) where some systems
might store so much information on what they have run that this overloads them. If in
doubt, consult the person in charge of the computing resource.

9
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2.2.1 Basic GNU Parallel Scripts

The GNU Parallel program is installed on all Warwick clusters and the COW (including
dedicated nodes) and can be used by loading the “parallel” module. It’s also available
on most other *nix platforms, via apt, yum or brew. The official tutorial is at https:

//www.gnu.org/software/parallel/parallel_tutorial.html and is very good!
The idea of this is that you take a program which takes parameters from the com-

mand line (e.g. to run it you type ‘ ./program name [parameters]‘) to tell it what to
run, and then you tell parallel how to build the command line you need to run several
copies for whichever parameters you want.

parallel can be given a number of job slots, which are used simultaneously, so usually
this is the number of available processors (perhaps reserving some for other tasks), and
will run the set of tasks it was given in sequence, distributing them across job slots until
it runs out of tasks. A new task is started whenever a slot becomes free (by default).

You invoke parallel via a script (or for super simple examples, by typing at the
command line) and the simplest script is

1 #! / bin /bash
2 p a r a l l e l echo : : : A B C D E F

which produces

A

B

C

D

E

F

Taking the line ‘parallel echo ::: A B C D E F‘ and breaking it down, bit by
bit: firstly ‘parallel‘ runs the GNU parallel program. ‘echo‘ is a command line utility
(program) which just prints whatever arguments you give it (followed by a new line).
‘:::‘ tells parallel where to separate your command from the parameters to parallel itself,
and then the last bit is the parameters to parallel, separated by spaces, although this
can be changed.

A slightly more complex script is:

1 #! / bin /bash
2 p a r a l l e l echo : : : A B C : : : D E F : : : G H I

which produces

ADG

ADH

ADI

AEG

AEH

...

CFI

https://www.gnu.org/software/parallel/parallel_tutorial.html
https://www.gnu.org/software/parallel/parallel_tutorial.html
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i.e. parallel combines each possible triplet of arguments from the 3 sets we gave it
(the Cartesian product of the sets).

If you provide a single argument, like in the first script, you can specify where this
gets inserted into your command line with {}:

1 #! / bin /bash
2 p a r a l l e l echo HELLO {} : : : A B C

which produces

HELLO A

HELLO B

HELLO C

and if you specify more than one, then you pick them by number inside curly braces:

1 #! / bin /bash
2 p a r a l l e l echo {1} Says h e l l o to {2} : : : A B C : : : D E F

which produces

A Says hello to D

A Says hello to E

A Says hello to F

B Says hello to D

...

C Says hello to E

C Says hello to F

parallel gives each job a sequential number, and you can access this using {#}, such
as:

1 #! / bin /bash
2 p a r a l l e l echo {1} i s job number {#} : : : A B C

which produces

A is job number 1

B is job number 2

C is job number 3

If you need each job to have a unique ID, it’s a bit fiddly, because you need to invoke
a program to generate it in the same job as running the actual program, and it can be
tricky to get everything to run at the right point. Something like the following works:

1 #! / bin /bash
2 runfunc ( ) {
3 echo $1 has uuid ‘ uuidgen ‘
4 }
5 export −f runfunc
6 p a r a l l e l runfunc : : : A B C
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which produces

A has uuid 536b2247-64fb-49cd-af9b-258ca52c6200

B has uuid fef2fce0-26fb-4553-9c5e-7a6c8b07cd58

C has uuid bc58cea0-8ffb-4733-9650-441f3587023d

(Note you will obviously get different actual IDs!)

What can GNU parallel run?

Parallel can run:

• Any shell command, such as ls, cat, echo

• Any other program that can run from the command line

• Bash functions, if they are exported using export -f as in the above example

GNU Parallel on SCRTP cluster machines

Details on running GNU Parallel on the cluster machines is available on the SCRTP
wiki, at https://wiki.csc.warwick.ac.uk/twiki/bin/view/HPC/ClusterUserGuide#
Serial_jobs (SCRTP login required).

Command Line Parameters and Beyond

You can make almost any modern language take command line parameters, although
they vary a bit in how. If the parameters to pass get very complex, consider passing
the name of an input file, and having one of these for each job, which provides the full
setup.

2.3 Map Reduce

Map Reduce is a method for processing large amounts of data in parallel, consisting of
two core operations (or more in real systems), one of which runs independently on each
processor, and the other runs between processors.

The Map operation happens independently on each processor, and converts some
sort of raw data to the data to be processed further.

The Reduce operation then takes two of items out of the Map operation and com-
bines them into a new data item somehow containing the data of both. Strictly this
needs to be a linear, commutative and associative operation, so that operating on two
items at a time lets you combine them all. Two of the items produced by the reduce
operation can also be combined. This lets the operation be done like a tree - on each
processor the items are reduced to one, and then this is combined with other processors.
It’s complex to optimise this on real hardware, but that’s a job for the library writers.

If we take a simple example, of counting words in a text, for instance:

https://wiki.csc.warwick.ac.uk/twiki/bin/view/HPC/ClusterUserGuide#Serial_jobs
https://wiki.csc.warwick.ac.uk/twiki/bin/view/HPC/ClusterUserGuide#Serial_jobs
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It was the best of times,

it was the worst of times,

it was the age of wisdom,

it was the age of foolishness

We can split this into the 4 clauses (comma separated bits, which I conveniently already
did above so it fits neatly on the page), and count the words on each. This is the second
row in the figure below. Then, we pair-wise combine the blocks in the second row to
get the third row, and pair-wise combine these two to get the fourth row, which shows
the final counts.

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness

it = 1 
was = 1 
the = 1 
best = 1 

of = 1 
times =1

it = 1 
was = 1 
the = 1 

worst = 1 
of = 1 

times =1

it = 1 
was = 1 
the = 1 
age = 1 
of = 1 

wisdom =1

it = 1 
was = 1 
the = 1 
age = 1 
of = 1 

foolishness =1

it = 2 
was = 2 
the = 2 
best = 1 
worst = 1 

of = 2 
times =2

it = 2 
was = 2 
the = 2 
age = 2 
of = 2 

wisdom =1 
foolishness = 1

it = 4 
was = 4 
the = 4 
best = 1 
worst = 1 

of = 4 
times = 2 
age = 2 

wisdom = 1 
foolishness = 1

2.3.1 Restrictions in MapReduce

There are clearly substantial restrictions on what can be done with Map Reduce, for all
it is very powerful. Most importantly, you can only do things where you can combine
operations on already partially reduced data. A lot of the classic operations you might
think of, adding, multiplying, making maximums and such are directly possible.

Averaging however, is not, at least not directly. If you have a set of numbers, you
can’t simply split them into two groups, average each, and average the result. For
instance, averaging the numbers from 1 to 9 should give a result of 5. But if we average
1 to 4 and 5 to 9 separately, we get (10/4 + 35/5) = 4.75, which is a bit wrong, and
the answer gets worse if we divide other ways (except the one way where each subgroup
also has an average of 5). But all is NOT lost, and we can still use MapReduce to get
averages, we just have to do two steps. We can total up all the numbers in one step,



14 CHAPTER 2. CONCEPTS IN PARALLEL PROGRAMMING

and count the elements in another, and then at the end calculate the average. Other
things like the Standard Deviation need more tricks (One Pass SD formula), but can
often be done.

