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ABSTRACT: The ideal of living polymerization has defined research in
polymer chemistry over the past 50 years. In this Perspective, we present
the case that this concept has enabled the treatment of polymers as
organic molecules, rather than impure mixtures of species, and allowed
the translation of methods developed by synthetic organic chemists into
ever more accessible living and/or controlled polymerization methods.
The concurrent development of rapid analytical methods for screening
new polymerization methods for living characteristics, chiefly size
exclusion chromatography, has greatly aided in the expansion of living
polymerization methods.

■ INTRODUCTION

Dear Colleague, abandon your idea of large molecules,
organic molecules with molecular weights exceeding 5000 do
not exist. Purif y your products such as rubber, they will
crystallize and turn out to be low molecular weight
compounds.Advice from H. Wieland to H. Staudinger,
early 1920s1

Historically, polymer chemistry has been a sloppy affair. Even
after the eventual acceptance of Staudinger’s macromolecular
hypothesis and the development of polymer chemistry as a
respectable field of study,2 one could still hear otherwise
reasonable organic chemists describing the material left in their
still pots as “polymer” or explaining away decomposition of a
sensitive product as resulting from “polymerization”. The roots
of this acceptance lie in the recognition byWallace Carothers and
others in the early 20th century that large molecules could be
built up from smaller molecules through the repetition of simple
organic reactions, which laid the foundation for the growth of
polymer chemistry as a molecular science.3 In this Perspective,
we present the case that it was the subsequent development of
the idea of living polymerization and, after that, the development
of accessible living (or close-to-living) polymerization methods,
supplemented by the development of size exclusion chromatog-
raphy (SEC) as a rapid screening method for “livingness”, which
have driven the rapid growth of polymer chemistry and its
expansion into allied research areas. In particular, living
polymerization has the promise of enabling macromolecules to
be designed and prepared with precision approaching that of
natural product synthesis.
The concept of living polymerization is central to current

synthetic polymer chemistry. There is an appealing simplicity to
the idea: monomer and initiator in an environment devoid of
impurities that would interfere with polymerization, under
conditions where the enthalpic gain of converting double bonds
to single bonds (or the relief of ring strain when opening cyclic

monomers) outweighs the entropic penalty of stringing many
monomer molecules together into fewer polymer chains, with
each chain growing at the same average rate until all monomer
has reacted to result in polymers with narrow molecular weight
distributions (in most cases) and end groups determined by
whichever initiating and terminating species are used (Figure
1A). While the general concept of a living polymerization is
simpleall polymer chains in a giving polymerization grow at
the same rate with no irreversible transfer or termination
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Figure 1. Illustration of living and living-like polymerization schemes.
(A) Living polymerization with no termination or transfer. The
propagating active site (∗ = anion, cation, radical, catalyst) remains
active after monomer is depleted. (B) Reversible deactivation
polymerization in which equilibrium between dormant and active
chain ends can lead to polymerization with living characteristics. Upon
completion of polymerization, themajority of chains are capped with the
reversible deactivating moiety (X). (C) Reversible deactivation
polymerization in which chain transfer with rapid exchange between
chain ends can lead to polymerization with living characteristics. Upon
completion of polymerization, the majority of polymer chains are
capped with the transfer agent (X).
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reactionsthere are subtleties that often necessitate some
additional level of explanation for specific cases. In living
polymerizations where the rate of initiation (ki) is greater than
the rate of propagation (kp) and the addition of monomer to
polymer chain ends occurs irreversibly, the breadth of the
molecular weight distribution becomes extremely narrow
(dispersity, Đ, approaches 1); however, as Gold recognized in
the late 1950s, even relatively high kp/ki ratios can lead to
Poisson-type distributions with dispersity values (Đ < 1.4) well
below those found in conventional polymerizations.4

More recently, a number of essentially living polymerization
methodsmethods in which some degree of termination or
transfer occurs despite propagation being the predominant fate
of monomer moleculesrelying upon either reversible termi-
nation of active chain ends (Figure 1B) or rapid degenerate
exchange between dormant and active chain ends (Figure 1C)
have been developed. Such polymerizations, which retain the
important characteristics of living polymerizations, chiefly low Đ
and efficient chain-end functionalization, but are blemished by
some occurrence of termination or transfer reactions, such as the
reversible deactivation radical polymerization (RDRP) methods,
are often described as “living” or controlled (Figure 1B,C).5,6

Though Michael Szwarc published the landmark work on
living anionic polymerization in Nature in 1956,7 the general
description of polymer chains as “alive” or “dead”, in reference to
individual chains in radical polymerization as either radical
species capable of further growth or chains which have
undergone termination reactions, predates this by a number of
years. Staudinger described polymerization as a chain reaction in
1935 (“Über die Polymerization als Kettenreaktion”),8 but while
typical descriptions of chain reactions at the time used death-
related terms to describe the termination of chain processes (in
one notable example, Mark uses vernichten “destroy” andAbbruch
“cancellation” in describing termination events9), it did not seem
usual to describe a chain reaction as living. As early as 1939,
Melville described polymer chains as “alive” and “dead” in a
discussion of chain growth kinetics.10 In 1940, Flory essentially
described living polymerization, without using the term living, in
discussing the narrow molecular weight distributions expected to
result for polymerizations (in this case, ethylene oxide) in which
the rate of initiation is comparable to the rate of propagation and
the total number of propagating chains does not change over the
course of the polymerization.11 The realization of living
polymerizations took somewhat longer. The anionic polymer-
ization of butadiene was reported by Ziegler in 1936,12 and the
polymerization of ethylene oxide was reported by Perry and
Hibbert in 1940.13 In 1949, Waley and Watson reported the
preparation of synthetic polypeptides with “extremely sharp”
molecular weight distributions through the careful polymer-
ization of sarcosine N-carboxyanhydride.14 While these early
efforts seem likely to have met the criteria for living polymer-
izations, it was still a few more years before Szwarc coined the
name that stuck. The general tenets of living polymerization were
laid out well before they were realized.11 Does this render
Szwarc’s achievements a case of efficient engineering to prove a
long-known hypothesis, rather than a groundbreaking discovery?
Perhaps, but it is inarguable that Szwarc’s fundamental insights
into the chemistry of electron transfer and awareness of how
these and related synthetic processes could be translated into
polymerization processes were critical contributions. For his
initial discovery and later efforts, Szwarc is rightly regarded as the
progenitor of living polymerization.

