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Number theory is the branch of pure mathematics concerned with the properties of numbers in 
general, especially integers. Its origins are worldwide, and its current uses are extensive and 
diverse. 
      Fast Library for Number Theory (FLINT) is a C library for programmers wishing to perform 
calculations in Number Theory. Its main aims are: 
• Asymptotically Fast Algorithms (algorithms that are extremely fast for very large numbers 

of calculations 
• As fast or faster than all major competitors 
• Extensively tested (making sure all algorithms give the correct answer) 
• Extensively profiled (checking it is quick for all size and number of terms being calculated) 
       
My part in this project was to research and help write algorithms using relaxed multiplication. 
The term relaxed multiplication was coined by Dr. Joris Van Der Hoeven in 1997 at Paris-Sud 
University. Since then he has published multiple papers on its implementation and use.  
      Before his work there were two types of algorithms for polynomial multiplication, Zealous 
and Lazy. Zealous uses the fastest modern algorithms, the main such being known as the Fast 
Fourier Transform (FFT). This transform calculates the Discrete Fourier Transform (DFT) 
quickly, and this is used to calculate the product in the fastest possible time. However Zealous 
algorithms lack the ability to use previous calculations to help future computations. Also, this 
algorithm type cannot have the range of its calculations extended without restarting the entire 
process. Lazy algorithms can be continued from their previous end point, and they also have 
the capacity to use earlier calculations to assist further calculations. However they tend to take 
longer to perform large scale calculations as they can’t utilise fast algorithms such as FFT 
mentioned above. The purpose of relaxed multiplication is to combine the strengths of both 
methods. 
I have been attempting to understand these papers and write up or rework relaxed algorithms 
in order that they may be used within FLINT. 

The first paper for which an algorithm was derived, was based on Dr. Joris Van Der Hoeven’s 
2003 paper ‘Relax but don’t be too lazy’. The idea I was most interested in was a relaxed mul-
tiplication algorithm whose method concerns carefully choosing the amount, position and order 
in which the coefficients are calculated, in order to have a fast relaxed algorithm. 
      Figure 1 is a graphical representation of the algorithm discussed here. The concept in-
volves having the axes represent the coefficients of two power series f and g. The boxes rep-
resent sets of coefficients that are all calculated at the same time. The numbers within the 
boxes show which boxes are calculated at any one time. Within this method there is a trick 
based upon work of Professor Anatolii Alexeevich Karatsuba along with Dr Yu. P. Ofman (in 
1962). When working with many digit numbers, multiplication is significantly more difficult and 
time consuming to perform than addition. Due to this fact, the Karatsuba trick performs 3 multi-
plications along with multiple additions instead of 4 multiplications, in order to save time. The 
Karatsuba trick allows us to, with specific boxes saved either temporarily or permanently in 
memory, to calculate all the coefficients in two specific, equally sized boxes simultaneously. 
      The second paper studied was Dr. Joris Van Der Hoeven’s 2003 paper ‘Relaxed multiplica-
tion Using the Middle Product’ . When two power series are multiplied the result is truncated to 
order n. However most algorithms that calculate the first n coefficients of a power series prod-
uct, will in fact redundantly calculate the next n coefficients. This wastes time so I did research 
to study algorithms that only calculate the first n coefficients that can also use the aforemen-
tioned fast algorithms.  
      The middle product is another Karatsuba style trick. Figure 2 illustrates the method of this 
algorithm, to calculate a parallelogram instead of the box shape of the first algorithm. Hence it 
can be used to only calculate the first n coefficients of the product. The algorithm conceived to 
use this middle product technique is one that breaks down the required set of products into 
multiple blocks. Middle products are iteratively performed on each block until every coefficient 
of degree less than n is calculated. A large difference between this algorithm and the first dis-
cussed is that all the coefficients of one of our power series have to be fixed, i.e. determined 
before the algorithm begins. Also the algorithm takes a slightly different form depending on 
whether n is an odd (Figure 3) or even (Figure 4) integer.  
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Figure 2: A representation of 
the middle product of an order n 
power series f with an order 2n-1 
power series g.       

Figure 3: A diagram demonstrating 
the middle products that calculate our 
truncated product of power series (van 
der Hoeven, 2003). 

Figure 4: A diagram to 
show the specific terms dealt 
with by the algorithms three ‘if’ 
functions in the case that n is 
odd. 
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Figure 5: A diagram to 
show the specific terms dealt 
with by the algorithms three 
‘if’ functions in the case that n 
is even. 
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Figure 1: A diagram to show the size, position and order in which the required coefficients are calculated. 
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Discussion 
The first algorithm discussed has a very specific use in mind, along with other potential appli-
cations. There are Zealous algorithms that are in fact asympotically faster at polynomial mul-
tiplication. However within algebraic number theory (a strand of number theory that FLINT 
specialises in) there is the topic of p-adic arithmetic that FLINT hopes to incorporate. p-adic 
numbers are a different number system from conventional numbers. Terms within it are rep-
resented by power series and thus on a computer these are truncated power series. In order 
to use these p-adic numbers, a certain degree of accuracy is needed for each p-adic number, 
depending on the required  function. Yet this degree of accuracy cannot be pre-determined. 
So Zealous algorithms based around FFT is severely disadvantaged in this use, as any lack 
of accuracy leads to having to rerun the entire process to a higher degree of accuracy. Yet 
the relaxed method discussed here can be restarted without needing to recalculate anything 
already processed, thus leading to large scale time savings in this important process. 
 
The second algorithm could also be very helpful in the p-adic number field described above. 
Decisions on which algorithm to use being determined by what information is known and 
what is desired from the algorithm. Besides that it also has potential in two other areas. The 
first is in power series division and the square rooting of power series. Although this algorithm 
uses more memory than division based on tricks of Graeffe and Kung, it should be an as-
ymptotically faster method. 
     The second area that this algorithm has potential in is fast exponentiation of power series. 
A transcendental function is one that can only be expressed fully by use of an infinite series. 
For ones in which a power series is known, such as the trigonometric functions or logarithms, 
this algorithm could be of use.  
 
Further investigation is necessary in order to implement any of the aforementioned tech-
niques, however, the use of the Middle Product algorithm is essential for the enhancement of 
the FLINT programming library. 

Conclusions 
• FLINT has made great progress in single limb integer arithmetic, multi-precision 

integer arithmetic and polynomial arithmetic over multi-precision integers.  
 

• The relaxed multiplication algorithm I have researched, inspired by Dr. Joris Van 
Der Hoeven’s work, has considerable potential in any power series multiplication 
in which it could be necessary to either expand the previous work or improve 
upon its accuracy. 

 

• The Middle Product algorithm investigated displays hope for improving FLINT’s 
ability to perform power series division or square rooting at higher speeds than 
previously attainable.  

 

• The Middle Product algorithm also shows promise for asymptotically fast expo-
nentiation of power series, a process used throughout Number Theory calcula-
tions. 

 

• Participation in this research has given me a new found understanding and ap-
preciation of both the field of Number Theory and modern computer practises. 
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A 1*1 temporary box

A 4*4 temporary box
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Implementing Middle Product on FLINT
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