2.3.2 MapReduce packages

There’s a lot of packages that implement the MapReduce model, including Apache
Hadoop and the MongoDB database engine, and several front ends to these in R,
Python etc (although note you may need to use other languages inside the engine, such
as JavaScript in MongoDB).

2.4 Connected Task Parallelism

GNU parallel is great when you have set of independent tasks, but what if your tasks
aren’t completely independent and what you want to run next might depend on the
results of an earlier run? For relatively loosely connected tasks you can use the Worker-
Controller model. This used to be called Master-Slave most commonly, but some people
now prefer to avoid that term, so others are used. We pick Worker-Controller.

2.4.1 Example - Linguistics

As an example of this sort of task, imagine an over-simplified problem in text analy-
sis. Wikipedia lists almost 100 people who might supposedly have written the plays
attributed to William Shakespeare. We make no comment on whether these are serious
prospects, and most likely the plays were written by who everybody thinks.

But imagine you wanted to write a program to test if a given author might be
Shakespeare. More seriously, suppose you are trying to work out if a piece of text is
written by a give author. There might be some easy tests you can do first to rule things
out - for instance was the text written while the candidate was actually alive? Could
they have written in English? These aren’t terribly selective tests, but they eliminate
potentials at very low cost.

Doing the hard tests might require a lot of work - e.g. machine learning analysis
of precise sentence structure might take many days to conclude. Between these two
extremes are are range of difficulties of test, and it would be nice not to have to do the
really hard ones if the easier ones can rule out a given candidate.

2.4.2 Example - DNA

As another example, suppose you have a DNA sample which is somehow degraded,
whether by UV exposure, chemical exposure or other wise. All you really have are
incomplete chunks. You also have some candidate samples and you want to identify
which of them might be a source of the chunks.
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Reconstituting DNA sequences from chunks is (comparatively) expensive, so you
would like to reject candidates bases on the smallest sequences which let you rule them
out (see shotgun sequencing, https://en.wikipedia.org/wiki/Shotgun_sequencing.

Since the reconstitutions and the matches are not perfect, you have to keep going
until you have a certain level of certainty of match and not match, and you also want to
reject a sequence reconstruction if no candidate could give it (assuming your candidates
are complete), or do this with some probability anyway.

So what you have is a series of tests (or simulations) of increasing difficulty, some
of which need not be run at all if others have produced certain results.

2.4.3 Trees and Pruning

Schematically, what you want to program to solve problems like these examples is some
sort of tree shaped set of simulations, like this picture:

Figure 2.1: A tree of simulations. Each layer (depth) represent simulations that in some
way depend on the layer above. Imagine the node highlighted in red tells us this is an
unpromising avenue - then we can skip all 6 or the purple nodes.

Note that the highlighted node can answer the question you’re working on in such
a way that you know all of the subsequent simulations needn’t be run. Usually, this
answer turns out to be either “no, this branch cannot be the one sought” (Dan Brown
is certainly not Shakespeare) or “based on this result, this is not an interesting avenue”
(this low-resolution simulation shows that nothing much happens, so I needn’t do the
harder one). For the node we picked here, we don’t have to do almost an entire half of
our tree.

https://en.wikipedia.org/wiki/Shotgun_sequencing
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2.4.4 Worker Controller in Code

For models like this, working out which job to do next and getting it set up is quite a
lot of work, and so we might dedicate an entire processor as the Controller, and this one
tells all the others what to run next - it dispatches the work packages to the workers.
Unlike with GNU parallel, the controller might be making complex decisions on what
package to hand out next, and if a result indicates some packages aren’t needed, it can
choose not to hand those out at all.

Unfortunately, there isn’t a standard package to help you set this up. However, all
you need is some way for the Controller to communicate with the Workers. This can
be via a network, using OS specific parallel processing features, or even just via files
and the filesystem.

Files are actually an easy solution, but the performance is generally poor (and gets
comparatively worse the quicker the workers tasks can run). The other two options are
best used via some other library or framework, so it’s not up to you to deal with details
of complicated protocols, and not your problem to stay up to date with small changes
in hardware etc.

The Worker-Controller paradigm is simple enough to be implemented in basically
any parallel system, and we’ll describe some of these options later, and give examples
in our Example code. Some systems have built-in support of this kind of model, and
some are intended specifically for it.

For the classic languages, C, C++ or Fortran, the options are:

• MPI

• OpenMP

• Threading

• Low level networking (very unusual in academia)

• CUDA

For Python, the options include

• Python Multiprocessing (a Package)

• SCOOP (rather old, last release circa 2015)

• Ray (https://ray.readthedocs.io/en/latest/)

• MPI4Py

• Many others (Faust, gevent, Thespian ...)

For other languages, e.g. Java, there are varying quality implementations of some
of the C list, and some languages offer there own paralellism ideas.

https://ray.readthedocs.io/en/latest/
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2.4.5 Aside - Python programmers beware

One note - in Python one should be cautious using parallelism explicitly in your
own code. Libraries like numpy, tensorflow, BLAS etc might invoke multithreaded
library code, but Python has issues with parallelism (see also section 3.3) and often the
speed increase you are looking for from paralellism is better achieved by outsourcing
the hard bits, or the entire code, to C/Fortran etc. For more on this, see our Ac-
celerating Python course https://warwick.ac.uk/research/rtp/sc/rse/training/
acceleratingpython.

2.5 Tightly Coupled Parallelism

Unlike the previous examples, some problems are far more tightly coupled, and there
is no way to split them up into separate tasks with only occasional communications,
or manage jobs purely via a scheduling solution (like parallel). Usually, this is a single
problem that is split up, but that distinction can get very fuzzy, so don’t worry about
it, just consider whether there is a lot of data to share, or a lot of times when things
need to synchronise.

The classic example is when you have a physical grid (array) of data and you split
it into chunks and solve one on each processor. You then have to glue the chunks back
together at their edges, and this requires communication between processors, and it is
this gluing, or coupling, that makes the problem different to what we discussed before.

An example of the weakly, or un-coupled parallelism would be trying to find all prime
numbers between 1 and 1,000,000. This is a single problem, but is not (intrinsically)
tightly coupled, in fact each number can be treated separately, so we can split the set
of numbers (the domain) into chunks and give one to each processor. Do note though
that plenty of algorithms to solve this are NOT weakly coupled - for instance the classic
“Sieve of Eratosthenes” method requires every processor access the same data array.

So, Take Care - tight and weak coupling of parallelism can be a feature
of the problem itself, but it can also be a feature of the method chosen to
solve it.

2.5.1 Tight Coupling Example - Image Smoothing

A simple example of a tight-coupled problem is the iterative smoothing of a (2-D) image.
A simple smoothing algorithm is to simply average each pixel with its neighbours, and
repeat this until the image is as smooth as desired. The basic version is to use the 4
pixels above, below, left and right.

In code1 one “pass” of this smoothing is

1 DO i y = 1 , ny
2 DO i x = 1 , nx
3 temp ( ix , i y ) = 0 .25 ∗ ( im( ix −1, i y ) + im( ix +1, iy ) + im( ix , iy−1) + im(

ix , i y +1) )

1We use Fortran for most examples, since we find it is most understandable by general programmers

https://warwick.ac.uk/research/rtp/sc/rse/training/acceleratingpython
https://warwick.ac.uk/research/rtp/sc/rse/training/acceleratingpython
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4 ENDDO
5 ENDDO
6 ! Comment : Once above i s done , we can copy temp back in to im
7 im = temp

Note that we have to use a temporary array, so that we always use the original value
in the smoothing. We’ll talk about the edges in a moment.

