
Warwick RSE

“The Angry Penguin“, used under creative commons licence
from Swantje Hess and Jannis Pohlmann.

Introduction and Analogies

18/03/2024

Why analogies?

• Parallel computation feels like something that is
very outside of your normal experience

• Actually a lot of the general things that you have to
understand make intuitive sense

• Most of the problems, and solutions, to running
things on multiple processors are the same as
trying to do multiple things in real life

Limits to analogies
• Be very careful with analogies!

• They can be extremely valuable and quite often a feature
that you can identify in the analogy is also a feature in the
real problem

• But there are definitely cases where the feature that you
identify is an analogy breakdown and the feature is not
present in the real problem

• If you find these analogies useful then you might want to try
to extend them yourselves, but always check to see if the
extension apply to the real problem

Buffet

Duck Chilli

Curry

Pause
for

Drinks

Pudding

Pudding

A B C D

Pudding

Pudding

Sushi

Duck

Liqueurs

Pudding Curry

Curry

Pudding

Computer Analogy
• Normal operations of the computer

• Programs are split onto different processors so that they are all
used

• Running two programs at once will normally put one on each
processor

• “Embarrassing Parallelism”

• Solve many problems by running several programs or many
copies of one program

• Don’t want more programs than you have processors or some
have to wait their turn, just like at a buffet

A La Carte

Soup

Pie

A B C D

Nachos

Burger Curry Fish

Ice
Cream Cake

Coffee Brandy Coffee

Computer Analogy
• Weakly coupled parallel computer programs

• Mostly things do their own thing with little
reference to other things that are doing their
work

• You occasionally have to synchronise information
between running things to make things happen at
the same time

• Or to make things have a specific sequence

Prix Fixe

Starter

Main
Course

Coffee

Dessert

A B C D

Starter Starter Starter

Main
Course

Main
Course

Main
Course

Dessert Dessert Dessert

Coffee Coffee Coffee

Computer Analogy

• Tightly coupled parallel processing

• Many sequencing points where things don’t
advance to the next level until everyone has
reached the same point

• Things may be doing different tasks but you have
to treat them as if they are all the same because
you can’t move on until all of them are finished

Take
spoon

The Buffet Spoon

Try to
take

spoon

Spoon
in use!

Wait for
spoon

Serve
food

Return
spoon

Computer Analogy
• Lots of things!

• This is how almost all resources that can only be
used by one thing at a time work in computers

• In particular you can deliberately make it happen by
using Mutual Exclusion objects. Things that only one
processor can have at a time. More on this later

• There’s actually quite a lot of work devoted to making
sure that everything gets its turn with the spoon (actual
queues are unusual in computers)

Eat
Chips

The Bowl ‘o Chips

Eat
Chips

Eat
Chips

Bowl
Empty

Waiter Sees
Empty Bowl

Waiter Takes
Empty Bowl

Waiter
Brings New

Bowl

Eat
Chips

The Bowl ‘o Chips

Eat
Chips

Eat
Chips

Bowl
Empty

Waiter Sees
Empty Bowl

Waiter Gets
New Bowl

Waiter
Brings New

Bowl

Waiter Sees
Empty Bowl

Waiter Gets
New Bowl

Waiter
Brings New

Bowl

Eat
Chips

Chipslosion!

Eat
Chips

Eat
Chips

Bowl
Empty

Waiter Sees
Empty Bowl

Waiter Gets
New Bowl

Waiter
Brings New

Bowl

Waiter Sees
Empty Bowl

Waiter Gets
New Bowl

Waiter
Brings New

Bowl

Analogy
• This is an example of something called a race condition

• If a waiter sees you have an empty bowl he will go and get you a new
one

• If two waiters both see the empty bowl then you wind up with two
bowls of chips

• If the first waiter gets back before the second waiter sees the empty
bowl then you only get one bowl

• Hence race condition. The result depends on how fast your waiter
is

• If the first waiter to see you have an empty bowl takes it away then
everything will work (no bowl isn’t an empty bowl)

Computer Analogy
• Exactly the same happens with computers

• If two threads are waiting for a signal then things can happen twice if
the first one doesn’t signal that it has handled it before the second
one sees the signal

• How you actually do the signalling involves things called atomic
(Greek - Indivisible) operations

• We’ll see these briefly later

• There are other race conditions e.g. two threads setting a variable to
a given value - the value will depend on which processor happens to
get there last

• They are always a bad thing

Computers

Computer Terms
• Probably a lot of this is familiar but it is important

that you understand some important terms before
we start

• Core - the smallest unit capable of independent
general purpose computation. You can get 128
cores in a single chip nowadays

• CPU (or chip) - Central Processing Unit. Physical
computer chip that will (nowadays) usually contain
multiple cores

Computer Terms

• Socket - Used to refer to the number of physical
chips in a computer (“a 2 socket workstation”)

• Node - A single complete computer but usually
one that is part of a cluster

• Cluster - A collection of computers connected
together for parallel processing

Computer Terms

• RAM - Random Access Memory. The part of the
computer that stores the data that you are working
with

• Hard Drive/Disk - Long term stable storage
medium that persists data after the computer is
switched off.

