

Factoring Algorithms over Factoring Algorithms over
Finite FieldsFinite Fields

Details:
Email: r.howell-peak@warwick.ac.uk
FLINT website: http://flintlib.org/
Supervisor: Bill Hart

The Algorithms:
The algorithms are not new, but this is
the first time anything like this has been
implemented in FLINT. The work done this
summer will be built upon in the future to
do factorisation over Z and Q.
Irreducibility test – (Rabin)
I did this one first since it was relatively
easy and also very useful, since it can be
used to determine whether a factorisation
was successful or not.

Results:
These are the results of the benchmarking tests done against Magma, I plotted average time
against length of polynomial. There are some anomalous results where maybe there was a
particularly difficult polynomial to factorise, but overall the FLINT implementation was around
1.5 – 2 times faster than Magma

Row
3

78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Timing comparison between FLINT and Magma over F_484552961

FLINT
MAGMA

Length of Polynomial

Av
er

ag
e

tim
e

to
 fa

ct
or

is
e

(m
s)

Square-Free – (Musser)
Most factoring algorithms require a square-
free input which simplifies the factoring
greatly. It is also a relatively cheap algorithm
and partially factors the polynomial speeding
up the overall factoring time.
Factoring – (Berlekamp) Taking a square-
free input, this algorithm factors the
polynomial by finding congruences of
 . It can be shown that for such a
g,

Finding g involves computing the kernel of
the map by putting the coefficients in
a matrix and using Gaussian elimination to
find a basis of the kernel. It is then a matter
of randomly combining elements of the basis
to see if we get a non-trivial factor, then
using recursion on this factor and the
quotient to completely factor the polynomial.
Testing – The first test was simply to
multiply the factors together and check if it
was the original polynomial. This would
ensure that the factorisation was correct.
Secondly I checked the factors using the
irreducibility test to ensure it was a complete
factorisation.
Profiling – This involved timing the
implementation of the algorithm, and
comparing it to other implementations in
different software packages.

gp=gmodf
f=∏

a∈Fp

gcd f ,g−a

aap

Introduction:
This project was part of the FLINT – Fast
Library for Number Theory – project which
is a highly optimised C library used for
doing number theory calculations. The
goal of my summer project was to
implement a factoring algorithm for
polynomials with coefficients from a finite
field. This involves splitting the
polynomial into irreducible factors, the
product of which is the polynomial.
For example: is a
polynomial factorisation.
Currently the Magma software is believed
to be the fastest in the world for this so it
serves as the benchmark for most of the
code written.

x23x2=x1x2

mailto:r.howell-peak@warwick.ac.uk
http://flintlib.org/

	Slide 1

