
Warwick RSE

“The Angry Penguin“, used under creative commons licence
from Swantje Hess and Jannis Pohlmann.

Code Changes

Not writing data

What to do?
• The best way of avoiding difficulty with writing files is not to

write them at all

• Often you can do your analysis as the code runs and only
output the result of the analysis and this will be smaller

• Or at least reduce the amount of data to be written - if you
want to sum over a direction, do this before writing the data!

• This is generally called “in-code data reduction”

• If you are using stock/community software, check the manual
to see if there are options to do it

• For your own code, maybe add this if possible

Reading and Writing
Data

What to do?
• Basically the best solution to all of these problems is

to avoid using many small files

• Instead store all of your data into far fewer files

• Classic worst case scenario from HPC

• File per processor per variable per timestep

• Coalesce the files into at least one file per timestep

• Now one file contains a lot of different data, how do
you cope with that?

File Formats

Structured Files
• If your output is always of the same form then you

can simply put in data chunk after data chunk and
read them back out knowing the form of the output

• This has very severe limitations, you have to know
exactly what data is in your file, in what order and
the lengths of each data chunk.

• Changes to output involve changes to readers and
you have to be careful to know what version of the
code wrote the output or you will read it wrong

• More generally, you need metadata

Wiktionary, used under creative commons

“meta-

	 1	 Transcending, encompassing

	 2	 Pertaining to a level above or beyond;
reflexive; about itself or about other things of
the same type. For example, metadata is data

that describes data, metalanguage is language
that describes language, etc. [From 17th

century]

	 3	 Having analogies with metaphysics.”

Block Metadata
• Generally work by splitting your data into self contained

blocks that fully describe themselves

• Typically this description involves

• Name of variable

• Type of data (Integer/Real, 32 bit or 64 bit, bytestream)

• Rank of data

• Size of array in each dimension

• Layout structure data

Layout Data

• Generally you want to be able to read only parts of
a file

• Part of the metadata is usually information on
where the actual data is stored

• Allows the reader to jump straight to the actual
data for a specific variable

• Different strategies

Metadata
Info about Var1

Info about Var2

Info about Var3

Var1

Var2

Var3

Info about Var1

Var1

Info about Var2

Var2

Info about Var3

Var3

Versioning

• It is unlikely that the first version of your file format
is going to work forever

• None of the popular standard file formats
managed this (or even close)

• One of the most important things is to have some
way of specifying the version of your output so
that you can tell exactly how to read the format

File header
• Lots of things go in the file header, but common

examples include

• “Magic sequence” - something at the start of the file
that lets you know it is one of your files

• Version information

• Endian-ness of your file

• Code information - version number, parameters etc.

• Date file was written at, description of the file, name
of person who generated etc.

Writing your own format
• In an ideal world people would be able to write

their own structured data files that are well suited
to the data their codes are handling

• This is a lot of work so it isn’t really terribly practical

• Usually use some kind of standard file format

• NetCDF

• ADIOS

• HDF5

Standard formats
• Standard formats always make compromises on suitability

for any particular purpose

• Also on performance, memory usage etc, but mostly
this isn’t terrible

• None of them are really perfect for all purposes, but HDF5
is probably the most flexible

• N.B. Other than NETCDF, these standard formats simplify
writing and retrieving data but they don’t tell you what to
do with the data when you have it

• i.e. You have to know that this named variable is the axis
to plot that named variable against

HDF5

HDF5
• HDF5 defines an hierarchy of groups and datasets that allows

you to store arbitrary data with any structure that you like

• There is metadata at every level, files, groups and datasets,
but this metadata is very general

• Can attach “attributes” to almost anything else in HDF

• In many senses HDF5 isn’t really a file format - you can’t just
grab an HDF5 file from a code that you don’t know and start
plotting the data