Computer Terms
• Process - Technically the name for a running

program. Processes do not interact directly with
each other (normally, there are mechanisms to do
it) and will generally run on separate cores to each
other if possible

• Thread - A part of a process created to run
independently. Threads are connected to a single
process and a given process can have many
threads.

CPUs
• Mostly we’re going to be talking about cores here

because they are what actually does the parallel
processing

• The idea is to move from using one core to
many cores

• Sometimes very many

• CPU behaviour in a computer doing many things
is very like that buffet example

4 Core CPU
System Scheduler

Core Core Core Core

Task
Task

Task

Task Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

A possible, heavily simplified schedule

CPUs
• We mentioned that in the buffet people have to wait if

they both want to get the same food

• Computers don’t quite work like this (analogy failure)

• If they did then as soon as you had one program
running per processor in your computer you would
have to wait for one of them to finish before you
could do anything else

• Timeslicing - suspend one program to allow another
to run

CPU Multitasking
System Scheduler

Core Core Core Core

Task
Task

Task

Task Task

Task 1

Task 2

Task 1

Task 2

Task 1

Task 2

Task 1

Task

Task

Task

A possible, heavily simplified schedule with one more task than available CPUs

CPUs
• Time slicing is brilliant for problems like web servers.

• The thread that is serving a website to any one person is
mostly not doing much (waiting for the person to load
new data)

• So having multiple threads being interleaved works quite
well even when you have more threads than you do cores

• Works OK for interactive use as well because humans are
much slower than computers

• This isn’t generally true for academic codes where all
threads are working flat out at all times

Memory
• The other really core element of a computer is

memory

• Memory has a speed, and faster is better (broadly)
but mostly you take what you are given in the
parallel programming world

• From a parallelism perspective there are two classes

• Shared memory

• Distributed memory

Memory
• Shared memory

• Multiple processors connected to a single memory system

• Easy for different processors to work on a single problem,
but have to make sure that you avoid things like race
conditions

• Distributed memory

• Each processor has its own memory and has to explicitly
communicate with other processors to work with them

• Harder to program but can work across multiple computers,
so this is what the largest HPC codes are programmed for

Shared Memory
CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

RAM

Distributed Memory

CPURAM

CPURAM

CPURAM

CPURAM

CPU RAM

CPU RAM

CPU RAM

CPU RAM

Fabric

GPU
• GPUs are often used for high speed computation

nowadays

• They are parallel processors, usually capable of
running thousands of computations in parallel

• We’re not going to talk about them here

• They are different to CPUs and are mostly
suitable for problems that can be split up
thousands of ways

Unconnected task
parallelism

Unconnected task parallelism

• Split up problem into separate tasks

• Explore parameter space

• Multiple Monte-Carlo realisations

• Work on many inputs

• Run each task on a separate processor of your
computer

• Or separate computers

Unconnected task parallelism

• Scales very well

• Only limit on scaling is number of tasks and number of
processors

• If you have one processor available per task then you can
get all of your tasks done in the same time as one task

• Slight wrinkle if each task is so quick that it takes as long
to start the task as it does for it to run

• Also can run into problems if you are doing enough work
with files - hard drives are slow compared to computers

GNU Parallel
• Very good official tutorial at https://www.gnu.org/software/

parallel/parallel_tutorial.html

• Idea is that you create a program that takes parameters
through the command line and then tell parallel how to
build command lines to run several copies at the same time

• Put together program name, parameters etc.

• Has a number of job slots (usually the number of processors
that you have)

• Runs tasks in sequence on each job slot until it runs out of
task

https://www.gnu.org/software/parallel/parallel_tutorial.html
https://www.gnu.org/software/parallel/parallel_tutorial.html
https://www.gnu.org/software/parallel/parallel_tutorial.html

GNU Parallel

• Very simple Parallel script

• “echo” is a command line utility that just prints
its arguments

#!/bin/bash

parallel echo ::: A B C D E F

A

B

C

D

E

F

MapReduce
• MapReduce is a method of processing large amounts of data in

parallel

• It consists of two core operations (there are more in a real
system), one runs independently on each processor, one runs
between processors

• Map - Convert raw data to a quantity that you want to process.
This happens completely independently on each processor

• Reduce - Operate on two mapped data items to produce a
new mapped data item containing the data from both original
data item (linear, commutative and associative combination)

MapReduce
• The system works because the reduction function

combines two items into another item of the same kind

• Two of these new item can then be combined as well

• So the system can map and reduce all of the data on a
single processor, take the reduced data from that
processor and combine it with reduced data from
other processors

• It can be complex to work out how to do this
reduction fast on real hardware but this is the idea