In 1962, in a much less celebrated contribution to the field
(though one pointed out by Matyjaszewski and Müller in an
editorial introduction to an informative series of reviews onmany
aspects of living polymerization in 200615), Szwarc and co-
workers also described an early example of reversible
deactivation of living polymer chains in the anionic polymer-
ization of styrene in the presence of anthracene.16 While in this
case, because of the robust nature of the polymerization system,
reversible deactivation is not necessary to guarantee living-like
behavior, the general concept has since been used in a range of
polymerization systems, especially radical polymerizations but
also cationic polymerizations,17 to minimize the occurrence of
side reactions resulting from either too-reactive end groups or
bimolecular termination reactions between active chain ends.
The choice of living as a modifier for a specific class of

polymerization has naturally led to some misconceptions about
these polymerization processes, but livingness has nonetheless
become a defining concept in polymer synthesis since Szwarc’s
work. The general concept has been extended from its origins in
anionic polymerization, with accommodations to specific
requirements of given mechanisms, to encompass polymer-
ization methods including coordination/organometallic poly-
merization, cationic polymerization, and radical polymerization
as well as methods that conventionally proceed by step-growth
polymerization methods. A number of excellent review articles
and books discussing important aspects of living polymerization
have appeared over the past 50−60 years.18−26 It is not the intent
of this Perspective to attempt another comprehensive review of
living polymerization, but rather to celebrate the concept with
three main points: (1) the rise of living polymerization as a general
method for the preparation of well-defined polymers allowed
polymers to be regarded as macromolecules, rather than ill-
defined mixtures; (2) the discovery of new living polymerization
methods accelerated after the development of size exclusion
chromatography (SEC) as a rapid analytical technique to replace
tedious fractionation methods; and (3) the development of
accessible living methods, particularly ring-opening polymer-
ization of lactones and cycloalkenes with organic, inorganic, or
organometallic catalysts and reversible-deactivation radical
polymerization (RDRP) methods, which are often not living
by the strictest definition, for preparation of classes of polymers
previously only accessible through technically demanding living
polymerization methods, has revolutionized polymer science.

■ A BRIEF AND SELECTIVE HISTORY OF THE
DEVELOPMENT OF LIVING POLYMERIZATION

From its roots in anionic polymerization, living (and/or “living”)
polymerization strategies have been developed for most other
major polymerization methods, including organometallic/
coordination polymerization, cationic polymerization, and
radical polymerization (Figure 2).
In 1833, Berzelius introduced the term polymer for compounds

with the same empirical formula but different molecular
weightsa much broader definition than is used currently, but
it has clearly proven a useful term.27 From the 1830s through the
1920s, early polymerization studies appear to have either been
driven by the desire to produce materials with useful properties
without much concern for chemistry or, more commonly, carried
out by accident and only later recognized for what they were.
Notably, Regnault noted the formation of white powder (“une
matier̀e blanche non crystalline”) from exposure of vinylidene
chloride to light,28 and Simon found an oil distilled from Storax
resin (styrene) thickened into a “durchsichtigen gallertartigen
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Masse” (transparent gelatinous mass) after sitting for several
months.29 Presumably other polymers were made much earlier,
but there is little information in the indexed literature.
It was in 1917 that Staudinger first presented his Macro-

molecular Hypothesis, which marked the beginning of the modern
era of polymer chemistry (interestingly, Staudinger also
published a number of letters and essays arguing that Germany
should endWorld War I30) and was supported with further work
in the 1920s.31,32 In the late 1920s, Ziegler began to carry out
early studies on the anionic polymerization.33 At the beginning of
the 1930s, Carothers’ comprehensive review with the one-word
title, “Polymerization”, appeared in Chemical Reviews.3 By the
mid-1930s, Staudinger clearly described certain polymerization
processes as occurring through chain reactions, with activation,
growth, and termination steps.8 Ziegler, Medvedev, and others
continued to investigate anionic polymerization.12,34 Kharasch
and co-workers began investigating the addition of radicals to

unsaturated hydrocarbons, which laid the foundation for the
much later development of ATRP and other RDRP methods.35

As described above, Flory postulated in 1940 that polymers
with narrow molecular weight distributions should result from
polymerizations in which chain growth proceeds at a rate
comparable to initiation and no termination or transfer reactions
occur.11 Synthetic support for this idea was offered later that year
by Perry and Hibbert.13 By the end of the decade, Waley and
Watson reported the aforementioned polymerizations of NCA
monomers that resulted in narrow molecular weight distribu-
tions.14

The 1950s are highlighted both by Szwarc’s work on living
anionic polymerization7,36−39 and by the development of olefin
polymerization catalysts by Ziegler,40,41 Natta,42 Hogan, and
Banks at Phillips Petroleum,43 Breslow and Newburg at
Hercules,44 and Fellow and Field at Standard Oil of Indiana.45

The first patent on what would come to be known as ring-
opening metathesis polymerization (ROMP) was issued to
DuPont in 1955.46 A heroic early attempt at carrying out a living-
like radical polymerization was reported by Zimm and co-
workers in 1957:47 relying on the Smith−Ewart model of
emulsion polymerization in which there should never be more
than one growing polymer chain per micelle,48 controlled
periods of exposure of the photoinitiated polymerization to light
with long periods in the dark resulted in the preparation of
“monodisperse” polystyrene. Shell began to market polyisoprene
prepared by anionic polymerization.49,50

Momentous developments in polymer chemistry continued
through the 1960s. The development of ill-defined ROMP
catalyst systems continued in a number of research groups,
notably at DuPont51 and in Natta’s group,52,53 and Calderon and
co-workers at Goodyear carried out fundamental work into
understanding the metathesis mechanism and applications.54,55

Szwarc introduced the concept of reversible deactivation of a
living chain end and demonstrated that rapid exchange between
active and dormant chain ends could still result in a living
polymerization.16 This general concept would be critical in the
later development of living cationic polymerization and RDRP.15

Figure 2. A brief and selective timeline of the development of living
polymerization.

