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The nature of turbulence favors averaging (angular braces) and thus the Reynolds decomposition.
u is called the fl uctuating velocity & <U> the bulk.  <U> and u have transport 
eqns derived from the NSE. In these appears the Reynoldsstress tensor ρ<uu>; 
u transports mean-momentum across the boundary of a fl uid volume giving an apparent 
stress (and hence force). With this we can write down the turbulent (fl uctuating) K.E. eqn

The production term comes from the Reynolds stress i.e. the bulk K.E. goes into the turbulent 
K.E. The dissipation is the loss of K.E. to viscosity; this occurs at the small scales or eddies. 
A reasonable approximation of the mixing is that only eddies of comparable size interact 
(otherwise one transports the other). All this leads to the concept of the energy cascade.

Simplifying the NSE:
L is the operator for linear terms 
and N for non-linear terms. Since 
we can rewrite P using (2) gives 
our form

First off we defi ne <UU...U>, an averaged product of n realizations of the velocity, as an n-th order moment.

To outline the problem we fi rst simplify (1) and then average. This eqn involves a 2nd order moment and we have no 
other equations to hand so the only way to fi nd an expression for this is to multiply through by U and average, this 
process goes on.

This leads to the moment hierarchy, a series of equations that needs closure.
Solving this problem is the basis of turbulence modeling. Many different 
approximations are used but one of the simplest and most widely used is the 
turbulent viscosity hypothesis. This hypothesis says we can treat the Reynolds stress as a real stress, proportion-
al to strain. This leads to an eqn for <UU> and we are done. That said the approximation will not always be valid.

Applying the hypothesis to the K.E. equations & using empirical observation gives the K-ε model: closed coupled 
PDEs that can be solved numerically or using the same sort of methods as for the NSE to give predictions for the 
statistical development of turbulence.

Symmetries:
Transformations

under which the NSE are unchanged. 
On the left X, U & c are vectors, λ is 
a number and A is a matrix. Note we 
are considering an infi nite fl uid

We use a fundamental premise, the Reynolds Transport Theorem:

for a quantity L inside some volume. Setting L=ρ (density) then L=U (velocity) and assuming ρ=const, the simplest in-
compressibility condition, we derive the incompressible Navier-Stokes equations (NSE) (1) & (2). It is not immedi-
ately obvious that the pressure term, P, depends on U but if we take the divergence of (1) we get a Poisson equation:

Solving this tells us a lot about the pressure term; it is a non-local operator on U; it transforms as the non-linear term; 
it propagates incompressibility from an initial condition to all time, the fl uid stays incompressible.

We are interested in swirling motions of turbulence so the vorticity ω=curl(U) is useful. The transport equation follows 
from (1), 

It also has no pressure term. We choose a form similar to the RTT so that we can deduce the form of Q. Noteworthy 
is the non diffusive term in Q, it represents vortex twisting and stretching; the vortices deform smoothly.

The know symmetries of the NSE are:

There is a variation of Galilean transformations that preserve isotropy; random Galilean transformations take U to be 
randomly isotropically distributed. This transformation helped improve models which originally broke the symmetry.

Given symmetries we can calculate the infi nitesimal symmetry generators - operators that make the infi nitesimal 
changes of the transformation. For example, the generators corresponding to time and Galilean translations are 

         

A general approach is to try and linearise the pde (this is often infl uenced by the algebra) reduce this to an ode (ordi-
nary d.e.) and solve using a solvable sub-algebra of the ODE’s symmetry algebra. For the NSE the computational de-
mands make this a diffi cult process and often certain ansatz are used.

(x, t,U)→ (x̃, t̃, Ũ)

1

(∂t +U.∇)w = (w.∇)v + ν∇2w

1

= (w.∇)v= (

Introduction: Symmetries of a partial differential equation can be enough to understand them 
completely. The Navier-Stokes eqns are PDEs for which even existence of a general solution is 
unknown. Before we try to fi nd solutions, a study of conservation laws deepens understanding of 
fl uids and the NSE. However, particular solutions or no, the physics of turbulence (erratic swirling 
in the fl uid) requires a statistical representation that drives us towards turbulence modeling.
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k, the wavenumber, is the variable of the Fourier 
transformed eqn, k is inversely proportional to length 
small k = large scales, large k = small scales.

This graph is an empirically informed account of how 
the energy transfers through turbulence via the en-
ergy cascade. 

The 5/3 relation is an interesting result from dimen-
sional analysis in the regimes where the energy 
spectrum (i.e. in terms of wavenumber) only de-
pends on dissipation
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∇U = 0

1

∇2P = ∇.[(U.∇)U]

1

∇U = 0

1

(1) (2)  and initiallyρ(∂t +U.∇)U = ∇P + µ∇2U

1

Translations: (x, t,U) = (x̃ +X, t̃ + T, Ũ)

Parity: (x, t,U) = (x̃, t̃,−Ũ)

Rotations and Reflections: (x, t,U) = (Ax̃, t̃, AŨ)

Galilean transformation: (x, t,U) = (x̃ + ct, t̃, Ũ + c)

Scaling: (if µ = 0) (x, t,U) = (λ−1x̃, λh−1t̃,u = λ−hŨ).

1

U = U + u P = P  + p

1

∂t

1

Altogether they generate the complete symmetry algebra of the NSE. This al-
gebra has various uses & the fact that there is no specifi c method contributes 
to why we do not know more about general solutions of the NSE. 

&                     where                  .t∂i + ∂ui

1

∂i =
∂

∂xi

1

The more complicated anomalous scaling is a symmetry of Navier Stokes (irrespective of μ) it is anomalous since 
it is inferred by observing simulations or real fl ows. The symmetry is thought to come from the non-linear mixing dy-
namics of the non-linear term, i.e. the second term, and the pressure term.

∂L

∂t
+∇.(Lv) + Q = 0

1

Inertail transfer (mixing)
K.E. production
dissipation. 
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