On a single processor, with its own chunk of our image, the figure below shows
which pixels contribute to a pixel we’re considering. It also shows the issue when we
come to the edge - we are missing 1 or 2 of the pixels we need. We need more of the
image to be accessible to the current processor, shown in purple round the edges.

Figure 2.2: An image, with some “fake” cells in purple round the edges. To compute
the smoothed value for the pixel shown in red, we use the pixels shown in yellow. At
the edges, we need the “fake” data to make our smoothing work smoothly.

How we handle this purple boundary depends on which parallelism model we’re
using. If we’re in a “shared memory” system, a processor can simply reach out and
take the data it needs, when it needs it. In “distributed memory” models, the processor
that has the data needs to make it available to you; the simplest way it can do this is
to hand it over.
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This figure shows the layout of a Shared Memory system, where all cores, 8 in this
case, access the same pool of memory. This is like the setup on a single, normal, multi-
core computer, like your laptop or desktop. You don’t have to do anything special to
make sure everything can access the memory, but you do need to take some care to
make sure processors don’t modify memory others are relying on, or rather, make sure
they only modify when it is suitable.

In the image smoothing case, you have to make sure that the copy of “temp” into
“im” doesn’t happen until all processors are done using the values from “im”, i.e. we
have to synchronise where the comment line above is.

2.5.2 Shared Memory Technologies

In academic code, there are two common approaches for Shared Memory programming
- Threading and OpenMP. Threading, essentially, means running some function from
a program on a separate processor (strictly in its own thread, which can then be run
on a separate processor if available). There are several ways to write this, but on
*nix systems the core library is called pthreads. OpenMP is a library available for
C/C++/Fortran programs which is very versatile, and is most easily and commonly
used to split up loops to run on separate processors.

There are plenty of other libraries that can also be used, including Intel Threaded
Building Blocks (in C++), and OpenAcc which works on CPU and GPU (graphics)
cards. There are also some languages either aimed at, or including features for, parallel
programming. Beware with these though, since there are many discontinued attempts
and failures.



20 CHAPTER 2. CONCEPTS IN PARALLEL PROGRAMMING

2.5.3 Aside - NUMA

For Workstations (big desktops) and cluster machines, there is one additional consider-
ation, if they are multiple socket machines. The figure below shows schematically how
the processors and memory are laid out - note that each socket has its own memory
bank, and access goes via this intersocket connection in the middle. Since the electrical
signals can travel at most at light-speed, and typically around 50% of this, we can see
that for a 4GHz processor, a single clock cycle lasts about 2.5× 10−10 s and so a signal
can travel at most 2.5× 10−10 ∗ c = 7.5 cm and probably more like half this. So, given
the physical size of a motherboard, data on another physical processor MUST
be slower to access.

CPU

CPU

CPU

CPU

RAM

CPU

CPU

CPU

CPU

RAM

Intersocket 
Connection

Luckily, you as a programmer don’t have to worry about which socket your program,
or some data, are running on, since everything is sorted out for you behind the scenes.
This setup, and the library which lets the operating system (OS) deal with it is called
NUMA - Non Uniform Memory Access. Basically, this is the idea of having memory
available which has different access speeds, in this case due to physical location.

For instance, when a variable is first set, the memory holding it will be put in the
directly accessible memory of the processor that set it, to try and make its access as
fast as possible. NUMA is pretty much just a “last 5%” performance improvement, so
is worth knowing about, but not worrying about when programming.

Some other systems try to make memory access smooth at greater distances and in
these cases, the performance hit can be considerable and does require that you think
about it when programming. Co-Array Fortran is one example of this - where arrays
have an extra dimension which corresponds to the processor they are on. This makes
it easy to access memory on any processor, BUT unless you are careful, can produce
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unduly slow code. These packages can patch over the syntax to make it easier, but
ultimately they can’t break the laws of physics!

2.5.4 Distributed Memory

Distributed memory systems, such as clusters of computers, are a bit different to shared
memory systems. A schematic view is:
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CPURAM

CPU RAM

CPU RAM

CPU RAM

CPU RAM

Fabric

You have a set of processors, each with their own memory, and the connection
between them is via some “fabric” (mostly a fancy name for a network). It is now up to
you (the programmer) to control when and what data is sent between processors. While
this is an extra thing to think about, it mostly replaces concerns of synchronisation,
because you know when a processor is in the right position to send data, and when to
receive it.

Thinking about our image smoothing example again, we split the image up into
pieces. The following figure shows how we might split things on 2 processors:
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We have to add extra purple cells round the edges, so our smoothing algorithm has
access to all the data it needs, and then we have to deal with keeping the data in these
cells correctly up to date. This means the left most “purple” (actually highlighted in
the red) cells of the second chunk are a copy of the right-most image cells of the first
chunk (also in red). Similarly, if we split further, or split horizontally, other purple cells
would be copies.

Then, after running the smoothing procedure, we share the purple cell temp data,
so:

1 DO i y = 1 , ny
2 DO i x = 1 , nx
3 temp ( ix , i y ) = 0 .25 ∗ ( im( ix −1, i y ) + im( ix +1, iy ) &
4 & + im( ix , iy−1) + im( ix , i y +1) )
5 ENDDO
6 ENDDO
7 ! Send temp ( 1 , 1 : ny ) to l e f t p r o c e s s o r
8 ! Send temp (nx , 1 : ny ) to r i g h t p ro c e s s o r
9 ! Send temp ( 1 : nx , 1 ) to bottom pr oc e s s o r

10 ! Send temp ( 1 : nx , ny ) to top pro c e s s o r
11 ! Rece ive data from l e f t p ro c e s s o r i n to temp ( 0 , 1 : ny )
12 ! Rece ive data from r i g h t p ro c e s s o r i n to temp ( nx+1 ,1:ny )
13 ! Rece ive data from bottom pro c e s s o r i n to temp ( 1 : nx , 0 )
14 ! Rece ive data from top pro c e s s o r i n to temp ( 1 : nx , ny+1)
15 im = temp

How exactly we do those sending and receiving operations depends what technology
we’re using, but the general principle is the same. Do note that we’re running the array
from 0 to n+1, so that the image is in 1 to n and the purple cells are strips 0 and n+1.
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2.6 Wrapup

This chapter has introduced the three basic models of parallelism:

• Embarrassing parallelism, and “task farming”

GNU Parallel is a quick and easy solution to programming this

• Worker-controller type parallelism

This overlaps with task-farming where tasks are contingent on each other

• Domain decomposition

Splitting the problem into chunks, whether physical or otherwise. We can
split based on any axis of our data, but ideally one where things only depend on
“local” data, to minimise communication

The next chapter will talk more about technologies to use for the latter two models.



Chapter 3

Technologies for Parallel
Programming

3.1 Pthreads

Pthreads stands for POSIX Threads, where POSIX is a standard for a kind of oper-
ating system to give things some common abilities and interfaces. See e.g https://

stackoverflow.com/questions/1780599/what-is-the-meaning-of-posix for details.
For our purposes, we just need to know that all *nix operatings systems support

Pthreads, so that is Linux, MacOS, AIX and other commercial Unix systems. Pthreads
is not hard to use in theory, but it’s a very low level library, so it is slow to program
and not very common in academic programming. However, the model is very useful to
know about, because threads underpin so much of parallel programming.