Figure 3. Masthead from the first issue of Macromolecules, January 1968. Reproduced with permission from ref 61.
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Lenz and co-workers at Dow reported that condensation
polymerizations could exhibit chainlike character under certain
conditionsa first step in the later development of condensation
polymerizations with living character. Dreyfuss and Dreyfuss
discovered conditions under which cyclic ethers could be
polymerized in a living fashion,56,57 as did Saegusa’s group.58

Shell began production of polystyrene-block-polyisoprene-block-
polystyrene (Kraton D) and polystyrene-block-polybutadiene-
block-polystyrene block copolymers.59 Toward the end of the
decade, Macromolecules was founded (1968; Figure 3), and
Fetters and Morton described how careful design of living
anionic polymerization chemistry could be used in the
preparation of thermoplastic elastomers.60

The 1960s also brought about what was arguably the most
important enabling invention in the further development of
living polymerization methods, in the form of the first
commercial size exclusion chromatograph (SEC), which was
brought to market by Waters in 1963.62 As we will discuss later,
the ability to rapidly screen new polymerization methods by
narrowness of molecular weight distribution as a proxy for
livingness, which was also facilitated by advances in computational
power, made future developments much more rapid than they
otherwise would have been.
Living polymerization methods continued to expand beyond

anionic polymerization through the 1970s to cationic and
Ziegler−Natta polymerization. The living cationic ring-opening
polymerization of 2-methyl-2-oxazoline was reported by Saegusa
and co-workers in Macromolecules in 1972.63 In the mid-70s,
Pepper came to the sad conclusion about living cationic
polymerization of alkenes: “it seems to me unlikely that any
cationic polymerization will display living characteristics in their
full perfection.”64 However, by the end of the decade, Kennedy
reported the preparation of styrene/isobutylene block copoly-
mers65 and Higashimura and Sawamoto described conditions for
the preparation of methoxystyrene/vinyl ether block copoly-
mers66,67 by cationic polymerization. Great progress was made in
understanding the living ring-opening polymerization of lactones
by the groups of Teyssie,68 Penczek,69 and Boileau.70 Doi and co-
workers found that low-temperature polymerization of propene
with a soluble vanadium catalyst system could proceed without
termination or transfer events, in contrast with previous Ziegler−
Natta catalyst systems.71,72 While the development of living
ROMP would have to wait until the 1980s, the groundwork was
laid with the design of discrete metallocarbene initiators.73,74

Another notable attempt at the development of a living radical
polymerizationmethod was carried out by Horie and co-workers,
in which oxidized polypropylene was used as a heterogeneous
radical initiator for emulsion polymerization before it was
removed by filtration to generate long-lived radical species within
growing polymer particles that could be grown into block
copolymers, though with poor control over molecular
weight.75,76

The 1980s saw continued expansion of living cationic
polymerization and the establishment of the principles that
would lead to the development of controlled radical polymer-
ization in the 1990s. Sawamoto and Higashimura confirmed the
living characteristics of the cationic polymerization of vinyl ethers
and continued to optimize polymerization conditions,77−80 as
did Kennedy, Faust, and co-workers with isobutylene.81−83

Owen Webster and co-workers at DuPont developed group
transfer polymerization (GTP) as a method for the living
polymerization of methacrylates and, in doing so, provided a
clear example for how synthetic organic chemistry could

significantly influence the design of new living polymerization
methods, as will be discussed below.84,85 Conditions for carrying
out the living ROMP of norbornene with titanacyclobutane
initiators were disclosed by Gilliom and Grubbs.86 Subsequently,
Schrock and co-workers reported a similar accomplishment with
a tantalum catalyst,87 as did Schrock, Grubbs, and co-workers
with a tungsten catalyst.88 Where prior efforts at achieving living
radical polymerization relied on minimizing termination in
emulsion polymerization systems,47,75,76 efforts in the 1980s
used reversible deactivation strategies, akin to the anthracene-
mediated anionic polymerization described by Szwarc in 1962.16

Enikolopyan and co-workers discovered that cobalt−porphyrin
complexes were very efficient chain transfer agents, which would
later be exploited to control the radical polymerization of
methacrylates and eventually supplant GTP as a practical method
for the synthesis of methacrylate polymers.89 Otsu described the
use of thiuram disulfide and related disulfides as iniferters
(initiator−transfer agent−terminator) to control the polymer-
ization of styrene and methacrylates, which would set the stage
for the later development of reversible addition−fragmentation
chain transfer (RAFT) polymerization.90,91 Solomon, Rizzardo,
Moad, and co-workers at CSIRO carried out fundamental work
into mechanisms of initiation for radical polymerization with
nitroxides as chain-trapping agents,92,93 which led directly to the
development of nitroxide-mediated radical polymerization.94 In
1986, Fischer introduced the concept that has become known as
the persistent radical ef fect,95 which informed the development of
later RDRP methods.96,97

Research into what was variously termed “controlled radical
polymerization”, “living radical polymerization”, or just “living
radical polymerization” (IUPAC has recommended the term
“reversible deactivation radical polymerization” (RDRP))5 took
off in the 1990s. While Druliner’s early efforts to use arylazaoxyl
radicals as reversible chain terminating agents were capable of
producing block copolymers with broad molecular weight
distributions,98 further investigation of TEMPO and related
nitroxides as agents to control radical polymerization by groups
at Xerox (Georges and co-workers)99 and IBM (Hawker and co-
workers)100,101 led to the development of nitroxide-mediated
radical polymerization (NMP) as the first widely accessible
RDRP method for styrene derivatives (and later, acrylate and
diene monomers). Wayland and co-workers extended the use of
cobalt−porphyrin complexes to enable the living polymerization
of acrylates.102 In 1995, two fundamental papers describing the
metal-mediated radical polymerization process that would come
to be known widely as atom transfer radical polymerization
(ATRP), one by Sawamoto and co-workers103 and the other
from Matyjaszewski’s group,104 appeared. Given the broad
applicability of ATRP to acrylate, methacrylate, and styrene
derivatives, it was quickly adopted across disciplines.17,105 Within
a short period of time, a number of other research groups added
to the range of initiators and catalysts that were effective with
ATRP.106,107 In the waning years of the century, the third of the
three major controlled radical polymerization methods, rever-
sible addition−fragmentation chain transfer (RAFT) polymer-
ization, was described by Moad, Rizzardo, Thang, and co-
workers.108 The versatility of RAFT polymerization and relative
ease with which it can be conducted overcame early aversions to
the use of thiol derivatives as chain transfer agents and have led to
its widespread adoption.109Macromolecules played in a key role in
publishing much of the early work in RDRP.
Significant progress toward living coordination polymerization

of ethylene and α-olefins was also achieved in the 1990s.
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Brookhart and co-workers reported the living polymerization of
ethylene at room temperature with a cobalt catalyst system.110

