
Warwick RSE

“The Angry Penguin“, used under creative commons licence
from Swantje Hess and Jannis Pohlmann.

Workflow Changes

“Everything is a file”

Unix Philosophy
• One of the key ideas of *nix type operating systems (including Linux)

is “everything is a file”

• If you open the “file” /proc/cpuinfo then you will get information
about the CPUs installed in that computer

• This isn’t a file that is automatically created and you are just
reading - the information is generated when you access it. Look at
the CPU frequency - you may see it changing every time you look

• Even though it looks like a file and you can read it like a file it is
completely virtual, in fact everything in /proc is not real files

• https://en.wikipedia.org/wiki/Everything_is_a_file

• Several of the things that we are going to talk about here rely on this!

https://en.wikipedia.org/wiki/Everything_is_a_file

/proc/cpuinfo
processor : 127
vendor_id : AuthenticAMD
cpu family : 23
model : 49
model name : AMD EPYC 7742 64-Core Processor
stepping : 0
microcode : 0x830107b
cpu MHz : 3227.776
cache size : 512 KB
physical id : 1
siblings : 64
core id : 63
cpu cores : 64
apicid : 127
initial apicid : 127
fpu : yes
fpu_exception : yes
cpuid level : 16
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx
mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3
fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a
misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3
hw_pstate sme ssbd mba sev ibrs ibpb stibp vmmcall sev_es fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb
sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd
amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic
v_vmsave_vmload vgif umip rdpid overflow_recov succor smca
bugs : sysret_ss_attrs spectre_v1 spectre_v2 spec_store_bypass
bogomips : 4472.83
TLB size : 3072 4K pages
clflush size : 64
cache_alignment : 64
address sizes : 43 bits physical, 48 bits virtual
power management: ts ttp tm hwpstate cpb eff_freq_ro [13] [14]

Using non-shared
filesystems

/tmp
• One way to avoid stressing the shared filesystem is to

not use it until you have to

• On each node of Sulis there is a /tmp directory that is
local to the node that you are running on

• Writing to it is just like writing to a local disk on any
computer

• Stuff in /tmp is only accessible while your job is running

• You can generate your files there and then combine
them with something like tar or zip and then copy
them to the shared filesystem as a single file

/tmp
• There is about 600GB of space on /tmp on each

node of Sulis

• When a job starts, /tmp is cleaned up you must
get data off before your job finishes

• This may mean that you have to be careful with
requesting walltime

• It is also polite to delete your files from /tmp rather
than relying on the automatic systems

/dev/shm
• If you need really fast access, low latency access then you can use /dev/shm

• This is one of those virtual filesystems that I mentioned, but it represents a
filesystem in the computer’s memory (note, memory as opposed to
storage)

• It isn’t quite as fast as actually accessing data in memory like normal, but it
is much faster than any disk

• You can read and write data to it like you could normal files, and it is an
easy way of sharing data between programs quickly

• You have up to 256GB on Sulis nodes (out of 512GB of total memory), but
be careful that you don’t run out of memory for your actual program - it is
the same memory that your program is using to run!

• You have to copy data out of /dev/shm before your job finishes and it is
cleaned up before your job starts

Example Script
#!/bin/bash
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=1
#SBATCH --mem-per-cpu=3850
#SBATCH --time=08:00:00
#SBATCH --account=suxxx-somebudget

module purge
module load GCC/10.2.0

#Make a temporary directory for the output
mkdir /tmp/$SLURM_JOB_ID
#Note this assumes that your program takes an output directory as an
argument
srun ./a.out /tmp/$SLURM_JOB_ID
#Compress the output using tar-gzip
#Compress directly to the shared filesystem
tar cvzf $SLURM_JOB_ID.tgz /tmp/$SLURM_JOB_ID
rm -rf /tmp/$SLURM_JOB_ID

• So long as your job finishes in under 8 hours this will tar-gzip
your data and copy it to wherever you launched the script from

slurm sbcast
• Sometimes what you want is not to write data but to

read it

• You can read from the shared filesystem, but same
problem

• SLURM, the scheduler on SULIS has a built in tool to
do it sbcast

• Simply put sbcast {src} {dest} and the file will be
copied out to the nodes automatically and efficiently

• Obviously, it has to go to a local filesystem like /tmp or
/dev/shm or there’s no point!