We are going to use C for our examples of Pthreads, because it is much nicer to
do than in Fortran. If C is unfamiliar to you, just ignore all of the weird symbols and
focus on the things with “pthread” as part of their name. A simple program is:

1 #include <s t d i o . h>
2 #include <pthread . h>
3 #include <uni s td . h>
4 void∗ t e s t t h r e a d (void∗ arg ) {
5 int i =∗( int ∗) arg ;
6 p r i n t f (”Sleeping for %i\n” , i ) ;
7 s l e e p ( i ) ;
8 return NULL;
9 }

10 int main ( int argc , char ∗∗ argv ) {
11 int i ;
12 int i v a l [ 8 ] ;
13 pthread t mythreads [ 8 ] ;
14 void∗ r v a l s [ 8 ] ;
15 for ( i = 0 ; i <8;++ i ) {
16 i v a l [ i ]= i ;
17 pth r ead c r ea t e (&mythreads [ i ] , NULL, te s t thread , &i v a l [ i ] ) ;
18 }
19 for ( i = 0 ; i <8;++ i ) {

24

https://stackoverflow.com/questions/1780599/what-is-the-meaning-of-posix
https://stackoverflow.com/questions/1780599/what-is-the-meaning-of-posix
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20 p t h r e a d j o i n ( mythreads [ i ] , r v a l s+i ) ;
21 }
22 }

The important bits to note are:

• On line 2 we include the Pthreads library

• The block in lines 4 to 9 is defining a function which takes some argument,
interprets it as a number, prints that is is sleeping, and sleeps for the number
of seconds, before returning

Because this is C, and because of how pthreads works, we have to use void
(typeless) references (C pointers) for the function parameters and return values

In Fortran, we can use Pthreads either via some intermediate library, OR by
using a lot of C pointer types and using the C library

• Lines 10 to 22 are the main program

We create 8 threads in a loop, and in each thread we call the function we just
described. The function is passed the number of the thread (0 through 7) (lines
15 to 18)

Then we shut down the threads (rejoin them to the main program) (lines 19
to 21)

As you might infer from this, Pthreads is a very low level way of splitting work up
over processors, where we have to create them, tear them down, and dictate what they
should each do. This makes it very time consuming to program anything complex using
Pthreads. In particular, you have to deal with distinguishing thread-local variables
(each thread has its own copy) from shared variables (all threads use the same one),
and thinking back to the buffet spoon analogy, you will then have to deal with the
potential for multiple threads to touch the same variable etc.

On the other hand, if you just have a list of tasks and want them all to run separately
(exploiting multiple cores in the process), it is a useful library, although it remains
surprisingly annoying to work out how many cores you have available.

3.2 Other low-level threading libraries

A lot of more modern languages (more modern than the venerable old C) have their
own threading models that lie on top of the system-level install of Pthreads. These all
differ in the details, but follow the same pattern(s) as above:

• Create threads

• Recombine threads

• Test state of threads
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• Use Mutexs to control access to shared data

As in the previous section, these libraries are easier to use than Pthreads, but still
mostly requires you to manually deal with everything, they just tend to give you more
helpers functions to make it a bit easier. We recommend knowing a bit about these
options, but generally don’t recommend using them in academic software without a
very good reason. Remember, even if you can understand the model, anybody else
using your code likely can’t.

3.3 Python and Multithreading

Python is a popular language for a lot of reasons , but it is not well suited to parallel
programming. There are several reasons for this, one being that it is generally a slow
and inefficient language, so turning to parallelism to speed it up is a poor choice, as it
uses more resources, and you would mostly be better off finding a more efficient solution.
Note that this does not apply to libraries like Numpy, Scipy, Numba, Tensorflow, Blas
etc, which often make use of multi-threading in their backing C, Fortran etc library.
This is not what we’re discussing here.

In particular, while Python’s native parallelism model is a threading model related
to Pthreads, the normal Python interpreter (CPython) can’t actually run threads in
parallel. PyPy and some other interpreters do not share this pathology, but CPython
is far more common and unlikely to change this situation.

In CPython, threads will have to queue up one after the other to do any operations
on any Python objects (i.e. any calculations you, or a library you use, write as Python
code). Only operations in an external library are allowed to actually run simultaneously.
This is called the Global Interpreter Lock. Do note that most of libraries like Numpy
on the inside are not restricted like this, but the bits where they read or write python
objects are. So if your code is mostly calling external libraries, or makes use of the
Numba JIT compiler (in NoPython mode), then threading might help, but you want
to write as little Python code as possible.

As a final note on Python and the technologies we are about to discuss, Python has
no equivalent of the OpenMP library, but does have a version of MPI called MPI4Py,
which is not fully standards conforming, but allows some MPI use in Python code.

For more about speeding up and parallelising Python code, see our course Accelerat-
ing Python https://warwick.ac.uk/research/rtp/sc/rse/training/acceleratingpython

3.4 OpenMP - Open MultiProcessing

OpenMP is a library for shared memory programming (see Sec 2.5.2) which consists of:

• A set of directives that tell the compiler how to parallelise bits of the code

Evidently this means the compiler must be OpenMP-aware to use them, but
handily non-OpenMP-aware compilers simply ignore (most) directives, so you
don’t need two complete code versions

https://warwick.ac.uk/research/rtp/sc/rse/training/acceleratingpython
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• A library the gives your code access at runtime to information about number of
processors available, how to split work up etc

These parts wont compile with an non-OpenMP-aware compiler. You need
to use tricks like conditional compilation to remove them for a serial version

OpenMP allows for almost completely general parallel programming on a single
physical computer. However, by far the most common use is to split up loops so that
different iterations are handled by different processors. This has an obvious limitation
- only loops that have independent iterations can be parallelised this way. So, loops
which advance a quantity in time, where iteration 2 depends on iteration 1, which
depends on iteration 0, cannot be handled this way.

A simple OpenMP code to paralellise a loop is:

1 PROGRAM loop decompose
2 USE omp lib
3 IMPLICIT NONE
4 INTEGER, PARAMETER : : max its = 10000
5 INTEGER : : nproc , i , t h r ead id
6 INTEGER, DIMENSION( : ) , ALLOCATABLE : : i t s p e r p r o c
7 nproc = omp get max threads ( )
8 ALLOCATE( i t s p e r p r o c ( nproc ) )
9 i t s p e r p r o c = 0

10 !$OMP PARALLEL DO
11 DO i = 1 , max its
12 th r ead id = omp get thread num ( ) + 1
13 i t s p e r p r o c ( th r ead id ) = i t s p e r p r o c ( th r ead id ) + 1
14 ENDDO
15 !$OMP END PARALLEL DO
16 DO i = 1 , nproc
17 PRINT ’ (A, I0 , A, I0 , A) ’ , ’ Proces sor ’ , i , ’ performed ’ , &
18 i t s p e r p r o c ( i ) , ’ i t e r a t i o n s ’
19 ENDDO
20 PRINT ’ (A, I0 ) ’ , ’ Total work on a l l p r o c e s s o r s i s ’ , SUM( i t s p e r p r o c )
21 ENDPROGRAM loop decompose

Note on code listings - because of the formatting on these examples, we don’t recommend

trying to copy-paste this code. All code snippets are included in the Github repo for this

course

This uses both facets of the OpenMP library we mentioned: some parts are com-
ments and show how to divide the work, and some are functions provided by the library
to see how many processors we have and such. Both of these are highlighted in orange
in the above listing.