McConville,111 Brookhart,112 and Schrock113 all described
systems that enabled the living polymerization of propylene
and higher olefins.
After the turn of the century, the use of RDRP methods

continued to grow. Contributions to living polymerization were
made in several key areas. Sita and co-workers described the
stereospecific living polymerization of 1-hexene.114 Earlier efforts
to understand how what are traditionally step-growth polymer-
izations can be induced to proceed by chain growth mechanisms
by Lenz,115 Heitz,116 Percec,117 Robello,118 Yokozawa,119,120 and
others,121 bore fruit in the development of methods for the
preparation of conjugated polymers (which, despite these
developments, are still largely prepared via step-growth polymer-
ization through aryl-aryl coupling reactions, particularly Stille,122

Suzuki-Miyaura,123 and direct arylation124 coupling reactions) in
a living fashion by Yokozawa121,125,126 and McCullough.127,128

The continuing exploration of organocatalyst systems, including
thiourea derivatives, amidines, and guanidines, for the living ring-
opening polymerization of lactones by Waymouth and Hedrick
has provided a range of methods for the preparation of a wide
variety of polyester architectures.129−131

■ POLYMERS AS MACROMOLECULES

The development of living anionic polymerization made it
abundantly clear that polymers could be thought of as organic
(macro)molecules: functionalized initiators could be used to
introduce functional groups to one chain end, functionalized
terminating agents could be used to introduce functionalized
chain-ends, sequential addition of different monomers could be
used to prepare block copolymers, and so forth. Instead of an ill-
defined mixture of polymer chains with average molecular
weights and average degrees of functionalization, polymers could
now be thought of as precisely defined macromolecules with
specific functional groups, though still with distributions of
molecular weights, albeit much narrower than typically prepared
before. Living polymerization and allied methods have led to the
design of macromolecular architectures that would be incon-
ceivable with nonliving methods: well-defined star, graft, brush,
multiblock, cyclic, and telechelic polymers have all been realized
with multiple types of living polymerization methods.132−134

While high-vacuum anionic polymerization remains the most
precise method for carrying out living polymerization, the
development of more accessible procedures that produce
acceptably narrow molecular weight distributions and allow
preparation of block copolymers with high efficiency has led to
tremendous advances in polymer science. The ability to
accurately control polymer molecular weight, dispersity,
composition, and chain-end functional groups has enabled
careful studies of polymer physical properties.26,134,135

■ ORGANIC ROOTS

The genesis of many living polymerization methods can be
traced directly to methods developed by synthetic organic
chemists. While the construction of complex organic molecules
requires a broad range of functional group transformations that
can proceed efficiently in the presence of a diversity of functional
groups, the precise preparation of any given polymer calls for a
single highly efficient reaction that can be induced to occur over
and over again.

Group Transfer Polymerization (GTP). The group at
DuPont headed by Owen Webster introduced organic chemists
to use of standard organic reactions for the production of well-
defined polymers in the early 1980s. Group transfer polymer-
ization (GTP) developed from earlier work by Mukaiyama and
others on the use of silyl ketene acetals as donors in the Michael
reaction for the synthesis of δ-ketoesters,136,137 which in turn was
built upon the development of accessible methods for the
preparation of silyl enol ethers by Stork,138 House,139 and Ojima
and Nagai140 (Scheme 1). In GTP, silyl enolates are activated by
either nucleophiles or Lewis acids to undergo a condensation
with methacrylates. Polymerization occurs by sequential transfer
of the terminal silyl group of the growing polymer chain to
methacrylate monomers as they are added to the chain end to
produce poly(methyl methacrylate) chains with low dispersity,
which could be coupled with suitable terminating agents into
more complex architectures such as star polymers (Scheme 2).141

It also helped that, at about the same time, SEC had advanced to
the stage where it was readily available so that organic chemists,
already accustomed to the use of HPLC for analysis of organic
products, could easily adopt SEC for analysis of polymers by
purchasing new columns and perhaps a new detector. A related
process to produce poly(vinyl alcohol) was also developed.142

Scheme 1. Preparation of Silyl Enol Ethers (Structures on Left Reproduced with Permission from Ref 138)

Scheme 2
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The star polymers produced by the condensation of living
PMMA chains with multifunctional methyacrylates demonstra-
ted that unusual properties could be derived from such
controlled polymerization techniques.143

Ring-Opening Metathesis Polymerization (ROMP). At a
similar time, Fred Tebbe at DuPont was studying titanium
methylene complexes that became known as the “Tebbe
Reagent” and demonstrated that they would undergo a basic
olefin metathesis reaction where the terminal methylenes of
olefins could be exchanged.74 At Caltech, it was demonstrated
that the “Tebbe Reagent” would react with norbornene in the
presence of a pyridine base to produce a stable metallacycle.
When this metallacycle was heated with more norbornene, a
living polymerization of norbornene was observed (Scheme 3).86

By tuning the structure of the initiator to give faster initiation,
polymers with narrow dispersity and block copolymers could be
prepared.144

Since this time, a number of stable initiators for olefin
metathesis have been discovered. All the stable metathesis
initiators have been shown to produce living polymers. In many
cases, manipulation of the initiation rate is required to produce
narrow dispersity polymers.145 These newer initiators based on
molybdenum and ruthenium are being used widely to produce
well-defined polymers with low dispersities.146 Some of the
largest polymers made by living polymerization are the brush−
block copolymers that are initiated by ruthenium-based initiators
(Scheme 4).147 The ruthenium-based ROMP initiators have
become widely used in organic synthesis, making metathesis a
notable case in which a discovery in the polymerization field has
resulted in the development of new organic reactions, rather than
the reverse.