Example Script
#!/bin/bash
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=1
#SBATCH --mem-per-cpu=3850
#SBATCH --time=08:00:00
#SBATCH --account=su950

mkdir /tmp/$SLURM_JOB_ID
sbcast ~/FortArray.h5 /tmp/$SLURM_JOB_ID/FortArray.h5
ls /tmp/$SLURM_JOB_ID

• This is a trivial example

• Copy a file and then list the directory to show that it is
there

• You have to specify the destination filename for sbcast

Shared files

Shared Directories

• There are some datasets that are needed by
multiple researchers

• These datasets can be large and contain many
files

• It is better to have just one copy of these datasets
that all researchers using them access

• Ask the support team about shared file space

Using virtual
filesystems

Using HDF5 as a filesystem
• You might have spotted that the diagram of an

HDF5 file looks rather like directories and files in a
filesystem

• This is because this kind of hierarchical structure is
a natural way of structuring data

• It does mean that we can use an HDF5 file as a file
system

• Not particularly good as a read/write filesystem,
but works very well for just reading

FUSE
• Normally filesystems are mounted and unmounted by

the system administrator

• FUSE (filesystem in userspace) is designed to allow
normal users to mount certain types of filesystem

• We have written a FUSE mount for HDF5 that allows
you to view the contents of HDF5 files as if the groups
are files and datasets are directories

• Deployed as a module on Sulis

• This is a local thing that we have written, although the
source code is available

toHDF5
[phsgbd@node010(sulis) epoch]$ ls epoch3d
Data Makefile Start.pro example_decks src tests unpack_source_from_restart

• This is a directory for a code that we have worked
on called EPOCH

• It is just a directory, nothing special about it

• We want to pack it up so that we can access the
data in it from an HDF5 file

toHDF5
[phsgbd@node010(sulis) epoch]$ toHDF5 epoch3d/

toHDF5 version 0.1.0
====================

Path = /gpfs/home/p/phsgbd/epoch/epoch3d
Creating new file epoch3d.h5
--Creating group epoch3d
----Creating group tests
------Creating group custom_stencils
---------Creating dataset makefile
--------Creating group optimized_xaxis_soft
-----------Creating dataset makefile
-----------Creating dataset input.deck
…

• We use the toHDF5 program from our virtual
filesystem module to pack the data into an HDF5
file. It tells you what it is doing as it runs

toHDF5
[phsgbd@node010(sulis) epoch]$ h5ls -r epoch3d.h5
/ Group
/epoch3d Group
/epoch3d/.gitignore Dataset {203}
/epoch3d/Data Group
/epoch3d/Data/.gitignore Dataset {42}
/epoch3d/Makefile Dataset {19650}
/epoch3d/Start.pro Dataset {95}
/epoch3d/example_decks Group
/epoch3d/example_decks/bremsstrahlung.deck Dataset {4966}
/epoch3d/example_decks/cone.deck Dataset {2698}
/epoch3d/example_decks/filter.deck Dataset {1837}
/epoch3d/example_decks/injectors.deck Dataset {2028}
/epoch3d/example_decks/power_law.deck Dataset {1646}
/epoch3d/example_decks/qed_rese.deck Dataset {6455}
/epoch3d/example_decks/window.deck Dataset {1576}
/epoch3d/src Group
/epoch3d/src/boundary.F90 Dataset {93686}
/epoch3d/src/constants.F90 Dataset {27247}
…

• h5ls is a part of the HDF5 library - it lets you see
what is in an HDF5 file

toHDF5
[phsgbd@node010(sulis) epoch]$ mkdir /tmp/mnt
[phsgbd@node010(sulis) epoch]$ h5vfs epoch3d.h5 /tmp/mnt/
[phsgbd@node010(sulis) epoch]$ ls /tmp/mnt/
epoch3d
[phsgbd@node010(sulis) epoch]$ ls /tmp/mnt/epoch3d/
Data Makefile Start.pro example_decks src tests unpack_source_from_restart
[phsgbd@node010(sulis) epoch]$ ls /tmp/mnt/epoch3d/example_decks/
bremsstrahlung.deck cone.deck filter.deck injectors.deck power_law.deck
qed_rese.deck window.deck

• Now I use the h5vfs program to mount the HDF5 file as if it was a
directory.

• I specify the HDF5 file to mount and the mount point (i.e. the
directory that will have the new filesystem mounted into it). THIS
MUST BE ON /tmp!

• Now I can use normal tools like “ls” to see the groups in the HDF5 file

toHDF5
[phsgbd@node010(sulis) epoch]$ cat /tmp/mnt/epoch3d/example_decks/cone.deck
begin:control
 nx = 250
 ny = 250
 nz = 250
 nparticles = nx * ny * nz * 1.123

 # Final time of simulation
 t_end = 50 * femto

 # Size of domain
 x_min = -10 * micron
 x_max = -x_min
 y_min = x_min
 y_max = x_max
 z_min = x_min
 z_max = x_max
end:control
…

• I can use any normal tools to interact with files, browse the
directories as normal etc. Only limitation is that it is read only

toHDF5
[phsgbd@node010(sulis) epoch]$ fusermount -u /tmp/mnt/
[phsgbd@node010(sulis) epoch]$ ls /tmp/mnt/
[phsgbd@node010(sulis) epoch]$

• When I am done, I can unmount the filesystem
using

• fusermount -u {mountpoint}

• Remember that even though you have mounted
the file on /tmp, your actual data is still wherever
you put the HDF5 file!

Using HDF5 as a filesystem
• This means that you can use HDF5 files without

having to modify your code at all for input

• This is the quickest way of converting certain types
of problem such as machine learning from
multiple files to avoid having to use large numbers
of files

• For read only access, you can combine this with a
shared filespace - one HDF5 file mounted by
different researchers

The End