The directive $OMP PARALLEL DO starts what is termed a parallel region. Note
that this starts with a !, which is a Fortran comment, so an OpenMP non-aware compiler
will ignore this line completely. $OMP END PARALLEL DO ends the parallel region.
Inside the region, multiple processors will do work, and it is important to program in
a parallel-suitable way. Outside the parallel region, only one processor is working so
everything is like normal programming.
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OpenMP has plenty of annoying features, but the most irritating for a discussion
like this is that the directives aren’t quite the same in any of the supported languages.
For example, th above example in Fortran uses the Fortran style DO/END DO for a
loop, wheras in C/C++ it uses FOR. In Fortran you have the explicit Start and END
markers, whereas in C you use curly braces ({}) like in C code. C++ mostly looks like
the C.

In the above example, in the parallel region, even though all the processors are
working, each only touches its own element of the array its per processor. So there’s
nothing more that needs doing for this code to be parallel-safe.

Note that we used the default number of threads as given by omp get max threads.
This is the number of virtual cores your computer has. If your CPU has hyperthreading
ability, this will be twice the number of actual cores, otherwise it will match the number
of physical cores.

3.4.1 Private and Shared Variables

Note that the code above relies on some default behaviour of OpenMP to get the right
answer - specifically how it handles the loop variable when we parallelise. By default,
each thread gets its own private copy of that loop variable, while all the other variables
remain shared between all processors. This is exactly what we wanted in that example,
but that isn’t always the case.

Re-writing the same program as above to manually handle this, we get:

1 PROGRAM loop decompose
2 USE omp lib
3 IMPLICIT NONE
4 INTEGER, PARAMETER : : max its = 10000
5 INTEGER : : nproc , i , thread id , i t s
6 !$OMP PARALLEL PRIVATE( i t s )
7 i t s = 0
8 !$OMP DO
9 DO i = 1 , max its

10 i t s = i t s + 1
11 ENDDO
12 !$OMP ENDDO
13 PRINT ’ (A, I0 , A, I0 , A) ’ , ’ Proces sor ’ , omp get thread num ( ) , ’

performed ’ , &
14 i t s , ’ i t e r a t i o n s ’
15 !$OMP END PARALLEL
16 ENDPROGRAM loop decompose

In the above example, we separate the PARALLEL DO into its two components -
first we do the splitting into threads, with the PARALLEL part on line 6, and then we
decompose the loop part with the DO section on line 8. Instead of the array of its

variables, we use a single private copy in each thread, that we explicitly set to private
on line 6 with the PRIVATE(its) part.
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3.4.2 OpenMP Variable Specifiers

There are four variable specifiers, like the PRIVATE we just saw. All of these can be
applied to any OpenMP statement that starts a parallel region. These are:

• PRIVATE

Each thread has its own version of the variable. These do not have any
particular value, and DO NOT inherit any value the variable had before the threads
started

• SHARED

This variable is shared by all threads - changing its value in one thread will
change it for all the other threads

• FIRSTPRIVATE

Like PRIVATE but any value the variable had before entering the parallel
region is retained

• LASTPRIVATE

Like PRIVATE but the last value the variable was given in the thread is
retained after the parallel region. In particular, in a loop it is the value from the
last iteration, otherwise the last section

3.4.3 Do Not Do This Thing - Race Conditions

In the first example, we used an array so that each thread counted iterations in its own
variable. In the second, we had a private variable, and printed it inside the parallel
section. We didn’t even try to count the total number across all threads. It might be
tempting to write some code like this:

Horrible Broken Code

1 PROGRAM loop decompose
2 USE omp lib
3 IMPLICIT NONE
4 INTEGER, PARAMETER : : max its = 10000
5 INTEGER : : i , i t s g l o b a l
6 i t s g l o b a l = 0
7 !$OMP PARALLEL DO
8 DO i = 1 , max its
9 i t s g l o b a l = i t s g l o b a l + 1

10 ENDDO
11 !$OMP END PARALLEL DO
12 PRINT ’ (A, I0 ,A) ’ , ’ Counter r e co rd s ’ , i t s g l o b a l , ’ i t e r a t i o n s ’
13 ENDPROGRAM loop decompose

But this DOES NOT WORK. Here all the threads try and increment a simple
variable and this will give THE WRONG ANSWER. The problem is that incrementing
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a counter is not an instantaneous single step, and we get a race condition like the Bowl
Of Chips analogy.

Imagine we have two threads each trying to increment a single variable, which starts
with a value of 0. Something like this can happen:

CPU i=0 CPU

CPU i=0

i=0

CPU

i=0

CPU i=0

i=0i=1

CPU

i=0i=1

CPU i=0

i=0i=1

i=1 CPU

i=0i=1
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m
e

Figure 3.1: A race condition. On left and right are two CPUs, in the middle is the
variable we’re trying to increment. Each processor must read, increment, and write
back, and instead of two incrementings, we only get one! Effectively, the processors are
in a race with each other to finish their task before another tries to start.

3.4.4 Solutions to Race Problems

There are 3 solutions to this race problem. In order of increasing generality but de-
creasing efficiency they are:

1. Atomic Addition - Make the increment or other simple operation a single step
that cannot be interrupted

2. Reduction - use OpenMPs ability to do a reduce step (like we discussed earlier),
use a variable in each thread and tell OpenMP to sum them all up at the end

3. Critical Sections - create a region of the code that only one thread can be in at a
time, and put the increment inside that. C.f. the Mutex.

The code for each of these follows.
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Atomic Addition

1 PROGRAM loop decompose
2 USE omp lib
3 IMPLICIT NONE
4 INTEGER, PARAMETER : : max its = 10000
5 INTEGER : : i , i t s g l o b a l
6 i t s g l o b a l = 0
7 !$OMP PARALLEL DO
8 DO i = 1 , max its
9 !$OMP ATOMIC

10 i t s g l o b a l = i t s g l o b a l + 1
11 !$OMP END ATOMIC
12 ENDDO
13 !$OMP END PARALLEL DO
14 PRINT ’ (A, I0 ,A) ’ , ’ Counter r e co rd s ’ , i t s g l o b a l , ’ i t e r a t i o n s ’
15 ENDPROGRAM loop decompose

Here we use OMP’s directive to force atomic (unsplittable). Inside this block we can
have a single operation and this will be forced to become a single instruction at the
processor level, so cannot be interrupted by some other thread. However, there are
limits on what can be done this way - basically you can do only simple assignments
(x=10) or increment (+1) or decrement (-1) operations.

Reduction

1 PROGRAM loop decompose
2 USE omp lib
3 IMPLICIT NONE
4 INTEGER, PARAMETER : : max its = 10000
5 INTEGER : : i , i t s g l o b a l
6 i t s g l o b a l = 0
7 !$OMP PARALLEL DO REDUCTION(+: i t s g l o b a l )
8 DO i = 1 , max its
9 i t s g l o b a l = i t s g l o b a l + 1

10 ENDDO
11 !$OMP END PARALLEL DO
12 PRINT ’ (A, I0 ,A) ’ , ’ Counter r e co rd s ’ , i t s g l o b a l , ’ i t e r a t i o n s ’
13 ENDPROGRAM loop decompose

Here we use OpenMP’s reduction ability - we specify a variable to be reduced and the
operation to be used in it. The variable becomes effectively private, but at the very
end the reduction operation is applied across threads.