Nitroxide-Mediated Polymerization (NMP). Edmond
Freḿy’s discovery of his eponymous salt,148 which was later
identified as a stable free radical,149−151 was the root of the later
development of diaryl152 and dialkylaminoxyl radicals153,154 as
organic spin-labels,155 radical traps,156 oxidizing agents,157

polarizing agents for dynamic nuclear polarization NMR,158

and ultimately, at least from a polymer chemistry perspective, as
reversible traps for propagating radical chain ends in RDRP
(Scheme 5).159,160

Atom-Transfer Radical Polymerization (ATRP)/Metal-
Mediated Radical Polymerization. Kharasch’s discovery in
the 1930s that the presence of a radical initiator could change the
regiochemistry of hydrogen halide addition to alkenes35 laid the
foundation for the development of what would become known as
atom transfer radical addition (Scheme 6).161,162 Minisci’s
realization that such additions could be catalyzed by metal
species ultimately paved the way for the development of metal-
mediated RDRPmethods (Scheme 6),163,164 which are discussed
in detail elsewhere.17,105

Reversible Addition−Fragmentation Chain Transfer
(RAFT) Polymerization/Macromolecular Design via Inter-
change of Xanthates (MADIX). Tetraalkylthiuram disulfides,
originally described by Grodzki in the 1880s,165 had found use in
the vulcanization of rubber by the 1920s. In the 1950s,
Otsu,166,167 Kern,168 Tobolsky,169 and others explored the use
of tetraalkylthiuram disulfides and related sulfides and disulfides
as polymerization initiators (Scheme 7). In the 1970s, as the
mechanism for the Barton−McCombie deoxygenation reaction
and other thiocarbonyl-dependent transformations were ex-
plored,170 the utility of xanthate esters as radical precursors was
recognized. Otsu further developed tetralkylthiuram and related
thiocarbonyl compounds as initiation−transfer−termination
(“iniferter”) agents in radical polymerization in the
1980s.90,91,171 These earlier efforts culminated, at least from a
polymer-centric perspective, in the development of the xanthate,
dithioester, and trithiocarbonate transfer-agent-based RDRP
methods termed macromolecular design via interchange of
xanthates (MADIX)172,173 and reversible addition−fragmenta-
tion chain transfer (RAFT) polymerization.174 The details of
these developments are left to the recent Perspective by
Perrier.175

Organocatalytic Polymerization. Organocatalysis has a
long tradition in organic chemistry, especially as simpler methods
to achieve the stereoselectivity of enzymatic transformations

Scheme 3

Scheme 4
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were sought. From the early efforts by Bredig and Fiske to use
quinine and quinidine in the asymmetric synthesis of
cyanohydrins,177 to the rational design of organocatalysts in
the 1970s and 1980s, the understanding and application of
organocatalysis in organic synthesis have blossomed in recent
decades (Scheme 8).178−181 In many respects, it is surprising that
it took as long as it did for the full-throttled application of
organocatalysis to living polymerization, but through the
combined efforts of Waymouth, Hedrick, and others, the
catalysts and principles developed for organic synthesis have
been successfully adapted, optimized, and used as inspiration for
the development of new generations of organocatalysts for the
living ring-opening polymerization of a range of cyclic
monomers.129−131,182−184

■ THE METAL CATALYST PROBLEM

When it comes to living polymerizations, polyolefins (and any
other polymers made by a polymerization mechanism in which
any growing polymer chain must be associated with a catalytic
site) are a particularly sticky case. Polyethylene and poly-
propylene are the most widely used polymers because the

monomers are inexpensive, and highly efficient catalysts for their
polymerization have been developed.185 Living polymerization
systems for olefins have been developed, but these all require the
association of onemetal center with each growing chain end, thus
significantly increasing cost as molecular weight of the polymer
decreases. Because relatively low molecular weight polymers are
often desirable for block copolymers (where higher molecular
weights make processing and annealing difficult) and for end-
functionalized polymers (where the utility of functional end
groups is lessened through dilution at higher molecular weights),
the costs associated with increased catalyst loading likely
outweigh any benefits afforded by the use of a living
polymerization method.
Coordinative chain transfer polymerization (CCTP) methods

have been developed that significantly reduce the amount of
catalyst required through exploitation of rapid exchange of active
chain ends with cheaper chain transfer agents (Figure 4).186−191

CCTP systems that are specifically designed so that polymer
chains are shuttled between different metal centers, each of which
favors polymerization of different monomers, enables the
preparation of blocklike polyolefins while similarly minimizing

Scheme 5

Scheme 6

Scheme 7. Thiuram Structure on Left (Reproduced with Permission from Ref 165. Copyright 1881 Wiley-VCH Verlag GmbH &
Co. KGaA); Polymerization Initiators Structure (Reproduced with Permission from Ref 167; Copyright 1957 JohnWiley & Sons,
Inc.); Barton−McCombie Reaction Scheme (Adapted with Permission from Ref 176. Copyright 1975 Royal Chemical Society);
Iniferter Scheme (Reproduced with Permission from Ref 171. Copyright 2000 John Wiley & Sons, Inc.)

Scheme 8
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catalyst content.192−194 Because these methods rely explicitly on
transfer reactions, they do notmeet the formal definition of living,
but it is difficult to argue with the results: several olefin block
copolymer elastomers prepared by CCTP strategies have been
rapidly commercialized.195 Other chain-transfer strategies
involving reversible deactivation of polymer chains are being
developed for ROMP.196

■ SIZE EXCLUSION CHROMATOGRAPHY (SEC)
A narrow molecular weight distribution is typically the first
characteristic that one looks for in a new polymerization
suspected to be living. More careful analyses of kinetics and
the relationship between conversion and molecular weight
typically follow. It was only after the widespread availability of
SEC systems, facilitated by the development of separation media
compatible with organic solvents and desktop computers with
enough computational power to rapidly process SEC data, that
estimating average molecular weights and dispersities of
synthetic polymers became a relatively nononerous
task.62,197,198 While SEC is not without significant limita-
tionsaccurate estimation of molecular weights requires
significant investment in detectors and maintenance as well as
careful calibration, interactions of samples with separation media
can give inaccurate results, and meaningful results can be difficult
to obtain for polymers with complex architecturesthe ability to
take a polymer sample with minimal workup and estimate Mn
and Đ, typically in under an hour, has tremendously accelerated
the screening of new polymerization methods and has arguably

had an incalculable effect in accelerating the development of new
living polymerization methods (Figure 5).
Sixty years after Flory’s initial prediction,11 SEC played an

important role in the demonstration that careful living anionic
polymerization can result in a Poisson distribution of molecular
weights.200 This work also illustrated the usefulness of
complementary techniques, chiefly thermal gradient interaction
chromatography (TGIC),201−203 in providing information about
molecular weight distributions that is not available from SEC
analysis.
The maturation of MALDI-TOF MS as a method for polymer

characterization has also helped in enabling more accurate
molecular weight calculations, though reliable detection of higher
molecular weight samples is not always easy. As a result MALDI-
TOF MS has not to date had nearly the effect on the
development of living polymerization methods that SEC did
and is typically used as a secondary method to validate SEC
results. It has, however, proven invaluable as a method for
carrying out detailed analyses of polymer structure, including
identification of undesirable side reactions and termination
reactions that can occur during polymerization, which can enable
the development of more living polymerizations from less-living
methods.204,205

The recent demonstration that real-time systems for
automating SEC analysis during polymerization (ACOMP:
automated continuous online monitoring of polymerization)206

can be used to control molecular weight and molecular
distribution for a given polymerization207 suggests that there is
still great potential for SEC to influence the further development
of living polymerization methods.
Continuing advances in rapidity and accuracy of NMR

diffusivity measurements as a method for the estimation of
polymer molecular weight and dispersity could lead to challenges
to the primacy of SEC for such analyses, especially given the
widespread availability of high-field spectrometers and gradient
probes.208−212

■ DISPERSITY: NOTHING BUT A NUMBER?