MapReduce
It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness

https://en.wikiquote.org/wiki/Best

MapReduce
It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness

https://en.wikiquote.org/wiki/Best

MapReduce
It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness

it = 1

was = 1

the = 1

best = 1

of = 1

times =1

it = 1

was = 1

the = 1

worst = 1

of = 1

times =1

it = 1

was = 1

the = 1

age = 1

of = 1

wisdom =1

it = 1

was = 1

the = 1

age = 1

of = 1

foolishness =1

https://en.wikiquote.org/wiki/Best

MapReduce
It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness

it = 1

was = 1

the = 1

best = 1

of = 1

times =1

it = 1

was = 1

the = 1

worst = 1

of = 1

times =1

it = 1

was = 1

the = 1

age = 1

of = 1

wisdom =1

it = 1

was = 1

the = 1

age = 1

of = 1

foolishness =1

it = 2

was = 2

the = 2

best = 1

worst = 1

of = 2

times =2

it = 2

was = 2

the = 2

age = 2

of = 2

wisdom =1

foolishness = 1

https://en.wikiquote.org/wiki/Best

MapReduce
It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness

it = 2

was = 2

the = 2

best = 1

worst = 1

of = 2

times =2

it = 2

was = 2

the = 2

age = 2

of = 2

wisdom =1

foolishness = 1

https://en.wikiquote.org/wiki/Best

MapReduce
It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness

it = 2

was = 2

the = 2

best = 1

worst = 1

of = 2

times = 2

it = 2

was = 2

the = 2

age = 2

of = 2

wisdom =1

foolishness = 1

it = 4

was = 4

the = 4

best = 1

worst = 1

of = 4

times = 2

age = 2

wisdom = 1

foolishness = 1

https://en.wikiquote.org/wiki/Best

Connected task
parallelism

Worker-Controller
• The idea is that you have one processor (the controller) that

dispatches packages of work to the other (worker)
processors

• Unlike with Parallel the controller can make choices about
which work package to hand out

• If a result indicates that some work packages are no
longer needed then it can choose not to hand them out
to workers

• Problem is that there isn’t any standard package to let you
set up this paradigm

Worker-Controller
• Have to have communication between the controller and

the worker

• Network

• OS parallel processing feature

• Files

• Can work using files easily enough but performance is poor

• Network communication and OS features are generally best
used through a library or framework

Worker-Controller
• Can implement the paradigm in pretty much any

parallel system

• We’ll describe the options later

• Some systems have built in support for it

• Some libraries are intended for this type of
operation

• One way of doing it is Futures or Promises

Futures
• The idea of a future is to say “I want you to run this

problem on this data” for multiple problems and/or
multiple pieces of data and let the system sort out how to
actually run them

• When you ask a future to give you the result of its
calculation it will wait until the result is available

• So if you make one future’s inputs depend on the results
of another future you can say to start both and the
second one will only start when the first has finished

• You can also manually check the results and conditionally
run other calculations if the result is “interesting”

Futures
• Futures are built into Python and C++ (although in

C++ you combine them with things called async
objects)

• They only run on a single machine

• The Dask library for Python has distributed futures
that can run on clusters

• There are libraries for the same idea in other
languages, but not one preeminent one

Tightly Coupled
Parallelism

Tightly Coupled
• The most “extreme” form of parallelism is tightly coupled

parallelism

• Taking one problem and splitting it up into parts so that
more than one processor can work on it

• Approaches based on memory type

• Shared memory — processors work on different bits of
the shared problem in memory

• Distributed memory - processors communicate by
exchanging information explicitly between computers

Scaling
• Both of the previous forms of parallelism are task based

• You are running a single problem on a single processor
even if you have to wait for one problem to finish before
starting another one

• With tightly coupled parallelism no part of the problem can
proceed until the bits that it depends on are at the same point

• This introduces the idea of scaling - if I double the number of
processors how much does the runtime drop

• 2x processors = 1/2 runtime is perfect scaling

Libraries and Packages
• Quite often there is a “best” solution to how to solve a

given problem in parallel

• Libraries have been written to solve these in parallel
already

• Look for a library to solve your existing problem

• If your problem can be written in vector/matrix form then
lots of libraries and lots of packages have been written to
solve your problem

• Use these before writing your own code!

OpenMP

OpenMP
• OpenMP allows for almost completely general parallel

programming

• But by far the most common use of OpenMP is to split
loops up so that different bits of the loop are handled by
different processors

• There’s an obvious limitation to this: only loops that have
independent iterations can be parallelised over

• If you have a loop to advance a quantity in time then you
can’t parallelise that since iteration 2 depends on
iteration 1, which depends on iteration 0 etc. etc.

OpenMP

• On this level OpenMP works by adding directives
to your code telling it to split a given loop up or
not

• Easy to retrofit into codes that do most of their
work in loops

MPI

MPI
• MPI is the Message Passing Interface

• You explicitly write code for both sides of a
message exchange

• Source says “I have this data to send”

• Destination says “I want to receive this data”

• System ties up source and destination and actually
sends the data

MPI
• You have to design your algorithm and your code to

explicitly use MPI

• It is not easy to retrofit MPI to an existing code, but it
isn’t that hard to program

• Allows your code to run on distributed memory
systems

• Can’t guarantee how many processors it will scale
to, but MPI will let you scale as far as your algorithm
will