Critical Section

1 PROGRAM loop decompose
2 USE omp lib
3 IMPLICIT NONE
4 INTEGER, PARAMETER : : max its = 10000
5 INTEGER : : i , i t s g l o b a l
6 i t s g l o b a l = 0
7 !$OMP PARALLEL DO
8 DO i = 1 , max its
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9 !$OMP CRITICAL
10 i t s g l o b a l = i t s g l o b a l + 1
11 !$OMP END CRITICAL
12 ENDDO
13 !$OMP END PARALLEL DO
14 PRINT ’ (A, I0 ,A) ’ , ’ Counter r e co rd s ’ , i t s g l o b a l , ’ i t e r a t i o n s ’
15 ENDPROGRAM loop decompose

The part wrapped in the CRITICAL section can only have one thread in it at a time
and the others must wait their turn. Almost any operation can go within that section,
and as many lines of code as you like. However, to allow this generality, there is a lot
more efficiency cost than just serializing the threads. So, use this with caution and only
where the other options don’t apply.

3.4.5 Other OpenMP sections

Finally, a few other important OpenMP sections. All of these have to be inside a
PARALLEL section to work.

• SINGLE

One and only one thread will go through this section (at all, not at-a-time)

• MASTER

Thread-0, and only thread-0, will go through this section

• WORKSHARE

Used to split up non-loop operations. Used mostly to do Fortran array oper-
ations

3.5 MPI - Message Passing Interface

MPI is a library used for Distributed Memory parallelism (recall 2.5.4). It is entirely
up to you to write code to use it, and you also need an installation of the MPI library
to compile code using it AND to run code compiled with it. Moreover, you need the
same version of both. It is possible to write code to compile with and without MPI
support, but you have to use something like conditional compilation to remove them
for the serial version. MPI is the most common way of programming for distributed
cluster systems.

Strictly, MPI is “only” a set of standards, set out by the MPI Forum (http://mpi-
forum.org). There are several implementations of these standards, but as long as you
stay within the standard, your code will work using any of them. Well, mostly - there
are many strange and fascinating bugs that have cropped up in these libraries.

http://mpi-forum.org
http://mpi-forum.org
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3.5.1 Compiler Wrappers

Generally, when compiling an MPI program you use the compiler wrapper generated
by the MPI library when it is installed. From your perspective this works exactly like
the normal compiler, but extra things happen behind the scenes.

Normally, this compiler is called mpicc (for C), mpic++ (for C++) or mpif90 (for
Fortran), although this is by no means always the case. In particular, the Intel suite
uses ifort for it’s Fortran compiler, hence mpiifort here. But mostly, you pre-pend mpi
to the compiler name.

3.5.2 Minimal MPI Program

The smallest possible MPI program contains two steps. First, you Initialize MPI, before
you can use it, or call any other MPI functions. And then, you Finalize, after which
you must not call any MPI functions.

If you forget to Initialize, then any other MPI commands will fail, and you’ll prob-
ably notice right away. If you forget to Finalize, you might not notice, and bad things
can happen. Mostly these things are unlikely to cause trouble, but for instance you
can get odd, and inconsistent failures where data hasn’t been properly sent etc. Don’t
worry though - nothing bad can happen to your computer, just your MPI program.

So, the very simplest MPI code is:

1 PROGRAM main
2 USE mpi
3 IMPLICIT NONE
4 INTEGER : : errcode
5 CALL MPI Init ( errcode )
6 PRINT ∗ , ” Mul t ip roce s so r code ”
7 CALL MPI Finalize ( errcode )
8 ENDPROGRAM main

MPI uniquely identifies processors using a number called the rank, which runs from
0 to the number of processors minus 1. For more complicated codes, one might want to
only use a subset of processors, and this uses an object called a communicator. Note
that the rank is specific to the communicator (a given processor might have a different
rank on different communicators). By default MPI creates the default MPI COMM WORLD

that includes all processors, and that is what we will use here. Do remember that you
can create others, and if you’re working with somebody else’s MPI code they may have
done this.

The simplest marginally useful MPI code is:

1 PROGRAM main
2 USE MPI
3 IMPLICIT NONE
4 INTEGER : : errcode
5 INTEGER : : rank , nproc
6 CALL MPI Init ( errcode )
7 CALL MPI Comm size(MPICOMMWORLD, nproc , errcode )
8 CALL MPI Comm rank(MPICOMMWORLD, rank , errcode )
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9 PRINT ’ (A, I3 , A, I3 ) ’ , ’ I am pro c e s s o r ’ , &
10 rank + 1 , ’ o f ’ , nproc
11 CALL MPI Finalize ( errcode )
12 ENDPROGRAM main

where we Initialize, get the communicator size (total number of processors we’re running
on), the rank of the current processor, we print these, and then we exit.

I’ve used quite a lot of colours in that listing to draw attention to the various bits.
In particular, the orange and purple (e.g. MPI Comm size and MPI COMM WORLD) are
MPI keywords - I have used orange for functions and purple for the constants. I have
also coloured in light blue some parts which are NOT MPI provided, but are just our
choices for good names for things like the rank.

So how does this actually work? Well, if we just run the code like normal (e.g.
‘./a.out‘) then we only get one processor. All of the MPI code is still there, and you
wont be able to run this way if your MPI library has gone missing between the compile
and the run step, but nothing special happens (and in plenty of cases, things wont work
- see a bit later where we discuss Deadlocks).

To run in parallel, we have to invoke the code on multiple processors, so we use
another part of MPI called either mpiexec or mpirun. On a personal machine, both
should work, on cluster machines consult the documentation to know what to do. Often
you will want to use a command provided by the cluster scheduling system, such as srun.
You tell mpirun (or equivalent) how many processors to run on, and what command to
run. So to run a.out on 4 cores we would do something like:

mpirun −n 4 . / a . out
mpiexec −n 4 . / a . out ” input f i l ename ”

Notice that we do need the ‘./‘ still - we’re not giving just the name of a program,
we’re giving the full command used to invoke it. So we can follow the command with
any arguments we want to give to the program etc.

Now, what actually happens? n copies of the program are started, and each is
placed on its own processor.1 When MPI Init is called, the MPI library sets up com-
munications between these processes, including the default communicator, and then
MPI functions can be called which use this infrastructure.

3.5.3 Classes of MPI Communication

MPI comms breaks roughly into 3 sets:

1. Collective communication - the processors all communicate in some way (e.g. to
sum a quantity over all processors or the like)

2. Point to Point communication - THIS processor talks to THAT processor

1Technically they need not be placed on their own processor, but this can cause issues - look into
“oversubscription” for more. If you’re interested in HOW they are forced onto separate processors,
look up “process affinity”
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3. Weird stuff - Everything else. Very valuable, but quite specific stuff

Most MPI codes spend most of their time in point to point communication. Luckily
the rules for this aren’t very complex - a Sender processor can send a message to some
specific Recipient rank - a Recipient processor waits to receive a message either from a
specific rank, or from any rank. Messages are all served in the order that they arrive.