While living polymerization is typically thought of as a route to
polymers with a narrow distribution, it is increasingly being
recognized that various living methods can also be used with
specific procedural modifications to prepare polymers with
broader but controllable molecular weight distributions. It would

Figure 4. (a) Coordination polymerization compared with (b)
coordinative chain transfer polymerization (CCTP). Reproduced with
permission from ref 190.

Figure 5. Left: an early size exclusion chromatography (SEC)/gel permeation chromatography system (original appeared in ref 199). Right: advantages
of SEC for rapid assessment in the development of new living polymerization methods.
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seem peculiar at first glance to expend greater effort to reduce
control over a polymerization process, but there are clear reasons
to explore these types of polymers. For many materials, a broad
molecular weight distribution can aid in processability and results
in materials with superior properties to those prepared from
polymers with narrow molecular weight distributions. It has also
been shown that dispersity can have significant effects on
degradation/release213,214 and electronic properties215 of poly-
mers.
A growing body of literature suggests that controlling the

breadth of the molecular weight distribution in addition to the
molecular weight can provide an additional level of control over
physical properties.216−229 This is especially true for block
copolymers, where polydisperse block copolymers can show
significantly larger domain spacings than monodisperse block
copolymers of comparable molecular weights and composi-
tions,217,222,225,227 though this effect does not appear to occur in
the strong segregation limit.226 Dispersity has also been shown to
influence self-assembly of block copolymers in solution, in some
cases favoring the formation of nonspherical micelles,224 though
the dispersity of block copolymer stabilizers in emulsion
polymerization has been found have little effect upon the
resulting polymers.230 Methods for controlling dispersity
through metered addition of anionic231,232 or RDRP initiators233

to polymerization have been recently refined (Figure 6).
At the same time that comfort with higher dispersities is

growing, the effects of the absence of dispersity234 on synthetic
polymer properties are being explored, largely through heroic
synthetic and purification efforts (echoing Wieland’s advice to
Staudinger quoted at the beginning of this Perspective).235−238

While most of these examples do not involve living polymer-
ization, a notable recent exception described by Hawker,
Gutekunst, and co-workers describes the use of ATRP or ROP
to prepare oligomer mixtures with narrow molecular weight
distributions that can then be separated by automated
chromatography into discrete oligomers (Đ = 1).237 As has
been shown for high-dispersity polymers, truly monodisperse
oligomers show markedly different behavior from polymers with
narrow molecular weight distributions. For example, both
Palmans, Meijer, and co-workers236 and Hawker, Bates, and
co-workers239 have demonstrated that block copolymers with
one or more monodisperse blocks tend to assemble into
structures with narrower domain spacings and lower order−
disorder transition temperatures than comparable polymers with
higher dispersities. The key message here seems to be that
obtaining a polymer with a narrow molecular weight distribution

is not as important as obtaining a polymer with the appropriate
molecular weight distribution for its intended application.

■ FUTURE DIRECTIONS
At this point in history, it is difficult to argue that the near future
of living polymerization, both in application and in development,
will not continue to be defined by the most accessible
polymerization methods: RDRP (particularly ATRP and
RAFT), ROMP, and ROP of cyclic esters. There are a number
of potential research directions that living polymerization could
influence and, through which, the scope of living polymerization
could be expanded.

Supramolecular Polymerization. An increasing number of
reports on supramolecular/noncovalent polymerization strat-
egies that proceed with some degree of living character have
appeared.240−243 While the range of subunits that can be
polymerized by these methodsnotably, poly(ferrocenylsilane)
block copolymers,244,245 molecules capable of π−π stacking and
hydrogen bonding,246−249 and corannulenes capable of switching
from intramolecular hydrogen bonding in the monomer to
intermolecular hydrogen bonding in the polymer250continues
to expand, the development of more general living supra-
molecular methods and their combination with more traditional
living polymerization methods would be greatly desirable.

Polymerization-Induced Self-Assembly. The combina-
tion of time-honored emulsion polymerization techniques with
RDRP macroinitiator-based stabilizers has been honed into the
widely adopted polymerization-induced self-assembly (PISA)
method which allows the direct simultaneous preparation of
amphiphilic block copolymers and their assemblies in
solution.251 RDRP has enabled the rapid growth of this method
to allow the preparation of defined copolymer assemblies at
relatively high concentrations in solvents that are incompatible
with traditional ionic methods.251,252 Extension of PISA to
additional polymerization methods is inevitable, though the
requirement that the solvophobic block(s) be prepared from
monomers that are soluble in the polymerization solvent will
provide restrictions on the range of accessible copolymer
systems.

Extension of Chain-Shuttling to Other Monomer
Systems. CCTP strategies, while not living by the standard
definition, have been successfully used for the preparation of
polyolefin block copolymers.186−190,192−194 Further tuning of
shuttling and polymerization rates, as well as the incorporation of
catalysts capable of tolerating polar monomers such as methyl
methacrylate, would make these techniques even more useful.