• But, it is a good way of storing data and retrieving it later

HDF5

FILE

Group

Group

Dataset

Dataset

Dataset

Group

Group

Dataset

HDF5

FILE

Group

Group

Dataset

Dataset

Dataset

Group

Group

Dataset

Attribute

Attribute

AttributeAttribute

Simple HDF5 Creation
import h5py

import numpy as np

Create the HDF5 file

file = h5py.File('my_file.h5', 'w')

Create a group called "test group"

group = file.create_group('test group')

Create a dataset "ds1" with a numpy array of 100x100

ds1_data = np.random.rand(100, 100)

ds1 = group.create_dataset('ds1', data=ds1_data)

Create a dataset "ds2" with a numpy array of 25x75

ds2_data = np.random.rand(25, 75)

ds2 = group.create_dataset('ds2', data=ds2_data)

Close the HDF5 file

file.close()

HDF5
• There is a very similar interface in C++ and Java

• There are also C, Fortran90 and Fortran2003
interfaces that use a slightly different model

• They use unique ID handles for things like
groups rather than an object oriented approach
but the general idea is the same

• There are unofficial bindings for almost everything
else - Matlab, Rust, IDL, Perl etc. etc.

MPI-IO

MPI-IO
• When writing files from a single program (even one that uses multiple

threads to use multiple processors on a machine) it is “easy” to write a
single file with all the data

• If you are writing a distributed parallel code using MPI then you have
an extra problem - the data isn’t all together in any one place to write
it into a single file

• MPI-IO is part of the MPI library standard that works much like writing
a file normally but allows you to specify a “file view” that says which bit
of the data each rank holds

• HDF5 can use MPI-IO behind the scenes. Performance is acceptable
rather than impressive, but it still works pretty well. ADIOS is really
designed for parallel IO and works well at very large scale

Databases

Databases
• If your problem is as much about accessing the data of

interest as it is about storing the actual data then you
might want to look at databases

• Databases fall into three categories

• RDBMS - Classical database with data organised into
tables, with each table consisting of columns of what
data to be stored and rows or records of what data is
actually being stored. Often accessed through a
language called SQL. e.g. MySQL/MariaDB,
PostGRES, InnoDB, SQLite

Databases
• Document databases - They store data as individual documents that

are not all alike. You can create indices that allow you to search on
data that is shared. e.g. MongoDB

• Graph databases - Databases that organise relationships between
data as graphs (in a graph theory sense). Quite specialised, but very
useful for tasks where knowing one piece of data tells you what
other data you might want e.g. Neo4j

• The general idea of these is that the data does not map well onto
the idea of rows and columns of data, or that you don’t need the
same guarantees of consistency that RDBMS systems give you

• These two are sometimes called NOSQL databases, even though
you can sometimes use SQL to interact with them!

SQLite and SQL
import sqlite3

Connect to the database (creates a new database if it doesn't exist)

conn = sqlite3.connect('mydatabase.db')

Create a cursor object to execute SQL commands

cursor = conn.cursor()

Create the table

cursor.execute('''CREATE TABLE IF NOT EXISTS mytable

 (ID INTEGER PRIMARY KEY AUTOINCREMENT,

 Name TEXT,

 Count INTEGER)''')

Commit the changes

conn.commit()

#Add three records to the table

cursor.execute("INSERT INTO mytable (Name, Count) VALUES ('A', 1)")

cursor.execute("INSERT INTO mytable (Name, Count) VALUES ('B', 2)")

cursor.execute("INSERT INTO mytable (Name, Count) VALUES ('C', 3)")

Commit the changes and close the connection

conn.commit()

conn.close()

Databases
• Databases can scale from tiny (with something like SQLite)

to massive and distributed (MySQL powers companies at
Google like scales) and are some of the most optimised
pieces of software in the world

• While they can store chunks of binary data (see BLOB
(Binary Large OBject) fields), they are mainly intended for
data where you want to search or otherwise query it in
more complex ways

• There are database systems built on top of HDF5 (see
Pytables and HDFql), that are intended to give “database-
like” behaviour while remaining able to store large
datasets

The End