The normal sending and receiving routines are blocking in that they don’t return
control to your program until the send or receive is complete. Note that the send being
complete does not mean the receive has happened, just that the MPI communication
layer has got the data to be sent, so your program can continue.

3.5.4 A Simple MPI Program - Ring Pass

The simplest actually useful MPI program is one where each processor involved sends
a single data item to one other processor - and the easiest to see is when we place the
processors in order of rank, and each sends to the next rank along. At the highest rank,
we wrap back around, so this sends to processor 0.

A working code for the simple ring pass is:

1 PROGRAM main
2 USE MPI
3 IMPLICIT NONE
4 INTEGER : : rank , nproc , r ank r ight , r a n k l e f t , rank recv , errcode
5 INTEGER, DIMENSION(MPI STATUS SIZE) : : stat
6 CALL MPI INIT( errcode )
7 CALL MPICOMMRANK(MPICOMMWORLD, rank , errcode )
8 CALL MPICOMMSIZE(MPICOMMWORLD, nproc , errcode )
9 r a n k l e f t = rank −1

10 ! Ranks run from 0 to nproc−1, so wrap the ends around to make a loop
11 IF ( r a n k l e f t == −1) r a n k l e f t = nproc−1
12 r a n k r i g h t = rank + 1
13 IF ( r a n k r i g h t == nproc ) r a n k r i g h t = 0
14 IF (rank == 0) THEN
15 CALL MPI Send(rank , 1 , MPI INTEGER, r ank r ight , 100 , MPICOMMWORLD,

&
16 errcode )
17 CALL MPI Recv( rank recv , 1 , MPI INTEGER, r a n k l e f t , 100 ,

MPICOMMWORLD, &
18 stat , errcode )
19 ELSE
20 CALL MPI Recv( rank recv , 1 , MPI INTEGER, r a n k l e f t , 100 ,

MPICOMMWORLD, &
21 stat , errcode )
22 CALL MPI Send(rank , 1 , MPI INTEGER, r ank r ight , 100 , MPICOMMWORLD,

&
23 errcode )
24 END IF
25 PRINT ( ’ (”Rank ” , I3 , ” has r e c e i v e d value ” , I3 , ” from rank ” , I3 ) ’ ) , &
26 rank , rank recv , r a n k l e f t
27 CALL MPI FINALIZE( errcode )
28 ENDPROGRAM main
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There’s a lot going on in this code, but in particular note how the Send and Recv
bits work. In particular, note what you give to these functions:

• What variables to send and/or receive into

• How many elements (because it could be an array)

• The type of the variable (here MPI INTEGER)

• The rank to send to/recv from

• An integer tag, which has to match in send and recv commands

• The communicator we are sending/recv-ing on

In the recv call, we have one more parameter, the status. This contains information
about the message received (e.g. who sent it). Usually you don’t need to know this, so
you can use the special value MPI STATUS IGNORE so you don’t need to capture it.

Also note that in Fortran all MPI functions take a final error code parameter,
whereas the C ones return their error code.

Here we’re only giving enough details to show the sort of things MPI can do. For
more details, such as what types are available and what they are called, we suggest our
Introductory MPI workshop (materials at https://warwick.ac.uk/research/rtp/

sc/rse/training/intrompi) or one of the tutorials widely available online, or a good
book.

3.5.5 Deadlocks

The code we just showed looks a bit over complicated - it’s tempting to skip that whole
if/else bit on lines 14 to 24 and just have every processor recv a message, and send it
on. In general this will not work. All of the processors will enter the recv step, and
wait there. Since no processor sent a message, no processor’s recv can complete and
the situation is a deadlock. More complex situations can occur, but basically whenever
a processor is waiting for a message that can never come until said processor does
something else, is a deadlock.

The deadlock is probably the error you will encounter most often in MPI code.
There exist also livelocks, where processors are doing work but can never complete it
(think trying to step aside to let somebody pass, when they also step aside and you are
stuck moving left and right endlessly).

Unfortunately, common ways to get deadlocks can result in bugs that only occur
in some circumstances. For instance, we mentioned that send is blocking, but that
this only means it waits until MPI has control of the message. This means for a
small message, which fits entirely into MPI’s internal buffer, the send might return
immediately. But if the message gets bigger, this can no longer occur.

Sometimes, different systems treat the sends differently - for instance your machine
might be pro-active and complete the sends aggressively, but another system might not.

https://warwick.ac.uk/research/rtp/sc/rse/training/intrompi
https://warwick.ac.uk/research/rtp/sc/rse/training/intrompi
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This is NOT an error on the second system - it is a bug in your code. You cannot rely
on this behaviour of sends.

So, how do you avoid a deadlock? There are many ways. For a start, MPI provides
Send and Recv functions which aren’t blocking, but these are tricky to use, so we will
not discuss them here. There are may other ways, but for something like the ring-
pass we favour using MPI SendRecv, which combines the Send and Recv into a single
command, where the MPI layer takes care of which order these happen in. The entire
command blocks, but once it returns you know the Recv part is complete.

The code above using SendRecv becomes rather simpler:

1 PROGRAM main
2 USE MPI
3 IMPLICIT NONE
4 INTEGER : : rank , nproc , r ank r ight , r a n k l e f t , rank recv , errcode
5 INTEGER, DIMENSION(MPI STATUS SIZE) : : stat
6 CALL MPI INIT( errcode )
7 CALL MPICOMMRANK(MPICOMMWORLD, rank , errcode )
8 CALL MPICOMMSIZE(MPICOMMWORLD, nproc , errcode )
9 r a n k l e f t = rank −1

10 ! Ranks run from 0 to nproc−1, so wrap the ends around to make a loop
11 IF ( r a n k l e f t == −1) r a n k l e f t = nproc−1
12 r a n k r i g h t = rank + 1
13 IF ( r a n k r i g h t == nproc ) r a n k r i g h t = 0
14 CALL MPI Sendrecv(rank , 1 , MPI INTEGER, r ank r ight , 100 , &
15 rank recv , 1 , MPI INTEGER, r a n k l e f t , 100 , &
16 MPICOMMWORLD, stat , errcode )
17 PRINT ( ’ (”Rank ” , I3 , ” has r e c e i v e d value ” , I3 , ” from rank ” , I3 ) ’ ) , &
18 rank , rank recv , r a n k l e f t
19 CALL MPI FINALIZE( errcode )
20 ENDPROGRAM main

We have split the SendRecv over several lines - note it basically has the send part of
the command, followed by the recv.

This SendRecv example also works quite well for the smoothing example we dis-
cussed earlier. You send to your left, and you recv from your right. There is another
handy MPI constant - MPI PROC NULL which can be used in a send or recv command
to mean “there is no processor, do nothing”. This is very handy at the edges of your
real domain, simply using this value in place of rank left or rank right.