Figure 6. (a) Effect of changing flow rate in a continuous flow reactor on dispersity of polystyrene samples prepared by anionic polymerization (Mn =
3400 g mol−1). Decreasing the flow rate leads to higher dispersity. Reproduced with permission from ref 232. (b) Changing NMP initiator addition rate
profile leads to changes in the symmetry of the molecular weight distribution of polystyrene at constant Đ. Reproduced with permission from ref 231.
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Continued Adoption of Synthetic Organic Chemistry
Techniques. As the interest of organic chemists in photo-
chemical transformations has reached new peaks, presumably
due to the development of photocatalysts that function with
visible light and the widespread availability of low-cost LED
sources as substitutes for earlier mercury-based UV lamps, these
techniques have been quickly adopted by polymer chemists and
adapted to living polymerization methods.253−256 Living or
close-to-living photopolymerizations have to date been demon-
strated for RAFT polymerization,257 ATRP,258,259 cationic
polymerization,260 ROMP,261 organotellurium-mediated radical
polymerization,262 and ROP of N-carboxyanhydrides.263 Photo-
induced RAFT polymerization has been successfully used in
PISA strategies for the preparation of block copolymer
assemblies.264,265 Similarly, electrochemical266,267 and mecha-
nochemical268 methods have begun to be exploited to control
polymerizations.
As interest in flow chemistry as a general method for the

synthesis of complex organic molecules continues to
grow,269−272 it is likely that these techniques will be adapted
for use with living polymerization methods for the synthesis of
complex polymer architectures.273 Kilogram-scale living anionic
polymerization of styrene in a continuous reactor has recently
been demonstrated.274 Semibatch conventional radical polymer-
ization with an automatic molecular weight controller has been
used to control the molecular weight distribution of poly-
acrylamide.275 An iterative exponential growth strategy for the
construction of well-defined oligomers through flow chemistry
has also been reported.238 Miyake and co-workers have tied
together a number of these threads in their successful execution
of photoinduced organocatalyzed ATRP in a continuous flow
reactor.276

Higher-Order Sequence Control. Significant efforts are
currently being directed at pushing the structural control made
possible by living polymerization methods beyond relatively
simple block, random, and alternating structures toward the
preparation of polymers with programmable monomer
sequences.277−285 This is an admirable undertaking, and the
field is likely to be greatly enriched by the lessons learned along
the way. Fabricating synthetic systems that can even begin to
approach biological systems in terms of control of sequence and
dispersity is daunting. Despite the clear appeal of using living
polymerization to prepare polymers that show the characteristics
of polymers from living systems, there is little in prior literature to
suggest that there is any actual connection between the synthetic
and biological realms here. The complexity of the molecular
machinery that goes into biosynthesis of macromolecules does
not suggest an obvious way to simplify the key steps involved into
a simpler synthetic model, even if the error-correction
capabilities of living systems are ignored. For example, protein
biosynthesis involves a sequence-defined mRNA strand (with
three sequenced nucleotides for each amino acid residue in the
protein), a sequence-defined tRNA (70−100 nucleotides) for
each amino acid residue, and a ribosome (in eukaryotes, ∼79
proteins, ∼4 RNA strands of 120, 160, 1900, and 4700
nucleotides). To expect a simple molecular initiation/prop-
agation system to be capable of organizing structure at this level
requires a great deal of optimism.
Another important question raised in the quest for polymer-

ization methods that allow control over monomer sequence is,
what sequence should be prepared? Biological systems give clear
models for sequences based upon biogenic structures and
enforce requirements (e.g., water solubility, biocompatibility,

biodegradability) that provide some boundaries on the range of
structures to be explored. For synthetic polymers, a specific
application will need to be defined for any system prior to
addressing this question. Combinatorial synthesis methods could
go a long way toward defining desirable sequences, but successful
screening on an adequately short time scale would still be
necessary as would the development of strategies for producing
useful quantities of functional sequences once they were
identified.286−289

It might be more fruitful if polymer chemists cast an eye
toward other biogenic macromolecules and assemblies that mesh
more closely with the strengths of polymer synthesis in their lack
of precise structural definition, such as polysaccharides and lipid
assemblies. Synthetic carbohydrate chemistry is challenging, but
there have long been effective examples of the use of controlled
and living polymerization methods in the preparation of
saccharide-modified polymers,290−296 and continuing advances
in carbohydrate synthesis through iterative protection/depro-
tection sequences can be adopted.297−300 Likewise, there are now
many published examples where micelles and vesicles that are
analogous to those formed by lipids have been prepared from
amphiphilic block copolymers. In polysaccharides and in lipid
assemblies (if the latter are treated as supramolecular polymers),
structural homogeneity is the exception rather than the rule
oligosaccharides and glycoconjugates often have heterogeneous
structures301and cell membranes are a mixture of phospho-
lipids and glycolipids of different chain lengths, sterols, peptides,
and other components. Such types of biomimetic targets, as well
as structural proteins with relatively simple repeating motifs such
as collagen and elastin,302 are much more accessible through
polymerization chemistry than polymers with specific monomer
sequences.

Continued Exploration of Renewable and Degradable
Monomers and Polymers. The identification of low-cost
chemical feedstocks derived from renewable sources other than
petroleum and coal has long been of importance to synthetic
organic chemists, especially in finding renewable replacements
for commodity materials as well as chiral feedstocks.303−305 With
the growing recognition of problems with polymer waste
streams, there has been tremendous activity in this area with
great focus on polymers such as polylactide and other polyesters
that can be prepared by living polymerization methods. Many of
these efforts are outlined in the recent Perspective by
Schneiderman and Hillmyer.306

■ IS LIVING POLYMERIZATION ALWAYS
NECESSARY?
That is not dead which can eternal lie. And with strange
aeons even death may die.“The Nameless City,” H. P.
Lovecraft (1921)307

Many of the desirable qualities of polymers prepared by living
polymerization methods can be achieved without the need for
the often considerable efforts required to ensure that the
conditions for a living polymerization are met. Polymers with
blocklike architectures can be readily prepared by step-growth
polymerization of suitably functionalized oligomers or polymers
(e.g., polyurethanes) or by catalytic chain-shuttling methods.
End-functionalized polymers can be prepared either by step-
growth polymerization with a slight excess of the monomer unit
with the desired functional groups or by conventional radical
polymerization with functionalized initiators, terminating agents,
and/or chain-transfer agents, though control over molecular
weight, dispersity, and any properties that depend upon these
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parameters will suffer. Molecular weight and, to some extent,
dispersity can be controlled in chain polymerizations by the use
of chain-transfer agents. In all of these cases, the level of absolute
control over molecular weight and dispersity suffers when
compared to living polymerization methods, but for many
applications, a narrow molecular weight distribution offers few
advantages over a broader one. Developing new living polymer-
ization methods and extending existing living polymerization
methods to new monomers are excellent fundamental exercises,
but they should not always be taken as entirely necessary goals.
Even the livingest of living polymerization methods still results in
polymers with much broader molecular weight distributions than
those that result from biological systems. The quotation-mark-
encapsulated “living” has often been used as a descriptor for
polymerizations that do not quite meet the strict definition of
living. Since living, as used in the strictest definition by polymer
scientists, does not meet even the most generous definition of
living, as used by the rest of the world, this seems a somewhat
arbitrary distinction. Since words sometimes do have two
meanings and the weight of history enforces this differentiation
in usage, perhaps there is little that can be done to change this,
though it is tempting to take the Lovecraftian tack that a
polymerization that is not dead might be good enough for most.

