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The Algorithms:
The algorithms are not new, but this is 
the first time anything like this has been 
implemented in FLINT. The work done this 
summer will be built upon in the future to 
do factorisation over Z and Q.
Irreducibility test – (Rabin)
I did this one first since it was relatively 
easy and also very useful, since it can be 
used to determine whether a factorisation 
was successful or not.

Results:
These are the results of the benchmarking tests done against Magma, I plotted average time 
against length of polynomial. There are some anomalous results where maybe there was a 
particularly difficult polynomial to factorise, but overall the FLINT implementation was around 
1.5 – 2 times faster than Magma
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Square-Free – (Musser)
Most factoring algorithms require a square-
free input which simplifies the factoring 
greatly. It is also a relatively cheap algorithm 
and partially factors the polynomial speeding 
up the overall factoring time.
Factoring – (Berlekamp)  Taking a square-
free input, this algorithm factors the 
polynomial by finding congruences of              
                   . It can be shown that for such a 
g, 

Finding g involves computing the kernel of 
the map  by putting the coefficients in 
a matrix and using Gaussian elimination to 
find a basis of the kernel. It is then a matter 
of randomly combining elements of the basis 
to see if we get a non-trivial factor, then 
using recursion on this factor and the 
quotient to completely factor the polynomial.
Testing – The first test was simply to 
multiply the factors together and check if it 
was the original polynomial. This would 
ensure that the factorisation was correct.
Secondly I checked the factors using the 
irreducibility test to ensure it was a complete 
factorisation.
Profiling – This involved timing the 
implementation of the algorithm, and 
comparing it to other implementations in 
different software packages.
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Introduction:
This project was part of the FLINT – Fast 
Library for Number Theory – project which 
is a highly optimised C library used for 
doing number theory calculations. The 
goal of my summer project was to 
implement a factoring algorithm for 
polynomials with coefficients from a finite 
field. This involves splitting the 
polynomial into irreducible factors, the 
product of which is the polynomial. 
For example:          is a 
polynomial factorisation.
Currently the Magma software is believed 
to be the fastest in the world for this so it 
serves as the benchmark for most of the 
code written.

x23x2=x1x2

mailto:r.howell-peak@warwick.ac.uk
http://flintlib.org/

	Slide 1