3.5.6 MPI Collectives

Collective communications are not as much used in most MPI codes as point-to-point,
but they are still very important. There are collectives to:

• Combine data from processors (MPI Reduce and MPI Allreduce)

• Send data from this processor to all other processors (MPI Bcast, MPI Scatter)

• Get data from all other processors to this processor (MPI Gather)
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• Send data from every processor to every other processor (MPI Alltoall)

• Synchronise all of the processors without sending data (MPI Barrier)

A simple example of collective comms using a Reduce operation is:

1 PROGRAM reduce
2 USE MPI
3 IMPLICIT NONE
4 INTEGER : : nproc , rank , rank red , errcode
5 CALL MPI Init ( errcode )
6 ! Get the t o t a l number o f p r o c e s s o r s
7 CALL MPI Comm size(MPICOMMWORLD, nproc , errcode )
8 ! Get the rank o f your cur rent p ro c e s s o r
9 CALL MPI Comm rank(MPICOMMWORLD, rank , errcode )

10 ! MPI Reduce combines va lue s from a l l p r o c e s s o r s . Here i t f i n d s the
maximum

11 ! va lue (MPI MAX) over a l l p r o c e s s o r s . I t g e t s that va lue on one
p r oc e s s o r

12 ! c a l l e d the ” root ” proces sor , here rank 0 . The r e l a t e d MPI Allreduce
g i v e s the

13 ! reduced value to a l l p r o c e s s o r s
14 CALL MPI Reduce (rank , rank red , 1 , MPI INTEGER, MPIMAX, 0 ,

MPICOMMWORLD, &
15 errcode )
16 IF (rank == 0) PRINT ∗ , ’ Largest rank i s ’ , rank red
17 ! MPI Allreduce combines va lue s from a l l p r o c e s s o r s . Here i t f i n d s the

sum of
18 ! the value (MPI SUM) over a l l p r o c e s s o r s . I t g e t s that value on a l l

p r o c e s s o r s
19 CALL MPI Allreduce (rank , rank red , 1 , MPI INTEGER, MPI SUM,

MPICOMMWORLD, &
20 errcode )
21 IF (rank == nproc−1) PRINT ∗ , ’Sum of ranks i s ’ , rank red
22 CALL MPI Finalize ( errcode )
23 ENDPROGRAM reduce

The code comments describe what is happening here.
All of the collectives differ, but have some commonalities. In particular, since they

involve a lot of processors communicating they involve more comms and hence have
more overhead than a single point-to-point call. They are also blocking - for those
where non-blocking variants exist these are used less commonly.
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Summary

4.1 Wrap Up

This workshop has aimed to be a very brief overview of the kinds and strategies for
parallelism. It has deliberately left out a lot of details, but as far as possible we have
tried to be absolutely accurate. We have only covered enough to get you started, but
hopefully you can see how you might go about parallelising different tasks, and you
have the analogies to help spot more examples in future.

A super brief, non-exhaustive summary:

• Multiple unconnected tasks

Spin up a lot of tasks and let them run

Use Gnu Parallel for slightly complicated schedules

Use whatever a cluster owner recommends for task farming

• Multiple, weakly connected tasks

Gnu Parallel with external file to manage contingencies or similar

Worker-Controller model

Threads (with care)

• A single task containing lots of loops or sections that can be done simultaneously

Threads (with care)

OpenMP

MPI (sometimes)

• A single task that can be split into chunks (domain decomposition)

MPI

OpenMP (sometimes)

39
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Note that the choice between OpenMP and MPI is usually dictated by whether you
need to run on shared or distributed memory architecture. But generally, if you see
lots of loops, OpenMPI can work well, whereas if you see lots of sequence points and
need for synchronising data, MPI might be the key.

4.2 What to do Now

If you’re following for general interest, or future potential work, we would suggest ex-
amining the example codes (https://github.com/WarwickRSE/ParallelismPrimer)
tweaking them, and making sure you see what they are doing. Then, try solving some
problem of your own using parallelism. You don’t need to worry about efficiency, just
get things working. Bonus points if you break things and work out why, and how to fix
them.

4.3 Other Resources

If you want or need to use parallelism in your work, we have some other courses that
might be of interest. In particular, we cover all stages of MPI programming, from
Introductory to Advanced, with slides and example code available in Introduction to
MPI, Intermediate MPI and Advanced Topics in MPI. We hope to produce something
similar for OpenMP when time permits. We also discuss a bit about parallelism in
Python code in Accelerating Python

If you’re looking to use cluster machines, we have some material that may be useful
in HPC at Warwick and Beyond.

https://github.com/WarwickRSE/ParallelismPrimer
https://warwick.ac.uk/research/rtp/sc/rse/training/intrompi
https://warwick.ac.uk/research/rtp/sc/rse/training/intrompi
https://warwick.ac.uk/research/rtp/sc/rse/training/intermedmpi
https://warwick.ac.uk/research/rtp/sc/rse/training/advancedmpi
https://warwick.ac.uk/research/rtp/sc/rse/training/acceleratingpython
https://warwick.ac.uk/research/rtp/sc/rse/training/hpcbeyond
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Glossary of Terms

Glossary

bandwidth The rate at which data is transferred, usually in mega or giga bits per
second. Your internet contract “speed” is actually a bandwidth. See also latency,

communicator A grouping of processors. Programs can have multiple communica-
tors, but simple programs use only MPI COMM WORLD which contains all processors
in the job. Communicators can be split and combined. 33, 42

core A single processing unit, which independently executes instructions (actions) but
has access to other things like memory on the same physical processor. This is
the smallest unit capable of independent, general purpose computation. 7, 41

CPU Central Processing Unit; the heart of a computer, the physical chip containing
the ability to do processing. Usually now contains multiple cores. 7

CPU time The total amount of time, summed over all processors involved. This is
what funding bodies and things usually want to know. Note that this can vary
depending on how many processors you run on, especially for hard-to-parallelise
problems. See also wall time,

hyperthreading The ability of certain processors to separately use parts of their hard-
ware, so that more than one task can run simultaneously. 28

latency The fixed time cost of sending or receiving data, i.e. the delay before things
start moving. In video-gaming circles and internet speed tests, tends to be rep-
resented by the “ping” time. See also bandwidth,

Mutex Mutual Exclusion Object; a thing which only one task/program/processor can
hold at once, ensuring that a resource is only accessed by one task/program/pro-
cessor at once. 5, 26, 30
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POSIX A set of standards for low level operating system features etc, supported by a
lot of platforms, e.g. Linux, OSX and similar. Note Windows is NOT one, except
via the new WSL system in Windows 10. 24

race condition A problem where two (or more) things can both attempt an action at
once, and their actions will not “add together” to the correct result. For instance,
if two tasks both increment a shared variable, you would hope to get an end result
of +2, but race conditions can mean that both tasks read the initial value, and
write back this plus 1, giving the wrong answer. 6

rank A number, unique to each processor in a set (a communicator) that can be used
to identify it. Usually processors are numbered sequentially, and the 0th is called
the root and used for anything that only one processor needs to do. 33

root One of the processors in a communicator which does any unique work. , 42

sentinel A special value, outside the range a parameter can ordinarily take, which
signals that something special has or should occur. For instance, −1 can never
be a valid count of items, so can be used as a signal. Similarly, MAX INT or NAN
can be used (with care) to signify missing data in a data set. Sentinels should be
used with a little care, since they can cause chaos if other code or a user doesn’t
recognise them. 7

socket The physical slot a CPU is plugged into, used as a term for the number of
physical processors (each of which is probably multi-core) a machine has. A nor-
mal laptop or desktop is usually single-socket, a Workstation or cluster machine
might be 2 or even 4. 20

wall time Time in the real world (i.e. as measured by a clock on the wall), as compared
to the total amount of cpu time (summed over all cpus) and/or active time (for
processes which wait for input etc). See also CPU time, 9
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