■ DIVERSITY
In diversity is life, and where there’s life there’s hope...The
Word for World is Forest, Ursula K. Le Guin

Just as diversity in the polymer community has played a large role
in the many advances in polymer science,308 so has the continued
development of living and livinglike polymerization methods
been crucial to the continued growth of polymer science. Not all
monomers can be polymerized by any given method. Not all
copolymers can be prepared by any one specific method.
Expertise and facility in one general class of polymerization will
limit a researcher to a small subset of possible polymers and will
likely limit the scope of polymer structures that one can imagine.
While there are certain methods that have been widely adopted
due to their versatility and ease of use (especially ATRP, RAFT,
ROMP, and many of the other ring-opening polymerization
methods), it is important for future growth that other methods
do not fall by the wayside. There is little in the early history of
each of these polymerization methods that suggests that they
would necessarily be developed into the powerful techniques
they have become. A diverse variety of living polymerization
methodsorganotellurium, organobismuth, and organolead-
mediated radical polymerizations,309−311 titanocene-catalyzed
radical polymerization,312 polyhomologation313−315that have
otherwise been given short shrift in this discussion have been
developed that could lead to important advances in the future.
Just as the synthesis of complex organic molecules has benefited
from the availability of a large toolbox of reactions, the synthesis
of complex macromolecular architectures will be facilitated by
the maturation of multifarious polymerization methods. For
example, interest in photoiniferter-mediated polymerization,
originally described by Otsu in the 1980s,90,91,171 which as a
polymerization method has generally been looked over in favor
of other RDRP methods, has redeveloped recently. Zhou and
Johnson have demonstrated that trithiocarbonates can be used in
the synthesis of telechelic poly(N-isopropylacrylamide) chains
with low dispersity for the subsequent preparation of polymer
gels with well-defined structures.316 Sumerlin and co-workers
have recently shown that UV-irradiation of trithiocarbonate and
xanthate-based initiators can be effective for the preparation of

exceedingly high molecular weight acrylamides (Mn > 8000 kg/
mol) with narrow molecular weight distributions (Đ < 1.4).317

■ CLOSING
The unique beauty of polymers lies in their juxtaposition of the
profanethe inevitability (or at least desirability) of their
eventual application and co-option by engineersand the
sacredtheir identity as organic molecules to which all of the
fundamental science of synthesis can be applied.
Living polymerization has arguably been the central unifying

concept for synthetically inclined polymer scientists and
engineers over the past half century, and Macromolecules has
played an influential role in its development. There is a simple
and powerful elegance to the idea of a pool of active polymer
chain ends in a pool of monomer with nothing else to do but
grow, with a narrow distribution of chain lengths resulting if all of
the chains start growing at the same time. These features make
living polymerization perhaps the easiest general polymerization
concept to explain to students new to the area, especially when
compared to seemingly outrageous array of kinetic steps possible
in conventional radical polymerization and the haphazard growth
mechanism of typical step polymerization methods. The overt if
incorrect suggestion that the living in living polymerization ties in
somehow to life also likely adds to the appeal of the overall
concept.
Since the earliest hypotheses about the possibility of producing

polymers with controlled structure through chain polymer-
izations that could be made to proceed without transfer or
termination and the subsequent report of living anionic
polymerization by Szwarc, a huge amount of fundamental
research has been devoted to bending other polymerization
methodscationic, coordination, radical, ring-opening, meta-
thesis, step-growth, and so onwith various degrees of success,
to the exacting requirements of living polymerization. The most
important results of these efforts have been the development of
methods in the past few decades, especially the various flavors of
reversible-deactivation radical polymerization (RDRP) and the
ever-growing number of methods that allow control over ring-
opening polymerizations, that allow almost any sentient creature
with access to a fume hood and an inert gas tank to make a vast
range of polymers that would only have been imaginable in past
decades to expert synthetic chemists with uncanny glass-blowing
abilities and an uncommon level of fearlessness.
What shortcomings these methods have when measured

against the standard of anionic polymerization are more than
overcome by their advantages in being good enough for the
preparation of such structures as end-functionalized polymers,
block copolymers, star copolymers, and graft copolymers. It is
also important to not forget that even anionic polymerization has
nothing on biology when it comes to monodispersity and
sequence control. It would be a foolish endeavor to attempt to
predict the future growth of polymer science with any level of
precision, but it is surely safe to state that the ideal of living
polymerization will continue to have a profound influence on the
field even if, in practice, the livingness of the most widely used
methods might sometimes be questionable.
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Dtsch. Chem. Ges. B 1928, 61, 253−263.
(34) Abkin, A.; Medvedev, S. On the kinetics of the polymerisation of
1.3 butadiene in the presence of metallic sodium. Trans. Faraday Soc.
1936, 32, 286−295.
(35) Kharasch, M. S.; Engelmann, H.; Mayo, F. R. The Peroxide Effect
in the Addition of Reagents to Unsaturated Compounds. XV. The
Addition of Hydrogen Bromide to 1- and 2-Bromo- and Chloropro-
penes. J. Org. Chem. 1937, 02, 288−302.
(36) Szwarc, M.; Levy, M.; Milkovich, R. Polymerization initiated by
Electron Transfer to Monomer. A New Method of Formation of Block
Copolymers. J. Am. Chem. Soc. 1956, 78, 2656−2657.
(37) Waack, R.; Rembaum, A.; Coombes, J. D.; Szwarc, M. Molecular
Weights of “Living” Polymers. J. Am. Chem. Soc. 1957, 79, 2026−2027.
(38) Brown, W. B.; Szwarc, M. Molecular weight distribution of
“living” polymers. Trans. Faraday Soc. 1958, 54, 416−419.
(39) Szwarc, M. Molecular Weight Distribution of “Living Polymers”.
II. Effect of Impurities. J. Phys. Chem. 1958, 62, 568−569.
(40) Ziegler, K.; Holzkamp, E.; Breil, H.; Martin, H. Das Mülheimer
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(82) Puskaś, J.; Kaszaś, G.; Kennedy, J. P.; Kelen, T.; Tüdös, F.
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